## Specification as a development task

Given precondition $\varphi$ and postcondition $\psi$
develop a program $S$ such that
$\{\varphi\} S\{\psi\}$

## For instance

Find $S$ such that

$$
\{n \geq 0\} S\left\{r t^{2} \leq n \wedge n<(r t+1)^{2}\right\}
$$

One correct solution:

$$
\begin{aligned}
& \{n \geq 0\} \\
& \quad r t:=0 ; s q r:=1 \\
& \quad \text { while } s q r \leq n \text { do } r t:=r t+1 ; s q r:=s q r+2 * r t+1 \\
& \left\{r t^{2} \leq n \wedge n<(r t+1)^{2}\right\}
\end{aligned}
$$

## Hoare's logic: trouble \#1

Another correct solution:

$$
\begin{aligned}
& \{n \geq 0\} \\
& \quad \text { while true do skip } \\
& \left\{r t^{2} \leq n \wedge n<(r t+1)^{2}\right\}
\end{aligned}
$$

$$
\text { since } \vdash \begin{gathered}
\{n \geq 0\} \\
\text { while }\{\text { true }\} \text { true do skip } \\
\left\{r t^{2} \leq n \wedge n<(r t+1)^{2}\right\}
\end{gathered}
$$

## Partial correctness:

termination not guaranteed, and hence not requested!

## Total correctness

Total correctness $=$ partial correctness + successful termination

Total correctness judgements:

$$
[\varphi] S[\psi]
$$

Intended meaning:

Whenever the program $S$ starts in a state satisfying the precondition $\varphi$ then it terminates successfully in a final state that satisfies the postcondition $\psi$

## Total correctness: semantics

$$
\begin{gathered}
\models[\varphi] S[\psi] \\
\text { iff } \\
\{\varphi\} \subseteq \llbracket S \rrbracket\{\psi\}
\end{gathered}
$$

where for $S \in \operatorname{Stmt}, A \subseteq$ State:

$$
\llbracket S \rrbracket A=\{s \in \text { State } \mid \mathcal{S} \llbracket S \rrbracket s=a, \text { for some } a \in A\}
$$

Spelling this out:
The total correctness judgement $[\varphi] S[\psi]$ holds, written $\models[\varphi] S[\psi]$, if for all states $s \in$ State

$$
\text { if } \mathcal{F} \llbracket \varphi \rrbracket s=\mathrm{tt} \text { then } \mathcal{S} \llbracket S \rrbracket s \in \text { State and } \mathcal{F} \llbracket \psi \rrbracket(\mathcal{S} \llbracket S \rrbracket s)=\mathrm{tt}
$$

## Total correctness: proof rules



Adjustments are necessary if expressions may generate errors!

## Total-correctness rule for loops

$$
\frac{(\operatorname{nat}(l) \wedge \varphi(l+1)) \Rightarrow b \quad[\operatorname{nat}(l) \wedge \varphi(l+1)] S[\varphi(l)] \quad \varphi(0) \Rightarrow \neg b}{[\exists l . n a t(l) \wedge \varphi(l)] \text { while } b \operatorname{do} S[\varphi(0)]}
$$

where

- $\varphi(l)$ is a formula with a free variable $l$ that does not occur in while $b$ do $S$,
- nat (l) stands for $0 \leq l$, and
$-\varphi(l+1)$ and $\varphi(0)$ result by substituting, respectively, $l+1$ and 0 for $l$ in $\varphi(l)$.



## Soundness

(of the proof rules for total correctness for the statements of Tiny)

$$
\text { if } \mathcal{T H}(\text { Int }) \vdash[\varphi] S[\psi] \text { then } \models[\varphi] S[\psi]
$$

Proof: By induction on the structure of the proof tree: all the cases are as for partial correctness, except for the rule for loops.
loop rule: Consider $s \in\{\operatorname{nat}(l) \wedge \varphi(l)\}$. By induction on $s(l)$ (which is a natural number) show that $\mathcal{S} \llbracket$ while $b$ do $S \rrbracket s=s^{\prime}$ for some $s^{\prime} \in\{\varphi(0)\}$ (easy!). To complete the proof, notice that if a variable $x$ does not occur in a statement $S^{\prime} \in \mathbf{S t m t}$ and two states differ at most on $x$, then whenever $S^{\prime}$ terminates successfully starting in one of them, then so it does starting in the other, and the result states differ at most on $x$.

## Completeness

(of the proof system for total correctness for the statements of TiNY)
It so happens that:

$$
\mathcal{T H}(\text { Int }) \vdash[\varphi] S[\psi] \text { iff } \models[\varphi] S[\psi]
$$

Proof (idea): Only loops cause extra problems: here, for $\varphi(l)$ take the conjunction of the (partial correctness) loop invariant with the formula
"the loop terminates in exactly l iterations"
It so happens that the latter can indeed be expressed here (since finite tuples of integers and their finite sequences can be coded as natural numbers)!

## For example

To prove:

$$
\begin{aligned}
& {[n \geq 0 \wedge r t=0 \wedge s q r=1]} \\
& \quad \text { while } s q r \leq n \text { do } \\
& \quad r t:=r t+1 ; s q r:=s q r+2 * r t+1 \\
& {\left[r t^{2} \leq n \wedge n<(r t+1)^{2}\right]}
\end{aligned}
$$

use the following invariant with the iteration counter $l$ :

$$
s q r=(r t+1)^{2} \wedge r t^{2} \leq n \wedge l=\lfloor\sqrt{n}\rfloor-r t
$$

Cheating here, of course:
" $l=\lfloor\sqrt{n}\rfloor-r t$ " has to be captured by
a first-order formula in the language of Tiny

Here, this is quite easy: $(r t+l)^{2} \leq n<(r t+l+1)^{2}$

## Well-founded relations

A relation $\succ \subseteq W \times W$ is well-founded if there is no infinite chain

$$
a_{0} \succ a_{1} \succ \ldots \succ a_{i} \succ a_{i+1} \succ \ldots
$$

Typical example: $\langle$ Nat, >>

Few other examples:

BTW: For well-founded $\succ \subseteq W \times W$, its transitive and reflexive closure $\succ^{*} \subseteq W \times W$ is a partial order on $W$. BUT: subtracting identity from an arbitrary partial order on $W$ need not in general yield a well-founded relation.

- Nat ${ }^{n}$ with component-wise (strict) ordering;
- $A^{*}$ with proper prefix ordering;
- Nat ${ }^{n}$ with lexicographic (strict) ordering generated by the usual ordering on Nat;
- any ordinal with the natural (strict) ordering; etc.


## Total correctness $=$ partial correctness + successful termination

Proof method

To prove

$$
[\varphi] \text { while } b \text { do } S[\varphi \wedge \neg b]
$$

- show "partial correctness" : $[\varphi \wedge b] S[\varphi]$
- show "termination": find a set $W$ with a well-founded relation $\succ \subseteq W \times W$ and a function $w$ : State $\rightarrow W$ such that for all states $s \in\{\varphi \wedge b\}$,

$$
w(s) \succ w(\mathcal{S} \llbracket S \rrbracket s)
$$

BTW: $w:$ State $\rightharpoonup W$ may be partial as long as it is defined on $\{\varphi\}$.

## Example

Prove:

$$
\begin{aligned}
& {[x \geq 0 \wedge y \geq 0]} \\
& \quad \text { while } x>0 \text { do } \\
& \quad \text { if } y>0 \text { then } y:=y-1 \text { else }(x:=x-1 ; y:=f(x)) \\
& {[\text { true }]}
\end{aligned}
$$

where $f$ yields a natural number for any natural argument.

- If one knows nothing more about $f$, then the previous proof rule for the total correctness of loops is useless here.
- BUT: termination can be proved easily using the function $w:$ State $\rightarrow \mathbf{N a t} \times$ Nat, where $w(s)=\langle s x, s y\rangle:$ after each iteration of the loop body the value of $w$ decreases w.r.t. the (well-founded) lexicographic order on pairs of natural numbers.


## A fully specified program

$$
\begin{aligned}
& {[x \geq 0 \wedge y \geq 0]} \\
& \text { while }[x \geq 0 \wedge y \geq 0] x>0 \text { do decr }\langle x, y\rangle \text { in Nat } \times \text { Nat wrt } \succ \\
& \quad \text { if } y>0 \text { then } y:=y-1 \text { else }(x:=x-1 ; y:=f(x)) \\
& \text { [true] }
\end{aligned}
$$

with various notational variants assuming some external definitions for the well-founded set and function into it

## Hoare's logic: trouble \#2

Find $S$ such that

$$
\{n \geq 0\} S\left\{r t^{2} \leq n \wedge n<(r t+1)^{2}\right\}
$$

Another correct solution:

$$
\begin{aligned}
& \{n \geq 0\} \\
& \quad r t:=0 ; n:=0 \\
& \left\{r t^{2} \leq n \wedge n<(r t+1)^{2}\right\}
\end{aligned}
$$

A number of techniques to avoid this:

- variables that are required not to be used in the program;
- binary postconditions;
- various forms of algorithmic/dynamic logic, with program modalities.


## Binary postconditions

## Sketch

- New syntactic category BForm of binary formulae, which are like the usual formulae, except they can use both the usual variables $x \in$ Var and their "past" copies $\widehat{x} \in \widehat{\text { Var }}$.
For any syntactic item $\omega$, we write $\widehat{\omega}$ for $\omega$ with each variable $x$ replaced by $\widehat{x}$.
- Semantic function: $\mathcal{B F}:$ BForm $\rightarrow$ State $\times$ State $\rightarrow$ Bool
$\mathcal{B} \mathcal{F} \llbracket \psi \rrbracket\left\langle s_{0}, s\right\rangle$ is defined as usual, except that the state $s_{0}$ is used to evaluate "past" variables $\widehat{x} \in \widehat{\mathrm{Var}}$ and $s$ is used to evaluate the usual variables $x \in \operatorname{Var}$.


## Correctness judgements

$$
\operatorname{pre} \varphi ; S \text { post } \psi
$$

where $\varphi \in$ Form is a (unary) precondition; $S \in \mathbf{S t m t}$ is a statement (as usual); and $\psi \in \mathrm{BForm}$ is a binary postcondition.

Semantics:

The judgement pre $\varphi ; S$ post $\psi$ holds, written $\models$ pre $\varphi ; S$ post $\psi$, if for all states $s \in$ State

$$
\text { if } \mathcal{F} \llbracket \varphi \rrbracket s=\mathrm{tt} \text { then } \mathcal{S} \llbracket S \rrbracket s \in \text { State and } \mathcal{B} \mathcal{F} \llbracket \psi \rrbracket\langle s, \mathcal{S} \llbracket S \rrbracket s\rangle=\mathrm{tt}
$$

## Proof rules

$$
\begin{aligned}
& \frac{}{\operatorname{pre} \varphi ; x:=e \operatorname{post}(\hat{\varphi} \wedge x=\widehat{e} \wedge \vec{y}=\widehat{\vec{y}})} \\
& \text { where } \vec{y} \text { are variables other than } x \text {. } \\
& \overline{\operatorname{pre} \varphi ; \operatorname{skip} \operatorname{post}(\varphi \wedge \vec{y}=\widehat{\vec{y}})} \\
& \operatorname{pre} \varphi_{1} ; S_{1} \operatorname{post}\left(\psi_{1} \wedge \varphi_{2}\right) \quad \operatorname{pre} \varphi_{2} ; S_{2} \text { post } \psi_{2} \\
& \operatorname{pre} \varphi_{1} ; S_{1} ; S_{2} \text { post } \psi_{1} * \psi_{2} \\
& \text { where } \psi_{1} * \psi_{2} \text { is } \exists \vec{z} \cdot\left(\psi_{1}[\vec{x} \mapsto \vec{z}] \wedge \psi_{2}[\widehat{\vec{x}} \mapsto \vec{z}]\right) \text {, with all the variables free } \\
& \text { in } \psi_{1} \text { or } \psi_{2} \text { are among } \vec{x} \text { or } \widehat{\vec{x}} \text {, and } \vec{z} \text { are new variables. }
\end{aligned}
$$

## Further rules

$$
\frac{\operatorname{pre} \varphi \wedge b ; S_{1} \text { post } \psi \quad \operatorname{pre} \varphi \wedge \neg b ; S_{2} \text { post } \psi}{\operatorname{pre} \varphi ; \text { if } b \text { then } S_{1} \text { else } S_{2} \text { post } \psi}
$$

$$
\frac{\operatorname{pre} \varphi \wedge b ; S \operatorname{post}(\psi \wedge \hat{e} \succ e) \quad \psi \Rightarrow \varphi \quad(\psi * \psi) \Rightarrow \psi}{\operatorname{pre} \varphi ; \text { while } b \text { do } S \operatorname{post}((\psi \vee(\varphi \wedge \vec{y}=\widehat{\vec{y}})) \wedge \neg b)}
$$

where $\succ$ is well-founded, and all the free variables are among $\vec{y}$ or $\widehat{\vec{y}}$.

$$
\frac{\varphi^{\prime} \Rightarrow \varphi \quad \text { pre } \varphi ; S \text { post } \psi \quad \psi \Rightarrow \psi^{\prime}}{\operatorname{pre} \varphi^{\prime} ; S \text { post } \psi^{\prime}}
$$

$$
\frac{\operatorname{pre} \varphi ; S \operatorname{post} \psi}{\operatorname{pre} \varphi ; S \operatorname{post}(\widehat{\varphi} \wedge \psi)}
$$

The rules can (have to?) be polished...

## Example

We have now:
pre $n \geq 0$;
$r t:=0 ; s q r:=1 ;$
while $s q r \leq n$ do $r t:=r t+1 ; s q r:=s q r+2 * r t+1$ post $r t^{2} \leq \widehat{n} \wedge \widehat{n}<(r t+1)^{2}$

$$
\text { BUT : } \neq \begin{gathered}
\{n \geq 0\} \\
r t:=0 ; n:=0 \\
\left\{r t^{2} \leq \widehat{n} \wedge \widehat{n}<(r t+1)^{2}\right\}
\end{gathered}
$$

## Algorithmic/dynamic logic

## Sketch

Overall idea:

- Salwicki 1970
- Pratt 1974, Harel 1976
- many others to follow (see

Harel, Kozen \& Tiuryn 2000)

Extend the logical formulae so that they are closed under the usual logical connectives and quantification, as well as under program modalities

Syntax: For any formula $\varphi$ and a statement $S \in \operatorname{Stm}$, build a new formula:

$$
\langle S\rangle \varphi
$$

Semantics: $\mathcal{F} \llbracket\langle S\rangle \varphi \rrbracket s= \begin{cases}\mathcal{F} \llbracket \varphi \rrbracket s^{\prime} & \text { if } \mathcal{S} \llbracket S \rrbracket s=s^{\prime} \in \text { State } \\ \mathrm{ff} & \text { if } \mathcal{S} \llbracket S \rrbracket s \notin \text { State }\end{cases}$

## Proof system

... axioms and rules to handle the standard connectives and quantification ...
Plus axioms and rules to deal with program modalities - interaction between modalities and propositional connectives; (de)composition of modalities - for instance:

$$
\langle S\rangle(\varphi \wedge \psi) \Longleftrightarrow(\langle S\rangle \varphi \wedge\langle S\rangle \psi)
$$

$$
\langle S\rangle \neg \varphi \Longrightarrow \neg\langle S\rangle \varphi \quad \quad \quad\langle S\rangle \text { true } \Longrightarrow(\neg\langle S\rangle \varphi \Longrightarrow\langle S\rangle \neg \varphi)
$$

$$
\left\langle S_{1} ; S_{2}\right\rangle \varphi \Longleftrightarrow\left\langle S_{1}\right\rangle\left(\left\langle S_{2}\right\rangle \varphi\right)
$$

```
etc.
```

Key to the completeness results here:
infinitary rules for loops

