
Specification as a development task

Given precondition ϕ and postcondition ψ

develop a program S such that

{ϕ}S {ψ}

Andrzej Tarlecki: Semantics & Verification - 192 -

For instance

Find S such that

{n ≥ 0}S {rt2 ≤ n ∧ n < (rt + 1)2}

One correct solution:

{n ≥ 0}
rt := 0; sqr := 1;

while sqr ≤ n do rt := rt + 1; sqr := sqr + 2 ∗ rt + 1

{rt2 ≤ n ∧ n < (rt + 1)2}

Andrzej Tarlecki: Semantics & Verification - 193 -

Hoare’s logic: trouble #1

Another correct solution:

{n ≥ 0}
while true do skip

{rt2 ≤ n ∧ n < (rt + 1)2}

since `
{n ≥ 0}

while {true} true do skip

{rt2 ≤ n ∧ n < (rt + 1)2}'

&

$

%

#
"

!

Partial correctness:
termination not guaranteed,

and hence not requested!

Andrzej Tarlecki: Semantics & Verification - 194 -

Total correctness�
�

�

�
 �	Total correctness = partial correctness + successful termination

Total correctness judgements:

[ϕ]S [ψ]

Intended meaning:

Whenever the program S starts in a state satisfying the precondition ϕ

then it terminates successfully in a final state that satisfies the postcondition ψ

Andrzej Tarlecki: Semantics & Verification - 195 -

Total correctness: semantics

|= [ϕ]S [ψ]

iff

{ϕ} ⊆ [[S]] {ψ}

where for S ∈ Stmt, A ⊆ State:

[[S]]A = {s ∈ State | S[[S]] s = a, for some a ∈ A}�
�

�

�
 �	Spelling this out:

The total correctness judgement [ϕ]S [ψ] holds, written |= [ϕ]S [ψ],

if for all states s ∈ State

if F [[ϕ]] s = tt then S[[S]] s ∈ State and F [[ψ]] (S[[S]] s) = tt

Andrzej Tarlecki: Semantics & Verification - 196 -

Total correctness: proof rules

[ϕ[x 7→ e]]x := e [ϕ]

[ϕ]S1 [θ] [θ]S2 [ψ]

[ϕ]S1;S2 [ψ]

???

[???]while b do S [???]

[ϕ] skip [ϕ]

[ϕ ∧ b]S1 [ψ] [ϕ ∧ ¬b]S2 [ψ]

[ϕ] if b then S1 else S2 [ψ]

ϕ′⇒ ϕ [ϕ]S [ψ] ψ⇒ ψ′

[ϕ′]S [ψ′]

�
 �	Adjustments are necessary if expressions may generate errors!

Andrzej Tarlecki: Semantics & Verification - 197 -

Total-correctness rule for loops

(nat(l) ∧ ϕ(l + 1))⇒ b [nat(l) ∧ ϕ(l + 1)]S [ϕ(l)] ϕ(0)⇒¬b
[∃l.nat(l) ∧ ϕ(l)]while b do S [ϕ(0)]

where

− ϕ(l) is a formula with a free variable l that does not occur in while b do S,

− nat(l) stands for 0 ≤ l, and

− ϕ(l + 1) and ϕ(0) result by substituting, respectively, l + 1 and 0 for l in ϕ(l).'

&

$

%
#
"

!

�
�
�

�
 �	Informally: l is a counter

that indicates the number of iterations of the loop body

Andrzej Tarlecki: Semantics & Verification - 198 -

Soundness

(of the proof rules for total correctness for the statements of Tiny)

if T H(Int) ` [ϕ]S [ψ] then |= [ϕ]S [ψ]

Proof: By induction on the structure of the proof tree: all the cases are as for partial

correctness, except for the rule for loops.

loop rule: Consider s ∈ {nat(l) ∧ ϕ(l)}. By induction on s(l) (which is a natural

number) show that S[[while b do S]] s = s′ for some s′ ∈ {ϕ(0)} (easy!). To

complete the proof, notice that if a variable x does not occur in a statement

S′ ∈ Stmt and two states differ at most on x, then whenever S′ terminates

successfully starting in one of them, then so it does starting in the other, and the

result states differ at most on x.

Andrzej Tarlecki: Semantics & Verification - 199 -

Completeness

(of the proof system for total correctness for the statements of Tiny)

It so happens that:

T H(Int) ` [ϕ]S [ψ] iff |= [ϕ]S [ψ]

Proof (idea): Only loops cause extra problems: here, for ϕ(l) take the conjunction of

the (partial correctness) loop invariant with the formula

“the loop terminates in exactly l iterations”

It so happens that the latter can indeed be expressed here (since finite tuples of

integers and their finite sequences can be coded as natural numbers)!

Andrzej Tarlecki: Semantics & Verification - 200 -

For example

To prove:

[n ≥ 0 ∧ rt = 0 ∧ sqr = 1]

while sqr ≤ n do

rt := rt + 1; sqr := sqr + 2 ∗ rt + 1

[rt2 ≤ n ∧ n < (rt + 1)2]

use the following invariant with the iteration counter l:

sqr = (rt + 1)2 ∧ rt2 ≤ n ∧ l = b
√
nc − rt'

&

$

%

'

&

$

%
Cheating here, of course:

“l = b
√
nc − rt” has to be captured by

a first-order formula in the language of Tiny

Luckily: this can be done!

Here, this is quite easy:
(rt + l)2 ≤ n < (rt + l + 1)2

Andrzej Tarlecki: Semantics & Verification - 201 -

Well-founded relations

A relation � ⊆W ×W is well-founded if there is no infinite chain

a0 � a1 � . . . � ai � ai+1 � . . .

Typical example:

〈Nat, >〉

BTW: For well-founded � ⊆ W ×W , its transitive and

reflexive closure �∗ ⊆W ×W is a partial order on W .

BUT: subtracting identity from an arbitrary partial order

on W need not in general yield a well-founded relation.Few other examples:

• Natn with component-wise (strict) ordering;

• A∗ with proper prefix ordering;

• Natn with lexicographic (strict) ordering generated by the usual ordering on

Nat;

• any ordinal with the natural (strict) ordering; etc.

Andrzej Tarlecki: Semantics & Verification - 202 -

Total correctness = partial correctness + successful termination

Proof method

To prove

[ϕ]while b do S [ϕ ∧ ¬b]

• show “partial correctness”: [ϕ ∧ b]S [ϕ]

• show “termination”: find a set W with a well-founded relation � ⊆W ×W and

a function w : State→W such that for all states s ∈ {ϕ ∧ b},

w(s) � w(S[[S]] s)

BTW: w : State ⇀W may be partial as long as it is defined on {ϕ}.

Andrzej Tarlecki: Semantics & Verification - 203 -

Example

Prove:

[x ≥ 0 ∧ y ≥ 0]

while x > 0 do

if y > 0 then y := y − 1 else (x :=x− 1; y := f(x))

[true]

where f yields a natural number for any natural argument.

• If one knows nothing more about f , then the previous proof rule for the total

correctness of loops is useless here.

• BUT: termination can be proved easily using the function

w : State→ Nat×Nat, where w(s) = 〈s x, s y〉:
after each iteration of the loop body the value of w decreases w.r.t. the

(well-founded) lexicographic order on pairs of natural numbers.

Andrzej Tarlecki: Semantics & Verification - 204 -

A fully specified program

[x ≥ 0 ∧ y ≥ 0]

while [x ≥ 0 ∧ y ≥ 0] x > 0 do decr 〈x, y〉 in Nat×Nat wrt �
if y > 0 then y := y − 1 else (x :=x− 1; y := f(x))

[true] '

&

$

%

#
"

!

. . . with various notational variants
assuming some external definitions for
the well-founded set and function into it

Andrzej Tarlecki: Semantics & Verification - 205 -

Hoare’s logic: trouble #2

Find S such that

{n ≥ 0}S {rt2 ≤ n ∧ n < (rt + 1)2}

Another correct solution:

{n ≥ 0}
rt := 0;n := 0

{rt2 ≤ n ∧ n < (rt + 1)2}
OOOOPS?!

A number of techniques to avoid this:

• variables that are required not to be used in the program;

• binary postconditions;

• various forms of algorithmic/dynamic logic, with program modalities.

Andrzej Tarlecki: Semantics & Verification - 206 -

Binary postconditions

Sketch

• New syntactic category BForm of binary formulae, which are like the usual

formulae, except they can use both the usual variables x ∈ Var and their “past”

copies x̂ ∈ V̂ar.

For any syntactic item ω, we write ω̂ for ω with each variable x replaced by x̂.

• Semantic function: BF : BForm→ State× State→ Bool

BF [[ψ]] 〈s0, s〉 is defined as usual, except that the state s0 is used to evaluate

“past” variables x̂ ∈ V̂ar and s is used to evaluate the usual variables x ∈ Var.

Andrzej Tarlecki: Semantics & Verification - 207 -

Correctness judgements

preϕ; S post ψ

where ϕ ∈ Form is a (unary) precondition; S ∈ Stmt is a statement (as usual); and

ψ ∈ BForm is a binary postcondition.

Semantics:

The judgement preϕ; S post ψ holds, written |= preϕ; S post ψ,

if for all states s ∈ State

if F [[ϕ]] s = tt then S[[S]] s ∈ State and BF [[ψ]] 〈s,S[[S]] s〉 = tt

Andrzej Tarlecki: Semantics & Verification - 208 -

Proof rules

preϕ; x := e post (ϕ̂ ∧ x = ê ∧ ~y = ~̂y)

where ~y are variables other than x.

preϕ; skip post (ϕ ∧ ~y = ~̂y)

preϕ1; S1 post (ψ1 ∧ ϕ2) preϕ2; S2 post ψ2

preϕ1; S1;S2 post ψ1 ∗ψ2

where ψ1 ∗ψ2 is ∃~z.(ψ1[~x 7→ ~z] ∧ ψ2[~̂x 7→ ~z]), with all the variables free

in ψ1 or ψ2 are among ~x or ~̂x, and ~z are new variables.

Andrzej Tarlecki: Semantics & Verification - 209 -

Further rules

preϕ ∧ b; S1 post ψ preϕ ∧ ¬b; S2 post ψ

preϕ; if b then S1 else S2 post ψ

preϕ ∧ b; S post (ψ ∧ ê � e) ψ⇒ ϕ (ψ ∗ψ)⇒ ψ

preϕ; while b do S post ((ψ ∨ (ϕ ∧ ~y = ~̂y)) ∧ ¬b)

where � is well-founded, and all the free variables are among ~y or ~̂y.

ϕ′⇒ ϕ preϕ; S post ψ ψ⇒ ψ′

preϕ′; S post ψ′
preϕ; S post ψ

preϕ; S post (ϕ̂ ∧ ψ)

�
�

�

�
 �	The rules can (have to?) be polished. . .

Andrzej Tarlecki: Semantics & Verification - 210 -

Example

We have now:

|=

pre n ≥ 0;

rt := 0; sqr := 1;

while sqr ≤ n do rt := rt + 1; sqr := sqr + 2 ∗ rt + 1

post rt2 ≤ n̂ ∧ n̂ < (rt + 1)2

BUT : 6|=
{n ≥ 0}

rt := 0;n := 0

{rt2 ≤ n̂ ∧ n̂ < (rt + 1)2}

Andrzej Tarlecki: Semantics & Verification - 211 -

Algorithmic/dynamic logic'

&

$

%
• Salwicki 1970

• Pratt 1974, Harel 1976

• many others to follow (see

Harel, Kozen & Tiuryn 2000)

Sketch

Overall idea:

Extend the logical formulae so that they are closed
under the usual logical connectives and quantification,

as well as under program modalities

Syntax: For any formula ϕ and a statement S ∈ Stmt, build a new formula:

〈S〉ϕ

Semantics: F [[〈S〉ϕ]] s =

F [[ϕ]] s′ if S[[S]] s = s′ ∈ State

ff if S[[S]] s 6∈ State

Andrzej Tarlecki: Semantics & Verification - 212 -

Proof system

. . . axioms and rules to handle the standard connectives and quantification . . .

Plus axioms and rules to deal with program modalities — interaction between

modalities and propositional connectives; (de)composition of modalities — for

instance:

〈S〉(ϕ ∧ ψ) ⇐⇒ (〈S〉ϕ ∧ 〈S〉ψ)

〈S〉¬ϕ =⇒ ¬〈S〉ϕ 〈S〉true =⇒ (¬〈S〉ϕ =⇒ 〈S〉¬ϕ)

〈S1;S2〉ϕ ⇐⇒ 〈S1〉(〈S2〉ϕ) etc.

Key to the completeness results here: infinitary rules for loops

Andrzej Tarlecki: Semantics & Verification - 213 -

