
Semantyka i weryfikacja programów

Andrzej Tarlecki

Instytut Informatyki

Wydzia l Matematyki, Informatyki i Mechaniki

Uniwersytet Warszawski

http://www.mimuw.edu.pl/~tarlecki pok. 4750

tarlecki@mimuw.edu.pl tel: (22 55) 44475

Strona tego wyk ladu: http://www.mimuw.edu.pl/~tarlecki/teaching/semwer/

Andrzej Tarlecki: Semantics & Verification - 1 -

Program Semantics & Verification

Andrzej Tarlecki

Institute of Informatics

Faculty of Mathematics, Informatics and Mechanics

University of Warsaw

http://www.mimuw.edu.pl/~tarlecki office: 4750

tarlecki@mimuw.edu.pl phone: (48)(22)(55) 44475

This course: http://www.mimuw.edu.pl/~tarlecki/teaching/semwer/

Andrzej Tarlecki: Semantics & Verification - 2 -

Overall

• The aim of the course is to present the importance as well as basic problems and

techniques of formal description of programs.

• Various methods of defining program semantics are discussed, and their

mathematical foundations as well as techniques are presented.

• The basic notions of program correctness are introduced together with methods

and formalisms for their derivation.

• The ideas of systematic development of correct programs are introduced.

Andrzej Tarlecki: Semantics & Verification - 3 -

Prerequisites

• Wstȩp do programowania (1000-211bWPI, 1000-211bWPF)

• Podstawy matematyki (1000-211bPM)

• Jȩzyki, automaty i obliczenia (1000-214bJAO)

Andrzej Tarlecki: Semantics & Verification - 4 -

Literature

Rather random choice for now:

• M. Hennessy. The Semantics of Programming Languages: An Elementary

Introduction Using Structural Operational Semantics. Wiley, 1990.

• M. Fernandez. Programming Languages and Operational Semantics: A Consize

Overview . Springer, 2004.

• H. Riis Nielson, F. Nielson. Semantics with Applications: An Appetizer . Springer,

2007.

• M. Gordon. Denotacyjny opis jȩzyków programowania. WNT, 1983.

• D. Gries. The Science of Programming . Springer-Verlag, 1981.

• E. Dijkstra. Umiejȩtność programowania. WNT, 1978.

• P. Dembiński, J. Ma luszyński. Matematyczne metody definiowania jȩzyków

programowania. WNT, 1981.

• A. Blikle, P. Chrza̧stowski-Wachtel. Denotational Engineering of Programming

Languages. In preparation, 2021.

Andrzej Tarlecki: Semantics & Verification - 5 -

Programs

D207 0C78 F0CE 00078 010D0

D203 0048 F0D6 00048 01CD8

8000 F0EA F0B3 010EC 00ED7

9C00 000C F0DA 0000C ...

r := 0; q := 1;

while q <= n do

begin r := r + 1;

q := q + 2 * r + 1 end

• a precise description of an algorithm, understandable for a human reader

• a precise prescription of computations to be performed by a computer

Programs should be:

• clear; efficient; robust; reliable; user friendly; well documented; . . .

• but first of all, CORRECT

• don’t forget though: also, executable. . .

Andrzej Tarlecki: Semantics & Verification - 6 -

Tensions

A triangle of tension for programming languages:

usable formal

effective

-�

@
@
@
@
@
@R

I �
�
�

�
�
�	

�

Andrzej Tarlecki: Semantics & Verification - 7 -

Grand View

What we need for a good programming language:

• Syntax

• Semantics

• Logic

• Pragmatics/methodology

• Implementation

• Programming environment

Andrzej Tarlecki: Semantics & Verification - 8 -

Syntax

To determine exactly the well-formed phrases of the language.

− concrete syntax (LL(1), LR(1), . . .)

− abstract syntax (CF grammar, BNF notation, etc)

− type checking (context conditions, static analysis)

It is standard by now to present it formally!

One consequence is that excellent tools to support parsing are available.

Andrzej Tarlecki: Semantics & Verification - 9 -

Semantics

To determine the meaning of the programs and all the phrases of the language.

Informal description is often not good enough

− operational semantics (small-step, big-step, machine-oriented): dealing with the

notion of computation, thus indicating how the results are obtained

− denotational semantics (direct-style, continuation-style): dealing with the overall

meaning of the language constructs, thus indicating the results without going

into the details of how they are obtained

− axiomatic semantics: centred around the properties of the language constructs,

perhaps ignoring some aspects of their meanings and the overall results

Andrzej Tarlecki: Semantics & Verification - 10 -

Pragmatics

To indicate how to use the language well, to build good programs.

• user-oriented presentation of programming constructs

• hints on good/bad style of their use

− intended application domains

− programming patterns

− naming conventions

− modularisation techniques

− . . .

Andrzej Tarlecki: Semantics & Verification - 11 -

Logic

To express and prove program properties.

• Partial correctness properties, based on first-order logic

• Hoare’s logic to prove them

• Termination properties (total correctness)

Also:

− temporal logics

− other modal logics

− algebraic specifications

− abstract model specifications

− . . .

Other properties, e.g.:

interactive (infinite) behaviours, safety,

use of resources, complexity, . . .

Other verification methods:

proof systems, testing, model checking, . . .

Andrzej Tarlecki: Semantics & Verification - 12 -

program verification vs. correct program development

Methodology

− specifications

− stepwise refinement

− designing the modular structure of the program

− coding individual modules'

&

$

%

'

&

$

%
Code development and maintenance

− various development styles (agile, eXtreme, . . .)

− code refactoring . . .

Andrzej Tarlecki: Semantics & Verification - 13 -

Implementation

Compiler/interpreter, with:

− parsing

− static analysis and optimisations

− code generation

Programming environment

So that we can actually do this:

− dedicated text/program editor
− compiler/interpreter
− code/module library
− version control system
− test bed
− debugger

BUT ALSO:

• support for
− specification development
− verification
− architectural design
− . . .

Andrzej Tarlecki: Semantics & Verification - 14 -

Why formal semantics?

So that we can sleep at night. . .

− precise understanding of all language constructs and the underlying concepts

− independence of any particular implementation

− easy prototype implementations

− necessary basis for trustworthy reasoning, verification and optimisation

Andrzej Tarlecki: Semantics & Verification - 15 -

Example 1

• Naive optimisation: replace

if f(x) then x := 555 else x := 555

by

x := 555

Are these two statements equivalent?

• Not-so-naive optimisation: replace

x := 555;x := 555;x := 555

by

x := 555

Are these two statements equivalent?

Andrzej Tarlecki: Semantics & Verification - 16 -

Example 2

Recall:

r := 0; q := 1;

while q <= n do

begin r := r + 1;

q := q + 2 * r + 1

end

Or better:

rt := 0; sqr := 1;

while sqr ≤ n do (rt := rt + 1;

sqr := sqr + 2 ∗ rt + 1)

Andrzej Tarlecki: Semantics & Verification - 17 -

Well, this computes the integer square root of (nonnegative integer) n, doesn’t it:

{n ≥ 0}
rt := 0; sqr := 1;

{n ≥ 0 ∧ rt = 0 ∧ sqr = 1}
while {sqr = (rt + 1)2 ∧ rt2 ≤ n} sqr ≤ n do

(rt := rt + 1;

{sqr = rt2 ∧ sqr ≤ n}
sqr := sqr + 2 ∗ rt + 1)

{rt2 ≤ n < (rt + 1)2}

But how do we justify the implicit use of assertions and proof rules?

Andrzej Tarlecki: Semantics & Verification - 18 -

Sample proof rule

For instance:

{sqr = rt2 ∧ sqr ≤ n} sqr := sqr + 2 ∗ rt + 1 {sqr = (rt + 1)2 ∧ rt2 ≤ n}

follows by:

{ϕ[E/x]} x :=E {ϕ}

BUT: although correct in principle, this rule fails in quite a few ways for Pascal

(abnormal termination, looping, references and sharing, side effects, assignments to

array components, etc)

Be formal and precise!

Andrzej Tarlecki: Semantics & Verification - 19 -

Justification

• definition of program semantics

• definition of satisfaction for correctness statements

• proof rules for correctness statements

• proof of soundness of all the rules

• analysis of completeness of the system of rules

Andrzej Tarlecki: Semantics & Verification - 20 -

Course outline

• Introduction

• Operational semantics

• Denotational semantics for simple and somewhat more advanced constructs

• Foundations of denotational semantics

• Partial correctness: Hoare’s logic

• Total correctness: proving termination

• Systematic program derivation

• Semantics: an algebraic view (with bits and pieces of universal algebra)

• Program specification and development

Andrzej Tarlecki: Semantics & Verification - 21 -

Syntax

There are standard ways to define a syntax for programming languages. The course

to learn about this:

Jȩzyki, automaty i obliczenia

Basic concepts:

• formal languages

• (generative) grammars: regular (somewhat too weak), context-free (just about

right), context-dependent (too powerful), . . .

BTW: there are grammar-based mechanisms to define the semantics of programming

languages: attribute grammars, perhaps also two-level grammars, see (or rather, go

to)

Metody realizacji jȩzyków programowania

Andrzej Tarlecki: Semantics & Verification - 22 -

Concrete syntax

Concrete syntax of a programming language is typically given by a (context-free)

grammar detailing all the “commas and semicolons” that are necessary to write a

string of characters that is a well-formed program.

rt := rt + 1 vs. ((((
((

rt + 1 := rt

Typically, additional context-dependent conditions eliminate some of the strings

permitted by the grammar (like “thou shalt not use an undeclared variable”).

Presenting a formal language by an unambiguous context-free grammar gives a

structure to the strings of the language: it shows how a well-formed string is build of

its immediate components using some linguistic construct of the language.

Andrzej Tarlecki: Semantics & Verification - 23 -

Abstract syntax

Abstract syntax presents the structure of the program phrases in terms of the

linguistic constructs of the language, by indicating the immediate components of the

phrase and the construct used to build it.

Think of abstract syntax as presenting each phrase of a language as a tree: the node

is labelled by the top construct, the subtrees give the immediate components.

Parsing is the way to map concrete syntax to abstract syntax, by building the abstract

syntax tree for each phrase of the language as defined by the concrete syntax.

rt := rt + 1

parsing

ñ
ñ
ñ
ñ
ñ
ñ
ñ
ñ
ñ
ñ
ñ
ò

ASSIGN (VarID(rt) , SUM (VarID(rt) , IntLiteral(1)))

Andrzej Tarlecki: Semantics & Verification - 24 -

At this course

We will not belabour the distinction between concrete and abstract syntax.

• concrete-like way of presenting the syntax will be used

• the phrases will be used as if they were given by an abstract syntax

• if doubts arise, parenthesis and indentation will be used to disambiguate the

interpretation of a phrase as an abstract-syntax tree

This is inappropriate for true programming languages

but quite adequate to deal with our examples

Andrzej Tarlecki: Semantics & Verification - 25 -

