
Program correctness and verification

Programs should be:

• clear; efficient; robust; reliable; user friendly; well documented; . . .

• but first of all, CORRECT

• don’t forget though: also, executable. . .

Correctness#
"

 
!

�
�

�
�

Program correctness makes sense only

w.r.t. a precise specification of the requirements.

Andrzej Tarlecki: Semantics & Verification - 173 -



Defining correctness

We need:

• A formal definition of the programs in use

syntax and semantics of the programming language

• A formal definition of the specifications in use

syntax and semantics of the specification formalism

• A formal definition of the notion of correctness to be used

what does it mean for a program to satisfy a specification

Andrzej Tarlecki: Semantics & Verification - 174 -



Proving correctness

We need:

• A formal system to prove correctness of programs w.r.t. specifications

a logical calculus to prove judgments of program correctness

• A (meta-)proof that the logic proves only true correctness judgements

soundness of the logical calculus

• A (meta-)proof that the logic proves all true correctness judgements

completeness of the logical calculus�
�

�
�
 �	under acceptable technical conditions

Andrzej Tarlecki: Semantics & Verification - 175 -



A specified program

{n ≥ 0}
rt := 0; sqr := 1;

while sqr ≤ n do

(rt := rt + 1; sqr := sqr + 2 ∗ rt + 1)

{rt2 ≤ n < (rt + 1)2}

If we start with a non-negative n, and execute the program successfully,

then we end up with rt holding the integer square root of n

Andrzej Tarlecki: Semantics & Verification - 176 -



Hoare’s logic

'

&

$

%

History:

• Turing 1949

• 1960’s:

McCarthy, Naur, Floyd

• Hoare 1969

• many others to follow

(see: Apt 1981)

Correctness judgements:

{ϕ}S {ψ}

• S is a statement of Tiny

• the precondition ϕ and the postcondition ψ are first-order formulae with variables

in Var

Intended meaning:

�
�

�
�

�
�

�
�

Partial correctness:
termination not guaranteed!

Whenever the program S starts in a state satisfying the precondtion ϕ

and terminates successfully, then the final state satisfies the postcondition ψ

Andrzej Tarlecki: Semantics & Verification - 177 -



Formal definition

Recall the simplest semantics of Tiny, with S : Stmt→ State ⇀ State

We add now a new syntactic category:

ϕ ∈ Form ::= b | ϕ1 ∧ ϕ2 | ϕ1⇒ ϕ2 | ¬ϕ′ | ∃x.ϕ′ | ∀x.ϕ′

with the corresponding semantic function:

F : Form→ State→ Bool

and standard semantic clauses.�
�

�
�

�
�

�
�

Also, the usual definitions of free variables of a formula
and substitution of an expression for a variable

Andrzej Tarlecki: Semantics & Verification - 178 -



More notation

For ϕ ∈ Form:

{ϕ} = {s ∈ State | F [[ϕ]] s = tt}

For S ∈ Stmt, A ⊆ State:

A [[S]] = {s ∈ State | S[[S]] a = s, for some a ∈ A}

Andrzej Tarlecki: Semantics & Verification - 179 -



Hoare’s logic: semantics

|= {ϕ}S {ψ}
iff

{ϕ} [[S]] ⊆ {ψ}

�
�

�
�
 �	Spelling this out:

The partial correctness judgement {ϕ}S {ψ} holds, written |= {ϕ}S {ψ},
if for all states s ∈ State

if F [[ϕ]] s = tt and S[[S]] s ∈ State

then F [[ψ]] (S[[S]] s) = tt

Andrzej Tarlecki: Semantics & Verification - 180 -



Hoare’s logic: proof rules

{ϕ[x 7→ e]}x := e {ϕ}

{ϕ}S1 {θ} {θ}S2 {ψ}
{ϕ}S1;S2 {ψ}

{ϕ ∧ b}S {ϕ}
{ϕ}while b do S {ϕ ∧ ¬b}

{ϕ} skip {ϕ}

{ϕ ∧ b}S1 {ψ} {ϕ ∧ ¬b}S2 {ψ}
{ϕ} if b then S1 else S2 {ψ}

ϕ′⇒ ϕ {ϕ}S {ψ} ψ⇒ ψ′

{ϕ′}S {ψ′}

Andrzej Tarlecki: Semantics & Verification - 181 -



Example of a proof

We will prove the following partial correctness judgement:

{n ≥ 0}
rt := 0;

sqr := 1;

while sqr ≤ n do

rt := rt + 1;

sqr := sqr + 2 ∗ rt + 1

{rt2 ≤ n ∧ n < (rt + 1)2}

�
�

�
�

�
�

�
�

Consequence rule will be used implicitly
to replace assertions by equivalent ones of a simpler form

Andrzej Tarlecki: Semantics & Verification - 182 -



Step by step �
�

�
�{ϕ[x 7→ e]}x := e {ϕ}�

�
�
�

an instance of the assignment rule:

{n ≥ 0 ∧ 0 = 0} rt := 0 {n ≥ 0 ∧ rt = 0}• {n ≥ 0} rt := 0 {n ≥ 0 ∧ rt = 0}

• {n ≥ 0 ∧ rt = 0} sqr := 1 {n ≥ 0 ∧ rt = 0 ∧ sqr = 1}

• {n ≥ 0} rt := 0; sqr := 1 {n ≥ 0 ∧ rt = 0 ∧ sqr = 1}
�
�

�
�{ϕ}S1 {θ} {θ}S2 {ψ}

{ϕ}S1;S2 {ψ}

• {n ≥ 0} rt := 0; sqr := 1 {sqr = (rt + 1)2 ∧ rt2 ≤ n}'

&

$

%

#
"

 
!

EUREKA!!!
We have just invented

the loop invariant

#
"

 
!

BTW: another version of the assignment rule:

{ϕ}x := e {∃x′.(ϕ[x 7→ x′] ∧ x = e[x 7→ x′])}

Andrzej Tarlecki: Semantics & Verification - 183 -



Loop invariant�
�

�
�

an instance of the assignment rule:

{sqr = (rt + 1)2 ∧ sqr ≤ n} rt := rt + 1 {sqr = rt2 ∧ sqr ≤ n}

• {(sqr = (rt + 1)2 ∧ rt2 ≤ n) ∧ sqr ≤ n} rt := rt + 1 {sqr = rt2 ∧ sqr ≤ n}

• {sqr = rt2 ∧ sqr ≤ n} sqr := sqr + 2 ∗ rt + 1 {sqr = (rt + 1)2 ∧ rt2 ≤ n}

• {(sqr = (rt + 1)2 ∧ rt2 ≤ n) ∧ sqr ≤ n}
rt := rt + 1; sqr := sqr + 2 ∗ rt + 1

{sqr = (rt + 1)2 ∧ rt2 ≤ n}
�
�

�
�{ϕ ∧ b}S {ϕ}

{ϕ}while b do S {ϕ ∧ ¬b}

• {sqr = (rt + 1)2 ∧ rt2 ≤ n}
while sqr ≤ n do

rt := rt + 1; sqr := sqr + 2 ∗ rt + 1

{(sqr = (rt + 1)2 ∧ rt2 ≤ n) ∧ ¬(sqr ≤ n)}

Andrzej Tarlecki: Semantics & Verification - 184 -



Finishing up

• {sqr = (rt + 1)2 ∧ rt2 ≤ n}
while sqr ≤ n do

rt := rt + 1; sqr := sqr + 2 ∗ rt + 1

{rt2 ≤ n ∧ n < (rt + 1)2}

•
{n ≥ 0}

rt := 0; sqr := 1;

while sqr ≤ n do

rt := rt + 1; sqr := sqr + 2 ∗ rt + 1

{rt2 ≤ n ∧ n < (rt + 1)2}

QED

Andrzej Tarlecki: Semantics & Verification - 185 -



A fully specified program
� 


� 	

P
ra

ct
ic

al
re

pr
es

en
ta

ti
on

of
a

co
m

pl
et

e
pr

o
of

tr
ee

{n ≥ 0}
rt := 0;

{n ≥ 0 ∧ rt = 0}
sqr := 1;

{n ≥ 0 ∧ rt = 0 ∧ sqr = 1}
while {sqr = (rt + 1)2 ∧ rt2 ≤ n} sqr ≤ n do

rt := rt + 1;

{sqr = rt2 ∧ sqr ≤ n}
sqr := sqr + 2 ∗ rt + 1

{rt2 ≤ n < (rt + 1)2}

Andrzej Tarlecki: Semantics & Verification - 186 -



The first-order theory in use

In the proof above, we have used quite a number of facts concerning the underlying

data type, that is, Int with the operations and relations built into the syntax of

Tiny. Indeed, each use of the consequence rule requires such facts.

Define the theory of Int

T H(Int)

to be the set of all formulae that hold in all states.

The above proof shows:

T H(Int) `

{n ≥ 0}
rt := 0; sqr := 1;

while sqr ≤ n do rt := rt + 1; sqr := sqr + 2 ∗ rt + 1

{rt2 ≤ n ∧ n < (rt + 1)2}

Andrzej Tarlecki: Semantics & Verification - 187 -



Soundness

Fact: Hoare’s proof calculus (given by the above rules) is sound, that is:

if T H(Int) ` {ϕ}S {ψ} then |= {ϕ}S {ψ}

So, the above proof of a correctness judgement validates the following semantic fact:

|=

{n ≥ 0}
rt := 0; sqr := 1;

while sqr ≤ n do rt := rt + 1; sqr := sqr + 2 ∗ rt + 1

{rt2 ≤ n ∧ n < (rt + 1)2}

Andrzej Tarlecki: Semantics & Verification - 188 -



Proof

(of soundness of Hoare’s proof calculus)

By induction on the structure of the proof in Hoare’s logic:

assignment rule: Easy, but we need a lemma (to be proved by induction on the

structure of formulae):
�
�

�
�{ϕ[x 7→ e]}x := e {ϕ}F [[ϕ[x 7→ e]]] s = F [[ϕ]] s[x 7→ E [[e]] s]

Then, for s ∈ State, if s ∈ {ϕ[x 7→ e]} then S[[x := e]] s = s[x 7→ E [[e]] s] ∈ {ϕ}.

skip rule: Trivial.

composition rule: Assume {ϕ} [[S1]] ⊆ {θ} and {θ} [[S2]] ⊆ {ψ}. Then

{ϕ} [[S1;S2]] = ({ϕ} [[S1]]) [[S2]] ⊆ {θ} [[S2]] ⊆ {ψ}.
�
�

�
�{ϕ}S1 {θ} {θ}S2 {ψ}

{ϕ}S1;S2 {ψ}if-then-else rule: Easy.

consequence rule: Again the same, given the obvious observation that {ϕ1} ⊆ {ϕ2}
iff ϕ1⇒ ϕ2 ∈ T H(Int).

Andrzej Tarlecki: Semantics & Verification - 189 -



Soundness of the loop rule

loop rule: We need to show that the least fixed point of the operator

Φ(F ) = cond(B[[b]],S[[S]];F, idState)

satisfies
�
�

�
�{ϕ ∧ b}S {ϕ}

{ϕ}while b do S {ϕ ∧ ¬b}
fix (Φ)({ϕ}) ⊆ {ϕ ∧ ¬b}

Proceed by fixed point induction (this is an admissible property!).

Suppose that F ({ϕ}) ⊆ {ϕ ∧ ¬b} for some F : State ⇀ State, and consider

s ∈ {ϕ} with s′ = Φ(F )(s) ∈ State. Two cases are possible:

• If B[[b]] s = ff then s′ = s ∈ {ϕ ∧ ¬b}.
• If B[[b]] s = tt then s′ = F (S[[S]] s). We get s′ ∈ {ϕ ∧ ¬b} by the assumption

on F , since {ϕ ∧ b} [[S]] ⊆ {ϕ} by the inductive hypothesis, which implies

S[[S]] s ∈ {ϕ}.
So, Φ(F )({ϕ}) ⊆ {ϕ ∧ ¬b}, and the proof is completed.

Andrzej Tarlecki: Semantics & Verification - 190 -



Problems with completeness

• If T ⊆ Form is r.e. then the set of all Hoare’s triples derivable from T is r.e. as

well.

• |= {true}S {false} iff S fails to terminate for all initial states.

• Since the halting problem is not decidable for Tiny, the set of all judgements of

the form {true}S {false} such that |= {true}S {false} is not r.e.

Nevertheless:

T H(Int) ` {ϕ}S {ψ} iff |= {ϕ}S {ψ}

Andrzej Tarlecki: Semantics & Verification - 191 -


