Blocks \& declarations

For now: let's look at declarations of variables:

$$
\text { Tiny }{ }^{+}
$$

$$
\begin{aligned}
S \in \mathrm{Stmt} & : \\
D_{V} \in \mathrm{VDecl} & ::=\operatorname{var} x ; D_{V} \mid \varepsilon
\end{aligned}
$$

Locations

We have identified two roles of variables:

- identifiers, as used in programs
- names for memory cells, where values are stored

To separate them, the structure of the semantic domains has to be changed.

$$
\begin{aligned}
\text { Int } & =\{0,1,-1,2,-2, \ldots\} \\
\text { Bool } & =\{\mathbf{t t}, \text { ff }\} \\
\text { VEnv } & =\operatorname{Var} \rightarrow(\operatorname{Loc}+\{?\}) \\
\text { Store } & =\operatorname{Loc} \rightarrow(\operatorname{Int}+\{?\})
\end{aligned}
$$

combine: VEnv \times Store \rightarrow State

$\operatorname{combine}\left(\rho_{V}, s\right)=\lambda x: V a r . s\left(\rho_{V}(x)\right)$	Inaccurate, but right. . .

Semantic functions

$$
\begin{aligned}
& \mathcal{N}: \text { Num } \rightarrow \text { Int } \\
& \mathcal{E}: \operatorname{Exp} \rightarrow \underbrace{\text { VEnv } \rightarrow \text { Store } \rightarrow(\operatorname{Int}+\{? ?\})}_{\text {EXP }} \\
& \mathcal{B}: \operatorname{BExp} \rightarrow \underbrace{\text { VEnv } \rightarrow \text { Store } \rightarrow(\text { Bool }+\{? ?\})}_{\text {BEXP }}
\end{aligned}
$$

and then for instance

$$
\begin{aligned}
& \mathcal{E} \llbracket x \rrbracket=\lambda \rho_{V}: \text { VEnv. } \lambda s: \text { Store.ifte }\left(\rho_{V} x=? ?, ?, \text { ifte }\left(s\left(\rho_{V} x\right)=? ?, ?, s\left(\rho_{V} x\right)\right)\right) \\
& \mathcal{E} \llbracket e_{1}+e_{2} \rrbracket=\lambda \rho_{V}: \text { VEnv. } \lambda s: \text { Store.ifte }\left(\mathcal{E} \llbracket e_{1} \rrbracket \rho_{V} s=?, ?,\right.
\end{aligned}
$$

Looks horrible!
Reads even worse!

$$
\begin{aligned}
& i f t e\left(\mathcal{E} \llbracket e_{2} \rrbracket \rho_{V} s=? ?, ?,\right. \\
& \left.\left.\quad \mathcal{E} \llbracket e_{1} \rrbracket \rho_{V} s+\mathcal{E} \llbracket e_{2} \rrbracket \rho_{V} s\right)\right)
\end{aligned}
$$

Bits of notation

- (re)move lambda-abstraction
- use where-notation, let-notation, explicit if-then-notation, etc
- assume that errors ?? propagate

Then:

$$
\begin{aligned}
& \mathcal{E} \llbracket x \rrbracket \rho_{V} s=s l \text { where } l=\rho_{V} x \\
& \mathcal{E} \llbracket e_{1}+e_{2} \rrbracket \rho_{V} s=n_{1}+n_{2} \text { where } n_{1}=\mathcal{E} \llbracket e_{1} \rrbracket \rho_{V} s, n_{2}=\mathcal{E} \llbracket e_{2} \rrbracket \rho_{V} s
\end{aligned}
$$

Relate this to the previous semantics using combine

Write down all the other rules for \mathcal{E} and \mathcal{B}. Spell out their exact meaning expanding all the notations in use.

One could work with "big states"

Statements

$$
\mathcal{S}: \text { Stmt } \rightarrow \underbrace{\text { VEnv } \times \text { Store } \rightarrow(\text { VEnv } \times \text { Store }+\{? ?\})}_{\text {STMT }}
$$

BUT:

> Statements do not modify the environment!

Hence:

Semantic clauses

$\mathcal{S} \llbracket x:=e \rrbracket \rho_{V} s=s[l \mapsto n]$ where $l=\rho_{V} x, n=\mathcal{E} \llbracket e \rrbracket \rho_{V} s$
$\mathcal{S} \llbracket$ skip $\rrbracket \rho_{V} s=s$
$\mathcal{S} \llbracket S_{1} ; S_{2} \rrbracket \rho_{V} s=\mathcal{S} \llbracket S_{2} \rrbracket \rho_{V} s_{1}$ where $s_{1}=\mathcal{S} \llbracket S_{1} \rrbracket \rho_{V} s$
$\mathcal{S} \llbracket$ if b then S_{1} else $S_{2} \rrbracket \rho_{V} s=$ let $v=\mathcal{B} \llbracket b \rrbracket \rho_{V} s$ in
if $v=\mathrm{tt}$ then $\mathcal{S} \llbracket S_{1} \rrbracket \rho_{V} s$
if $v=\mathrm{ff}$ then $\mathcal{S} \llbracket S_{2} \rrbracket \rho_{V} s$
$\mathcal{S} \llbracket$ while b do $S \rrbracket \rho_{V} s=$ let $v=\mathcal{B} \llbracket b \rrbracket \rho_{V} s$ in

$$
\begin{aligned}
& \text { if } v=\mathrm{ff} \text { then } s \\
& \text { if } v=\mathrm{tt} \text { then } \mathcal{S} \llbracket \text { while } b \text { do } S \rrbracket \rho_{V} s^{\prime} \\
& \text { where } s^{\prime}=\mathcal{S} \llbracket S \rrbracket \rho_{V} s
\end{aligned}
$$

Relate this to the previous semantics using combine

More compact version

Relying on propagation of errors ?? to be also built into composition of (partial) functions from Store to Store $+\{?\}$:
$\mathcal{S} \llbracket x:=e \rrbracket \rho_{V} s=s[l \mapsto n]$ where $l=\rho_{V} x, n=\mathcal{E} \llbracket e \rrbracket \rho_{V} s$
$\mathcal{S} \llbracket$ skip $\rrbracket \rho_{V}=i d_{\text {Store }}$
$\mathcal{S} \llbracket S_{1} ; S_{2} \rrbracket \rho_{V}=\mathcal{S} \llbracket S_{1} \rrbracket \rho_{V} ; \mathcal{S} \llbracket S_{2} \rrbracket \rho_{V}$
$\mathcal{S} \llbracket$ if b then S_{1} else $S_{2} \rrbracket \rho_{V}=\operatorname{cond}\left(\mathcal{B} \llbracket b \rrbracket \rho_{V}, \mathcal{S} \llbracket S_{1} \rrbracket \rho_{V}, \mathcal{S} \llbracket S_{2} \rrbracket \rho_{V}\right)$
$\mathcal{S} \llbracket$ while b do $S \rrbracket \rho_{V}=\operatorname{cond}\left(\mathcal{B} \llbracket b \rrbracket \rho_{V}, \mathcal{S} \llbracket S \rrbracket \rho_{V} ; \mathcal{S} \llbracket\right.$ while b do $\left.S \rrbracket \rho_{V}, i d_{\text {Store }}\right)$

The missing clause for blocks in a moment

Declarations modify environments

$$
\mathcal{D}_{V}: \text { VDecl } \rightarrow \underbrace{\text { VEnv } \rightarrow \text { Store } \rightarrow(\text { VEnv } \times \text { Store }+\{? ?\})}_{\text {VDECL }}
$$

$$
\begin{aligned}
& \mathcal{D}_{V} \llbracket \varepsilon \rrbracket \rho_{V} s=\left\langle\rho_{V}, s\right\rangle \\
& \mathcal{D}_{V} \llbracket \operatorname{var} x ; D_{V} \rrbracket \rho_{V} s=\mathcal{D}_{V} \llbracket D_{V} \rrbracket \rho_{V}^{\prime} s^{\prime} \\
& \quad \quad \text { where } l=\operatorname{newloc}(s), \rho_{V}^{\prime}=\rho_{V}[x \mapsto l], s^{\prime}=s[l \mapsto ?]
\end{aligned}
$$

Trouble: We want newloc: Store \rightarrow Loc to yield a new, unused location. This cannot be defined under the definitions given so far. Solution: more information in stores is needed to determine used and unused locations.

Simple solution

Take:

$$
\mathbf{L o c}=\{0,1,2, \ldots\}
$$

Add to each store a pointer to the next unused location:

$$
\text { Store }=(\operatorname{Loc}+\{n e x t\}) \rightarrow(\operatorname{Int}+\{?\})
$$

Semantic clauses then:

$$
\begin{aligned}
& \mathcal{D}_{V} \llbracket \varepsilon \rrbracket \rho_{V} s=\left\langle\rho_{V}, s\right\rangle \\
& \mathcal{D}_{V} \llbracket \operatorname{var} x ; D_{V} \rrbracket \rho_{V} s= \\
& \quad \mathcal{D}_{V} \llbracket D_{V} \rrbracket \rho_{V}^{\prime} s^{\prime} \text { where } l=s \text { next }, \rho_{V}^{\prime}=\rho_{V}[x \mapsto l], s^{\prime}=s[l \mapsto ?, n e x t \mapsto l+1]
\end{aligned}
$$

Semantics of blocks

$$
\mathcal{S} \llbracket \operatorname{begin} D_{V} S \text { end } \rrbracket \rho_{V} s=\mathcal{S} \llbracket S \rrbracket \rho_{V}^{\prime} s^{\prime} \text { where }\left\langle\rho_{V}^{\prime}, s^{\prime}\right\rangle=\mathcal{D}_{V} \llbracket D_{V} \rrbracket \rho_{V} s
$$

The scope of a declaration is the block it occurs in with holes resulting from redeclarations of the same variable within it

For instance
begin var $y ;$ var $x x:=1$; begin var $x y:=2 ; x:=5$ end $; y:=x$ end may be marked as follows to indicate the relevant declarations:
begin var $y ;$ var $x \backslash:=1$; begin var $x, y:=2 ; x:=5$ end $; y:=x$ end

Procedures

$S \in \operatorname{Stmt}::=\ldots \mid$ begin $D_{V} D_{P} S$ end \mid call p
$D_{V} \in \operatorname{VDecl}::=\operatorname{var} x ; D_{V} \mid \varepsilon$
$D_{P} \in \operatorname{PDecl}::=\operatorname{proc} p$ is $(S) ; D_{P} \mid \varepsilon$

- binding of global variables
- recursion

Binding of global variables

Static binding

begin var $y ;$
var x;
$\operatorname{proc} p$ is $(\boxed{x}:=1)$;
begin var x;
$x:=3$;
call p;
$y:=x$
end
end

Dynamic binding

begin var y;
var x;
$\operatorname{proc} p$ is $(\boxed{x}:=1)$;
begin var x;
$x:=3$;
call $p ; \quad \% \% \%$ with x
$y:=x$
end
end

Semantic domains and functions

Dynamic binding

$$
\begin{aligned}
& \text { PEnv }=\mathrm{IDE} \rightarrow\left(\mathrm{PROC}_{0}+\{?\}\right) \\
& \mathrm{PROC}_{0}=\text { VEnv } \rightarrow \text { PEnv } \rightarrow \text { Store } \rightharpoonup(\text { Store }+\{?\})
\end{aligned}
$$

$$
\begin{gathered}
\mathcal{S}: \text { Stmt } \rightarrow \underbrace{\text { VEnv } \rightarrow \text { PEnv } \rightarrow \text { Store } \rightharpoonup(\text { Store }+\{? ?\})}_{\text {STMT }} \\
\mathcal{D}_{P}: \text { PDecl } \rightarrow \underbrace{\text { PEnv } \rightarrow(\text { PEnv }+\{?\}\})}_{\text {PDECL }}
\end{gathered}
$$

Semantic clauses

$\mathcal{S} \llbracket x:=e \rrbracket \rho_{V} \rho_{P} s=s[l \mapsto n]$ where $l=\rho_{V} x, n=\mathcal{E} \llbracket e \rrbracket \rho_{V} s$
$\mathcal{S} \llbracket$ skip $\rrbracket \rho_{V} \rho_{P}=i d_{\text {Store }}$
$\mathcal{S} \llbracket S_{1} ; S_{2} \rrbracket \rho_{V} \rho_{P}=\mathcal{S} \llbracket S_{1} \rrbracket \rho_{V} \rho_{P} ; \mathcal{S} \llbracket S_{2} \rrbracket \rho_{V} \rho_{P}$
$\mathcal{S} \llbracket$ if b then S_{1} else $S_{2} \rrbracket \rho_{V} \rho_{P}=\operatorname{cond}\left(\mathcal{B} \llbracket b \rrbracket \rho_{V}, \mathcal{S} \llbracket S_{1} \rrbracket \rho_{V} \rho_{P}, \mathcal{S} \llbracket S_{2} \rrbracket \rho_{V} \rho_{P}\right)$
$\mathcal{S} \llbracket$ while b do $S \rrbracket \rho_{V} \rho_{P}=$ $\operatorname{cond}\left(\mathcal{B} \llbracket b \rrbracket \rho_{V}, \mathcal{S} \llbracket S \rrbracket \rho_{V} \rho_{P} ; \mathcal{S} \llbracket\right.$ while b do $\left.S \rrbracket \rho_{V} \rho_{P}, i d_{\text {Store }}\right)$
$\mathcal{S} \llbracket$ call $p \rrbracket \rho_{V} \rho_{P}=P \rho_{V} \rho_{P}$ where $P=\rho_{P} p$
$\mathcal{S} \llbracket$ begin $D_{V} D_{P} S$ end $\rrbracket \rho_{V} \rho_{P} s=$
$\mathcal{S} \llbracket S \rrbracket \rho_{V}^{\prime} \rho_{P}^{\prime} s^{\prime}$ where $\left\langle\rho_{V}^{\prime}, s^{\prime}\right\rangle=\mathcal{D}_{V} \llbracket D_{V} \rrbracket \rho_{V} s, \rho_{P}^{\prime}=\mathcal{D}_{P} \llbracket D_{P} \rrbracket \rho_{P}$

$$
\begin{aligned}
& \mathcal{D}_{P} \llbracket \varepsilon \rrbracket=i d_{\text {PEnv }} \\
& \mathcal{D}_{P} \llbracket \operatorname{proc} p \text { is }(S) ; D_{P} \rrbracket \rho_{P}=\mathcal{D}_{P} \llbracket D_{P} \rrbracket \rho_{P}[p \mapsto \mathcal{S} \llbracket S \rrbracket]
\end{aligned}
$$

Recursion

```
begin var x;
    proc NO is (if 101 \leqx then x:=x-10
    else (x:=x+11; call NO; call NO) );
    x:= 54;
    call NO
end
```


Semantic domains and functions

Static binding

$$
\begin{aligned}
& \text { PEnv }=\text { IDE } \rightarrow\left(\text { PROC }_{0}+\{? ?\}\right) \\
& \text { PROC }_{0}=\text { Store }-(\text { Store }+\{?\})
\end{aligned}
$$

$$
\begin{gathered}
\mathcal{S}: \text { Stmt } \rightarrow \underbrace{\text { VEnv } \rightarrow \text { PEnv } \rightarrow \text { Store } \rightarrow(\text { Store }+\{? ?\})}_{\text {STMT }} \\
\mathcal{D}_{P}: \text { PDecl } \rightarrow \underbrace{\text { VEnv } \rightarrow \text { PEnv } \rightarrow(\text { PEnv }+\{? ?\})}_{\text {PDECL }}
\end{gathered}
$$

Semantic clauses

$\mathcal{S} \llbracket x:=e \rrbracket \rho_{V} \rho_{P} s=s[l \mapsto n]$ where $l=\rho_{V} x, n=\mathcal{E} \llbracket e \rrbracket \rho_{V} s$
$\mathcal{S} \llbracket$ skip $\rrbracket \rho_{V} \rho_{P}=i d_{\text {Store }}$
$\mathcal{S} \llbracket S_{1} ; S_{2} \rrbracket \rho_{V} \rho_{P}=\mathcal{S} \llbracket S_{1} \rrbracket \rho_{V} \rho_{P} ; \mathcal{S} \llbracket S_{2} \rrbracket \rho_{V} \rho_{P}$
$\mathcal{S} \llbracket$ if b then S_{1} else $S_{2} \rrbracket \rho_{V} \rho_{P}=\operatorname{cond}\left(\mathcal{B} \llbracket b \rrbracket \rho_{V}, \mathcal{S} \llbracket S_{1} \rrbracket \rho_{V} \rho_{P}, \mathcal{S} \llbracket S_{2} \rrbracket \rho_{V} \rho_{P}\right)$
\mathcal{S} 【while b do $S \rrbracket \rho_{V} \rho_{P}=$
$\operatorname{cond}\left(\mathcal{B} \llbracket b \rrbracket \rho_{V}, \mathcal{S} \llbracket S \rrbracket \rho_{V} \rho_{P} ; \mathcal{S} \llbracket\right.$ while b do $\left.S \rrbracket \rho_{V} \rho_{P}, i d_{\text {Store }}\right)$
$\mathcal{S} \llbracket$ call $p \rrbracket \rho_{V} \rho_{P}=P$ where $P=\rho_{P} p$
$\mathcal{S} \llbracket$ begin $D_{V} D_{P} S$ end $\rrbracket \rho_{V} \rho_{P} s=$
$\mathcal{S} \llbracket S \rrbracket \rho_{V}^{\prime} \rho_{P}^{\prime} s^{\prime}$ where $\left\langle\rho_{V}^{\prime}, s^{\prime}\right\rangle=\mathcal{D}_{V} \llbracket D_{V} \rrbracket \rho_{V} s, \rho_{P}^{\prime}=\mathcal{D}_{P} \llbracket D_{P} \rrbracket \rho_{V}^{\prime} \rho_{P}$

Recursion

- Static binding, no recursive calls:
$\mathcal{D}_{P} \llbracket \operatorname{proc} p$ is $(S) ; D_{P} \rrbracket \rho_{V} \rho_{P}=$
$\mathcal{D}_{P} \llbracket D_{P} \rrbracket \rho_{V} \rho_{P}[p \mapsto P]$ where $P=\mathcal{S} \llbracket S \rrbracket \rho_{V} \rho_{P}$
- Static binding, recursive calls permitted:
$\mathcal{D}_{P} \llbracket \operatorname{proc} p$ is $(S) ; D_{P} \rrbracket \rho_{V} \rho_{P}=$
$\mathcal{D}_{P} \llbracket D_{P} \rrbracket \rho_{V} \rho_{P}[p \mapsto P]$ where $P=\mathcal{S} \llbracket S \rrbracket \rho_{V} \rho_{P}[p \mapsto P]$
or perhaps using fixed-point operator explicitly:
$\mathcal{D}_{P} \llbracket \operatorname{proc} p$ is $(S) ; D_{P} \rrbracket \rho_{V} \rho_{P}=$

$$
\mathcal{D}_{P} \llbracket D_{P} \rrbracket \rho_{V} \rho_{P}[p \mapsto f i x(\Phi)] \text { where } \Phi(P)=\mathcal{S} \llbracket S \rrbracket \rho_{V} \rho_{P}[p \mapsto P]
$$

- Dynamic binding, recursion "for free" (though only seemingly so):
$\mathcal{S} \llbracket$ call $p \rrbracket \rho_{V} \rho_{P}=P \rho_{V} \rho_{P}$ where $P=\rho_{P} p$
$\mathcal{D}_{P} \llbracket \operatorname{proc} p$ is $(S) ; D_{P} \rrbracket \rho_{P}=\mathcal{D}_{P} \llbracket D_{P} \rrbracket \rho_{P}[p \mapsto \mathcal{S} \llbracket S \rrbracket]$

Parameters

Parameter passing:

- call by value
- call by variable

We will do static binding only

- call by name
$S \in \operatorname{Stmt}::=\ldots \mid$ begin $D_{V} D_{P} S$ end
\mid call $p \mid$ call $p(\operatorname{vl} e)|\operatorname{call} p(\operatorname{vr} x)| \operatorname{call} p(\operatorname{nm} e)$
$D_{V} \in \operatorname{VDecl}::=\operatorname{var} x ; D_{V} \mid \varepsilon$
$D_{P} \in \mathbf{P D e c l}::=\operatorname{proc} p$ is $(S) ; D_{P} \mid \operatorname{proc} p(\operatorname{vl} x)$ is $(S) ; D_{P}$

$$
\operatorname{proc} p(\operatorname{vr} x) \text { is }(S) ; D_{P} \mid \operatorname{proc} p(\operatorname{nm} x) \text { is }(S) ; D_{P} \mid \varepsilon
$$

Call by name

```
begin var sum; var i
    proc}ADD(vl a,b,vr x, nm step,f
        is (sum:=0; x:=a;
            while }x\leqb\mathrm{ do (sum:=sum + f; x:= step))
    call }ADD(vl 1,10,vr i, nm i+1,i); {sum=55
    call }ADD(vl 1,10,vr i, nm 2*i,i); {sum=15
    call }ADD(vl 1,10,vr i,nm i+2,i*i) {sum=165
end
```


Semantic domains

```
PEnv = IDE }->(\mp@subsup{\textrm{PROC}}{0}{}+\mp@subsup{\textrm{PROC}}{1}{vl}+\mp@subsup{\textrm{PROC}}{1}{vr}+\mp@subsup{\textrm{PROC}}{1}{nm}+{??}
PROC
PROC
PROC
PROC
```


Semantic functions

As before:

$$
\begin{gathered}
\mathcal{S}: \text { Stmt } \rightarrow \underbrace{\text { VEnv } \rightarrow \text { PEnv } \rightarrow \text { Store } \rightharpoonup(\text { Store }+\{? ?\})}_{\text {STMT }} \\
\mathcal{D}_{P}: \text { PDecl } \rightarrow \underbrace{\text { VEnv } \rightarrow \text { PEnv } \rightarrow(\text { PEnv }+\{?\})}_{\text {PDECL }}
\end{gathered}
$$

Semantic clauses

No parameters
$\mathcal{S} \llbracket$ call $p \rrbracket \rho_{V} \rho_{P}=P$ where $P=\rho_{P} p \in \mathbf{P R O C}_{0}$
$\mathcal{D}_{P} \llbracket \operatorname{proc} p$ is $(S) ; D_{P} \rrbracket \rho_{V} \rho_{P}=$

$$
\mathcal{D}_{P} \llbracket D_{P} \rrbracket \rho_{V} \rho_{P}[p \mapsto P] \text { where } P=\mathcal{S} \llbracket S \rrbracket \rho_{V} \rho_{P}[p \mapsto P]
$$

Parameter called by value

$\mathcal{S} \llbracket$ call $p(\mathbf{v l} e) \rrbracket \rho_{V} \rho_{P} s=P n s$ where $P=\rho_{P} p \in \mathbf{P R O C}_{1}^{\mathrm{vl}}, n=\mathcal{E} \llbracket e \rrbracket \rho_{V} s$
$\mathcal{D}_{P} \llbracket \operatorname{proc} p(\operatorname{vl} x)$ is $(S) ; D_{P} \rrbracket \rho_{V} \rho_{P}=$
$\mathcal{D}_{P} \llbracket D_{P} \rrbracket \rho_{V} \rho_{P}[p \mapsto P]$ where
$P n s=\mathcal{S} \llbracket S \rrbracket \rho_{V}^{\prime} \rho_{P}[p \mapsto P] s^{\prime}$ where
$l=s$ next $, \rho_{V}^{\prime}=\rho_{V}[x \mapsto l], s^{\prime}=s[l \mapsto n$, next $\mapsto l+1]$

Parameter called by variable

$\mathcal{S} \llbracket$ call $p(\operatorname{vr} y) \rrbracket \rho_{V} \rho_{P}=P l$ where $P=\rho_{P} p \in \mathbf{P R O C}_{1}^{\mathrm{vr}}, l=\rho_{V} y$
$\mathcal{D}_{P} \llbracket \operatorname{proc} p(\operatorname{vr} x)$ is $(S) ; D_{P} \rrbracket \rho_{V} \rho_{P}=$

$$
\mathcal{D}_{P} \llbracket D_{P} \rrbracket \rho_{V} \rho_{P}[p \mapsto P] \text { where } P l=\mathcal{S} \llbracket S \rrbracket \rho_{V}[x \mapsto l] \rho_{P}[p \mapsto P]
$$

Parameter called by name

$\mathcal{S} \llbracket$ call $p(\operatorname{nm} e) \rrbracket \rho_{V} \rho_{P}=P\left(\mathcal{E} \llbracket e \rrbracket \rho_{V}\right)$ where $P=\rho_{P} p \in \mathbf{P R O C}_{1}^{\mathrm{nm}}$
$\mathcal{D}_{P} \llbracket \operatorname{proc} p(\mathbf{n m} x)$ is $(S) ; D_{P} \rrbracket \rho_{V} \rho_{P}=$
$\mathcal{D}_{P} \llbracket D_{P} \rrbracket \rho_{V} \rho_{P}[p \mapsto P]$ where $P E=\mathcal{S} \llbracket S \rrbracket \rho_{V}[x \mapsto E] \rho_{P}[p \mapsto P]$

OOOPS!

$$
\rho_{V}[x \mapsto E] \notin \mathbf{V E n v}
$$

> Corrections necessary!

$$
\begin{aligned}
& \text { VEnv }=\operatorname{Var} \rightarrow(\text { Loc }+(\text { Store } \rightarrow(\text { Int }+\{?\}\}))+\{? ?\}) \\
& \mathcal{E} \llbracket x \rrbracket \rho_{V} s=\text { let } v=\rho_{V} x \text { in if } v \in \text { Loc then } s v \\
& \text { if } v \in(\text { Store } \rightarrow(\text { Int }+\{? ?\})) \text { then } v s
\end{aligned}
$$

This allows for evaluation of called-by-name parameters, but not for assignements to variables passed in such a way

