Hoare’s logic revisited'

TINY

Generalising

Rather than just working with Int, consider an arbitrary underlying data type given
by:

e >.: an algebraic signature with sort Bool and boolean constants and connectives

e A: a X-structure with the boolean part interpreted in the standard way

Andrzej Tarlecki: Semantics & Verification - 246 -

Syntax: As in TINY, except that:

— Y -terms used instead of in

TINY 4 I

teger expressions

— variables classified by the sorts of X2, assignments allowed only when the sorts

of the variable and the term coincide

— Y-terms of sort Bool used instead of boolean expressions

Semantic domains: As in TINY, except with a modified notion of state:

State 4 = Var — | A]

(with variables and their values classified by the sorts of)

Semantic functions: As in TINY, except that referring to A for interpretation of the

operations on |A|.

Andrzej Tarlecki: Semantics & Verification

- 247 -

Hoare’s logic I

{p) S}

as before

Andrzej Tarlecki: Semantics & Verification - 248 -

For instance'

e add the following to the original signature X for TINY:

sorts Array;

opns newarr: Array;
put: Array X Int x Int — Array;
get: Array X Int — Int;

e and expand the original algebra A for TINY as follows:

carriers A srray = Int — Int

operations newarr (j) =0
put4(a,i,n) = ali — n]
getala, i) = a(i)

Andrzej Tarlecki: Semantics & Verification - 249 -

Example I

{a:Array NO < n}
m = 0);
while {0 < m < n Ais-sorted(a,0,m)} m+1<ndo
m:=m-+1;k:=m
while {0 < k < m <n A is-nearly-sorted(a,0,k,m)} 1 < k do
k:=k—1;
if get(a,k) < get(a,k + 1) then k:=0
else z:= get(a, k + 1);a:=put(a, k + 1, get(a, k)); a:= put(a, k,)
{is-sorted(a,0,n)}

where:

is-sorted(a,i,7) = a:Array ANV, j":Int.i <i' < j' < j= get(a,i’) < get(a,j’)

is-nearly-sorted(a, i, k, j) = is-sorted(a,i, k — 1) N is-sorted(a, k,j) A
Vilsjidnt.(i < i <k—-—1ANk+1<j <j)= get(a,i) < get(a,j)

Andrzej Tarlecki: Semantics & Verification - 250 -

Hoare's logic: proof ruIesI

as before
{plz = e]tz:=e{p} {¢} skip {p}
{o}S110) {0} S2{v} {eAbyS1{v} {pA—bfSa{v}
{90} Sl; SQ {w} {QO} if b then Sl else SQ {¢}
{o Ab}S{p} o' = {p}S{Y} =1
{o} while b do S {p A b} {o'} S {y'}

Andrzej Tarlecki: Semantics & Verification - 251 -

Soundness'

Fact: Hoare's proof calculus is sound, that is:

if

TH(A) F {p} S}

then

FA Pt S Yy

Proof

as before

Andrzej Tarlecki: Semantics & Verification

- 252 -

Toward completeness I

We have to ensure that all the assertions necessary in the

proofs may be formulated in the assertion logic.

Given § € Stmty, and ¢y € Formy;, define:

wpre 4(S,¢¥) = {s € Statey | if S4[S]s=s" € Statey then F 4[¢0] ' = tt}

Definition: First-order logic is expressive over A for TINY 4 (A is expressive) if for
all S € Stmty, and v € Formy,, there exists the weakest liberal precondition for S
and 1, that is, a formula g € Formy, such that

{0 }a = wpre 4 (S,)

Andrzej Tarlecki: Semantics & Verification - 253 -

Relative completeness of Hoare’s Iogic'

(completeness in the sense of Cook)

Fact: /f A is expressive then Hoare's proof calculus is sound and relatively complete,
that Is:

TH(A) i) Sy | iff | Ea i) S{}

Proof: By structural induction on 5. In fact: given expressivity and arbitrary use of
facts from TH(A), all the cases go through easily!

Fact: A is expressive if and only if either the standard model of Peano arithmetic is
definable in A, or for each S € Stmtsx., there is a finite bound on the number of

states reached in any computation of S.

Andrzej Tarlecki: Semantics & Verification - 254 -

Beyond TINY I

Procedures: Given proc p is (Sp):

{o}call p{v} F {p} Sy {1}
{¢} call p {2}

Not quite good enough; requires additional
rules to manipulate auxiliary variables
to ensure relative completeness

Variables: Given a fresh variable y:

tp Ny ="} Sl =yl 1)
{¢©} begin var x S end {¢}

etc...

Andrzej Tarlecki: Semantics & Verification - 255 -

But there are limits... '

Fact: There exists no Hoare's proof system which is sound and relatively complete in
the sense of Cook for a programming language which admits recursive procedures
with procedure parameters, local procedures and global variables with static binding.

Key to the proof:

Fact: The halting problem is undecidable for programs of such a language even for finite

data types A (with at least two elements).

Andrzej Tarlecki: Semantics & Verification - 256 -

Total correctness revisited'

What about TINY 47

GOOD NEWS:

Proving termination using well-founded relations works as before!

Still, recall the basic rule:

(nat(l) No(l+1)) =10 nat(l) No(l+1)]S[e()] ©(0) = —b
[Fl.nat(l) N\ p(1)] while b do S [¢(0)]

Andrzej Tarlecki: Semantics & Verification - 257 -

Problem? '

Given a signature X, let X% be its extension by the language of (Peano) arithmetic:
predicates nat(_) and _ < _, constants 0, 1, operations _ + _, = — |, _

Let A be a X7 -structure; assume that the interpretation of nat(_) in A is closed
under the arithmetical constants and operations as expected.

Even then:

the loop rule need not be sound for TINY 4

Serious

For instance, we will typically get:
trouble?

TH(A) F [nat(z)] while x > 0 do z:=z — 1 [true]

BUT: This is not valid for instance if A is a non-standard model of arithmetic.

Andrzej Tarlecki: Semantics & Verification - 258 -

Soundness and completeness'

A Y T-structure A is arithmetical if the interpretations in A of the arithmetical
operations and predicates restricted to those elements n € | A| for which nat(n) holds
in A form the standard model of arithmetic.

Fact: I/f A is arithmetical then

if |TH(A)E [p] S[Y]| then | E4 [p] S [Y] (Soundnesg)

If moreover, finite sequences of elements in | A| can be encoded using a formula as a
single element in | A|, then

Soundness
TH(A) F el Sl | iff | Fale] S Y] (&)
completeness

Andrzej Tarlecki: Semantics & Verification - 259 -

