
Hoare’s logic revisited

Tiny

Generalising

Rather than just working with Int, consider an arbitrary underlying data type given

by:

• Σ: an algebraic signature with sort Bool and boolean constants and connectives

• A: a Σ-structure with the boolean part interpreted in the standard way

Andrzej Tarlecki: Semantics & Verification - 246 -

TinyA

Syntax: As in Tiny, except that:

− Σ-terms used instead of integer expressions

− variables classified by the sorts of Σ, assignments allowed only when the sorts

of the variable and the term coincide

− Σ-terms of sort Bool used instead of boolean expressions

Semantic domains: As in Tiny, except with a modified notion of state:

StateA = Var→ |A|

(with variables and their values classified by the sorts of Σ)

Semantic functions: As in Tiny, except that referring to A for interpretation of the

operations on |A|.

Andrzej Tarlecki: Semantics & Verification - 247 -

Hoare’s logic

{ϕ}S {ψ}

— — — as before — — —

Andrzej Tarlecki: Semantics & Verification - 248 -

For instance

• add the following to the original signature Σ for Tiny:

sorts Array ;

opns newarr : Array ;

put : Array × Int × Int → Array ;

get : Array × Int → Int ;

• and expand the original algebra A for Tiny as follows:

carriers AArray = Int→ Int

operations newarrA(j) = 0

putA(a, i, n) = a[i 7→ n]

getA(a, i) = a(i)

Andrzej Tarlecki: Semantics & Verification - 249 -

Example

{a:Array ∧ 0 ≤ n}
m := 0;

while {0 ≤ m ≤ n ∧ is-sorted(a, 0,m)} m+ 1 ≤ n do

m :=m+ 1; k :=m;

while {0 ≤ k ≤ m ≤ n ∧ is-nearly-sorted(a, 0, k,m)} 1 ≤ k do

k := k − 1;

if get(a, k) ≤ get(a, k + 1) then k := 0
else x := get(a, k + 1); a := put(a, k + 1, get(a, k)); a := put(a, k, x)

{is-sorted(a, 0, n)}

where:

is-sorted(a, i, j) ≡ a:Array ∧ ∀i′, j′:Int .i ≤ i′ ≤ j′ ≤ j⇒ get(a, i′) ≤ get(a, j′)

is-nearly-sorted(a, i, k, j) ≡ is-sorted(a, i, k − 1) ∧ is-sorted(a, k, j) ∧
∀i′, j′:Int .(i ≤ i′ ≤ k − 1 ∧ k + 1 ≤ j′ ≤ j)⇒ get(a, i′) ≤ get(a, j′)

Andrzej Tarlecki: Semantics & Verification - 250 -

Hoare’s logic: proof rules

— — — as before — — —

{ϕ[x 7→ e]}x := e {ϕ}

{ϕ}S1 {θ} {θ}S2 {ψ}
{ϕ}S1;S2 {ψ}

{ϕ ∧ b}S {ϕ}
{ϕ}while b do S {ϕ ∧ ¬b}

{ϕ} skip {ϕ}

{ϕ ∧ b}S1 {ψ} {ϕ ∧ ¬b}S2 {ψ}
{ϕ} if b then S1 else S2 {ψ}

ϕ′⇒ ϕ {ϕ}S {ψ} ψ⇒ ψ′

{ϕ′}S {ψ′}

Andrzej Tarlecki: Semantics & Verification - 251 -

Soundness

Fact: Hoare’s proof calculus is sound, that is:

if T H(A) ` {ϕ}S {ψ} then |=A {ϕ}S {ψ}

Proof

— — — as before — — —

Andrzej Tarlecki: Semantics & Verification - 252 -

Toward completeness

We have to ensure that all the assertions necessary in the

proofs may be formulated in the assertion logic.

Given S ∈ StmtΣ and ψ ∈ FormΣ, define:

wpreA(S, ψ) = {s ∈ StateA | if SA[[S]] s = s′ ∈ StateA then FA[[ψ]] s′ = tt}

Definition: First-order logic is expressive over A for TinyA (A is expressive) if for

all S ∈ StmtΣ and ψ ∈ FormΣ, there exists the weakest liberal precondition for S

and ψ, that is, a formula ϕ0 ∈ FormΣ such that

{ϕ0}A = wpreA(S, ψ)

Andrzej Tarlecki: Semantics & Verification - 253 -

Relative completeness of Hoare’s logic

(completeness in the sense of Cook)

Fact: If A is expressive then Hoare’s proof calculus is sound and relatively complete,

that is:

T H(A) ` {ϕ}S {ψ} iff |=A {ϕ}S {ψ}

Proof: By structural induction on S. In fact: given expressivity and arbitrary use of

facts from T H(A), all the cases go through easily!

Fact: A is expressive if and only if either the standard model of Peano arithmetic is

definable in A, or for each S ∈ StmtΣ, there is a finite bound on the number of

states reached in any computation of S.

Andrzej Tarlecki: Semantics & Verification - 254 -

Beyond Tiny

Procedures: Given proc p is (Sp):

{ϕ} call p {ψ} ` {ϕ}Sp {ψ}
{ϕ} call p {ψ}'

&

$

%

#
"

!

Not quite good enough; requires additional
rules to manipulate auxiliary variables

to ensure relative completeness
Variables: Given a fresh variable y:

{ϕ ∧ y = ??}S[x 7→ y] {ψ}
{ϕ}begin var x S end {ψ}

etc. . .

Andrzej Tarlecki: Semantics & Verification - 255 -

But there are limits. . .

Fact: There exists no Hoare’s proof system which is sound and relatively complete in

the sense of Cook for a programming language which admits recursive procedures

with procedure parameters, local procedures and global variables with static binding.

Key to the proof:

Fact: The halting problem is undecidable for programs of such a language even for finite

data types A (with at least two elements).

Andrzej Tarlecki: Semantics & Verification - 256 -

Total correctness revisited

What about TinyA?

GOOD NEWS:

Proving termination using well-founded relations works as before!

Still, recall the basic rule:

(nat(l) ∧ ϕ(l + 1))⇒ b [nat(l) ∧ ϕ(l + 1)]S [ϕ(l)] ϕ(0)⇒¬b
[∃l.nat(l) ∧ ϕ(l)]while b do S [ϕ(0)]

Andrzej Tarlecki: Semantics & Verification - 257 -

Problem?

Given a signature Σ, let Σ+ be its extension by the language of (Peano) arithmetic:

predicates nat() and ≤ , constants 0, 1, operations + , − , ∗ .

Let A be a Σ+-structure; assume that the interpretation of nat() in A is closed

under the arithmetical constants and operations as expected.

Even then:

the loop rule need not be sound for TinyA

For instance, we will typically get:

�
�
�
�

�
�
�
�

Serious
trouble?

T H(A) ` [nat(x)]while x > 0 do x :=x− 1 [true]

BUT: This is not valid for instance if A is a non-standard model of arithmetic.

Andrzej Tarlecki: Semantics & Verification - 258 -

Soundness and completeness

A Σ+-structure A is arithmetical if the interpretations in A of the arithmetical

operations and predicates restricted to those elements n ∈ |A| for which nat(n) holds

in A form the standard model of arithmetic .

Fact: If A is arithmetical then �
�
�
�

�
�
�
Soundnessif T H(A) ` [ϕ]S [ψ] then |=A [ϕ]S [ψ]

If moreover, finite sequences of elements in |A| can be encoded using a formula as a

single element in |A|, then '

&

$

%

#
"

!

Soundness
&

completeness

T H(A) ` [ϕ]S [ψ] iff |=A [ϕ]S [ψ]

Andrzej Tarlecki: Semantics & Verification - 259 -

