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The Bare Bounded-Storage Model: The Tight Bound on
the Storage Requirement for Key Agreement

Stefan Dziembowski and Ueli Maurer, Fellow, IEEE

Abstract—In the bounded-storage model (BSM) for information-theo-
retic secure encryption and key agreement, one makes use of a random
string R whose length ¢t is greater than the assumed bound s on the adver-
sary Eve’s storage capacity. The legitimate parties, Alice and Bob, execute
a protocol, over an authenticated channel accessible to Eve, to generate a
secret key /{' about which Eve has essentially no information even if she has
infinite computing power. The string R is either assumed to be accessible to
all parties or communicated publicly from Alice to Bob. While in the BSM
one often assumes that Alice and Bob initially share a short secret key, and
the goal of the protocol is to generate a much longer key, in this communi-
cation, we consider the bare BSM without any initially shared secret key. It
is proved that in the bare BSM, secret key agreement is impossible unless
Alice and Bob have themselves very high storage capacity, namely, O( ﬁ)
This proves the optimality of a scheme proposed by Cachin and Maurer.

Index Terms—Bounded-storage model (BSM), cryptography, informa-
tion-theoretic security, lower bounds, key agreement.

I. INTRODUCTION

The bounded-storage model (BSM), proposed initially by Maurer in
1992 [15], [16], is an approach to achieving provable security of cryp-
tographic schemes even against an adversary with unlimited computa-
tional resources. This is called unconditional or information-theoretic
security. The only assumption is that the adversary’s storage capacity
is bounded, say by s bits, where s can be very large. No computational
hardness assumption, like the hardness of factoring large integers, is
needed. The basic idea is to assume that a random ¢-bit string R is ei-
ther temporarily available to the public (e.g., the signal of a deep space
radio source) or broadcast by a satellite or by one of the legitimate par-
ties. If s < ¢, then the adversary, called Eve, can store only partial
information about Rz, but she is allowed to apply an arbitrary function
f:{0,1}* — {0,1}* to R in order to compute the value she stores.
No assumption about the feasibility of computing f is made.

The legitimate parties, called Alice and Bob, can each access a small
fraction of the string R and execute a protocol, over an authenticated
channel accessible to Eve, to generate a secret key K about which
Eve has essentially no information, even if she has infinite computing
power, and no matter which function f she applied. In the BSM, one
usually assumes that Alice and Bob initially share a short secret key that
determines which bits of R they need to access and how they combine
the accessed bits to result in the secret key /. In this model, which we
call the standard BSM, the goal of a key-agreement protocol is that the
derived key I is much longer than the initial key; in other words, the
goal is key expansion rather than key generation. A long sequence of
papers on key expansion [1], [2], [9], [10], [12], [14], [16], [19] has led
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from partial security proofs (for special adversary strategies) to com-
plete security proofs, and to the understanding that a scheme secure in
the BSM is a special type of randomness extractor.

One can also consider a model, which we call the bare BSM, where
Alice and Bob initially share no secret key. This model was first consid-
ered by Cachin and Maurer [5] who proposed a scheme in this model,
which requires Alice and Bob to each access Q(+/%) bits of R, much
more than in the standard BSM with a short secret key. In this paper, we
prove that this is essentially optimal, i.e., that no secure key-agreement
protocol for the bare BSM exists in which Alice and Bob access fewer
than O(+/%) bits of R. Such lower bound proofs, apart from being of
general scientific interest, are important because they prevent the search
for schemes that do not exist.

The BSM was also studied in the context of oblivious transfer [4],
[7] and time stamping [18].

II. THE BARE BSM AND THE CACHIN-MAURER SCHEME

Key agreement in the BSM, from the adversary’s viewpoint, consists
of two phases.

In the first phase, the string R is available to all parties. Alice and
Bob execute a protocol over a public channel, resulting in transcript
T, which Eve obtains. Then, based on the transcript, Alice and
Bob each store some information about R. The protocol can be
randomized, where R 4 and R denote their respective (independent)
random strings. More precisely, Alice stores Ma = fa(R, T, R4),
and Bob stores Mp = fp(R,T, Rgp), for some functions f4 and
fr. Eve also stores some information M = fr(R,T, Rr) about R,
where R denotes her randomness [which is, of course, independent
of (Ra, Rp)].

In the second phase, R has disappeared. Alice and Bob execute a
second (probabilistic) protocol based on the stored values M 4 and M5,
resulting in a second transcript 7. Then, Alice and Bob compute a
secret key, K 4 and K g, respectively. It is not necessary to formalize
this further, i.e., to make the functions used to compute ' 4 and K'p
explicit.

The two security requirements are as follows.

1) Correctness: The probability P(K 4 # Kg) that the keys are
different should be negligible.

2) Secrecy: The amount of information, I( K 4; MgT"), obtained
by Eve about the secret key (say K 4), must be negligible.

A scheme for key agreement in the bare BSM was proposed by
Cachin and Maurer in [5]. In their protocol, both Alice and Bob store
an (independent) random subset of » bits of I?, where r is on the order
of v/t. After R has disappeared for all parties, they publicly agree on
which bits they have both stored. With very high probability, Eve has
only partial information about these bits, and therefore, Alice and Bob
can apply privacy amplification (i.e., randomness extraction using a
strong extractor with a public extractor parameter) to distill an essen-
tially perfect key . We prove in Section III that the protocol of [5] is
essentially optimal.

III. LIMITATIONS OF KEY AGREEMENT IN THE BARE BSM

A. Statement of the Lower Bound

We prove the following result, which shows that the practicality of
such an approach without shared initial key is inherently limited. Alice
or Bob must have storage capacity around /5. The proof is given in
Section III-B. Let h be the binary entropy function defined as h(p) =
—plog,(p) — (1 — p)logy (1 — p).

Theorem 1: For any key-agreement protocol secure in the BSM for
which T (Ka; MpT') < 6 and P(Ka # Kg) < e, the entropy
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of the secret key {4 generated by Alice is upper bounded by

SASB

H(K)) < + hie)+esa+6 €))

where s4 and sz are Alice’s and Bob’s required storage capacities,
respectively, and s is Eve’s assumed storage capacity.

Observe that for small € and 6, the right-hand side of (1) becomes
approximately equal to (sasp)/s, and hence, in any secure key agree-
ment, at least one of the parties needs to have memory of a size at least
N

We note that this bound also implies a bound on the memory of
the adversary in the protocol for the oblivious transfer in the BSM.!
Namely, if the memory of the honest parties is s 4, then the memory of
a cheating party has to be much smaller than s% . This shows that the
protocol of [7] is essentially optimal and answers the question posed in
[7] and [8].

Proof of Theorem 1

Definition 1: Alist Zy, ..., Z, of random variables are symmetric
with respect to a random variable Y if, for every two sequences
i1,....0w and i}, ..., i, of distinct indices, we have

Py}zv

i Ziy (U 215y Zw) = Pyyzi, T (Y2150 es 2w) (2)
forall y, z1,..., zw.
In other words, the distribution of (Y, Z;,, ...,

pend on the choice of the indices 71, . . .

Z;,, ) does not de-

Sl

Lemma l: If Zy, ...,
exists i € {0,...

Z,, are symmetric with respect to Y, then there
,n} such that

IY;Zo|Zy - -- .
(Y3 Zol2, “—n+l

Proof: The chain rule for conditional information? implies that

ZI(}TZJZ,_], . .,ZO{

=1(Y:Zo....,Z) 3)

which is at most H (Y"). Therefore, there must exist ¢ such that

H(Y)

>I(Y;Z;|Zi—, ..., 7).
1 ( |Zi—1,..., Z0)

By the symmetry condition (2), this last value can be replaced by
I(Y; Zy|Z1, ..., Z;). This completes the proof. O

A simple example of such symmetric variables is given below (we
will use it later in the proof of the theorem).

Observation 1: Let Y and Z be random variables. Suppose the
random variables Zi,...,Z, are sampled independently, each ac-
cording to the distribution Pz‘y. Then, Z, Z1,. .., Z, are symmetric
with respect to Y.

The following observation will also be useful.

IThis is because there exists a black-box reduction of the key-agreement
problem to the oblivious transfer problem [13]. (It is easy to see that the re-
duction of [13] works in the BSM.)

2Recall that the chain rule for information (see, e.g., [6, Th. 2.5.2]) states that
for arbitrary random variables Vi, ..., V,, and U, we have

IU:Vo, ...,

Vien, ..., Vo)
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Observation2: If Zy, . .., Z, are symmetric with respect to Y, then
for an arbitrary function g, the random variables Zg, ..., Z, are sym-
metric with respect to g(Y").

Proof: For every y' from the domain of g, all sequences

i1,...,1p and i}, ...,4, of distinct indices, and every sequence
Z1y..., 2w, WE have
Pg(Y),Zil, Zi,, (J ZigseeesZiy)
= E PYszlv~<7Ziw (y7zi1“"'7ziw)
y9(y)=y’
= Z PY,Z,,W,Z, (yazi’“"?zi’)
i oy 1 w
yg(y)=y’
!
=Py zy 7y Wz z) 4)

where (4) follows from the assumption that Z, . . ., Z,, are symmetric
with respectto Y. O

To prove Theorem 1, recall that s4, sg, and s are the storage
capacities of Alice, Bob, and Eve, respectively. We have to specify
a strategy for Eve to store information (i.e., the function fr). Such
an admissible strategy is the following. For the fixed observed ran-
domizer R = r and transcript T’ = ¢, consider |s/sp]| independent
copies Mg, ..., ! Mg Le/<5] of what Bob stores, sampled independently
according to the distribution Py »|R=r,7=t. (Clearly, such sampling
can be done by a computationally unbounded Eve.)

Lemma 2: The random variables M, M}, ..., ML/
metric with respect to M 4.

Proof: Recall that M4 is a randomized function of (R,T),
namely, Ma = fa(R,T, R4) for a random R 4. By Observation 1,
the random variables Mp, M5, ..., M ,L;/ *5) are symmetric with

respect to (R,T), and hence, also with respect to (R, T, Ra) since

are sym-

Ry — (R.T) — Mg, Mp....,ME’*?) form a Markov chain.
Thus, by Observation 2, the random variables Mg, M. . .., ML/*#]
are symmetric also with respect to Ma = fa(R,T, Ra). O
Hence, Lemma 1 implies that there exists¢ € {0, ..., |s/sg]} such
that
I(MA: ] 1,...,Mg) < HOMA)
S
e
sB
< H(.l/[A) < 545B
P S
5B

The last step follows from H(M4) < sa. Clearly, an infinitely pow-
erful Eve can compute such an index :. We hence assume that Eve
stores Mg := M, ..., M5.3 Now, we can apply [17, Th. 1], which
considers exactly this setting, where Alice, Bob, and Eve have some
random variables M 4, Mg, and M, respectively, jointly distributed
according to some distribution Pas, ar;a1, . The theorem states that
the entropy of a secret key K that can be generated by public discus-
sion is upper bounded as

H(K4) < I(

Mp)+H(KA|Kg) + (K4 MgT').
N—————

S SASB Sé

31t may perhaps look a bit counterintuitive that, for the sake of this proof,
Eve does not necessarily store as many values as she could fit in her memory,
ie., set Mg :: %S/SB However, in principle, it can be the case that
I(M; Mp| Mg L+/+5 > I(Ma; Mg|M5) (for i < |s/sp]) because
conditioning may actually increase a mutual information between random
variables, i.e., I(U; V)
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Now, by Fano’s lemma (cf., [3, p. 156])

H(KA|Kp) < h(e) +elog,(2°4 —1) < h(e) + esa

and we obtain (1). This concludes the proof of Theorem 1.
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New Monotones and Lower Bounds in Unconditional
Two-Party Computation

Stefan Wolf and Jiirg Wullschleger

Abstract—Since oblivious transfer, a primitive of paramount importance
in secure two- and multiparty computation, cannot be realized in an
unconditionally secure way for both parties from scratch, reductions
to weak information-theoretic primitives as well as between different
variants of the functionality are of great interest. In this context, various
monotones—quantities that cannot be increased by any protocol—are
introduced and then used to derive lower bounds on the possibility and
efficiency of such reductions.

Index Terms—Lower bounds, monotones, oblivious transfer, two-party
computation, unconditional security.

I. INTRODUCTION

The advantage of unconditional or information-theoretic security—
as compared to computational security—is that it does not depend on
any assumption on an adversary’s computing power or memory space,
nor on the hardness of any computational problem. Its disadvantage,
on the other hand, is that it cannot be realized from scratch. This is
why reductions are of great interest and importance in this context:
Which functionality can be realized from which other? If a reduction
is possible in principle, what is the best efficiency, i.e., the minimum
number of instances of the initial primitive required per realization of
the target functionality?

A task of particular importance in secure two-party computation is
oblivious transfer, which is known to be impossible to realize from
scratch in an unconditionally secure way for both parties by any (clas-
sical or even quantum) protocol. On the other hand, it can be realized
from noisy channels [7], [9], [12], weak versions of oblivious transfer
[81, [3], [4], [13], [14], [28], or correlated pieces of information [25],
[21].

For the same reason, reductions between different variants of
oblivious transfer are of interest as well: chosen 1-out-of-2 oblivious
transfer from Rabin oblivious transfer [6], string oblivious transfer
from bit oblivious transfer [3], 1-out-of-n oblivious transfer from
1-out-of-2 oblivious transfer, oblivious transfer from 4 to B from
oblivious transfer from B to A [10], [22], [27], and so forth. A number
of lower bounds in the context of such reductions have been given,
based on information-theoretic arguments [15], [19].

With respect to information-theoretic reductions between crypto-
graphic and information-theoretic functionalities, quantities which
never increase during the execution of a protocol—so-called mono-
tones[5]—are of great importance. In key agreement, for instance,
two parties A and B can start with correlated pieces of information
X and Y, respectively, and try to generate a secret key S by public
communication such that an adversary E, who initially knows a
third random variable Z, is virtually ignorant about S. It has been
shown in [23] that the intrinsic information [20] of A’s and B’s
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