Java wybrane technologie
spotkanie nr 9

Java Message Service

|
Message-Driven Beans



Alternatywa dla RMI-IIOP

* asynchronicznosc¢ (asynchrony)
- brak blokowania
- daje sie fire-and-forget

Remote Method Invocations:

* rozprezenie (decoupling)

Application = Application - klienci nie muszg znac¢ serwera

* niezawodnosc (reliability)

- serwer nie musi caty czas dziatac
Messaging: .
- guaranteed message delivery

Message

Application = Middleware == Application » certified message delivery

e store and forward

- trwali/nietrwali konsumenci
(durable)

e wielu odbiorcow | nadawcow



Message oriented middleware (MOM)

* Przyktadowe MOM:

Tibco Rendezvous,
IBM Web-Sphere MQ,
BEA Tuxedo/Q,

Sun Java System Messaging
Server,

Microsoft MSMQ,
Sonic Software SonicMQ
FioranoMQ

* Niektore funkcje

gwarantowanie dostarczenia
wiadomosci

odpornosc¢ na btedy
rownowazenie obcigzenia

wykrywanie nieaktywnych
odbiorcow

SOAP po JMS



Java Message Service (JMS)

 podobny pomyst do JDBC i JNDI
* API do wysytfania i odbierania komunikatow
* Service Provider Interface (SPI)



Publish/subscrike:

Producer 1

Style komunikacji

Producer 2

Topic

Consumer 1

Point-to-Point:

Producer 1

~

Consumer 2

Producer 2

\/

Queue

Consumer 1

* Publish/Subscribe

- jak radio/telewizja
* Point-to-Point

- producenci/konsumenci
* Request-Reply

- asynchroniczne wywotywanie
procedur

- rzadziej spotykane

- implementowane przy pomocy
poprzednich



2: Create

JMS Driver Client Runtime

JMS Connection

Connection

3: Create
Session

-~

Client

- 5 Create

Factory

JMS Connection

Serialized
Message
Communication

- Producer
or Consumer

1: Retrieve
IME Driver
(Connection
Factory)

4: Lookup

&: send or
Recejve
Message

JKAS Drestination

-]
o
- W,

Nﬂmiru;i Service
Such as LDAP

JMS Session

JM5S Producer
or

JM5 Consumer

w 24

M

JMS Server

Cueues]

OueLe?

Topicl

JMS bez kontenera



Przyktad

import javax.jms.*;
import javax.naming.InitialContext;
public class Producent {
public static void main(String[] args) throws Exception {
InitialContext ctx = new InitialContext(...);

TopicConnectionFactory factory =
(TopicConnectionFactory) ctx.lookup ("Jjms/mojaFabrykaT") ;

TopicConnection connection = factory.createTopicConnection() ;
TopicSession session =
connection.createTopicSession(false, Session.AUTO ACKNOWLEDGE) ;

Topic topic = (Topic)ctx.lookup ("Jjms/mojT") ;
TopicPublisher publisher = session.createPublisher (topic);
TextMessage msg = session.createTextMessage () ;
msg.setText ("To jest komunikat.");

publisher.send (msqg) ;

publisher.close();



Rodzaje interfejsow

e ConnectionFactory e Session
— QueueConnectionFactory — QueueSession
— TopicConnectionFactory - TopilcSession
e Connection e MessageProducer
— QueueConnection - QueueSender
- TopicConnection - TopicPublisher
e Destination e MessageConsumer
— Queue — QueueReceiver,
_ Topic QueueBrowser

- TopicSubscriber



Rodzaje wiadomosci

e BytesMessage
e ObjectMessage
o TextMessage

e StreamMessage

e MapMessage

Wiadomosci mogg miecC nagtowki.



Message-L

riven Beans

10



MDB

* Niedostepny dla klientow

e Zazwyczaj implementuje javax.jms.MessageListener i odbiera
wiadomosci JMS

dostaje wszystkie wiadomosci (chyba, ze uzywamy selectora)
trzeba sie nagimnastykowac zeby odpowiedzieC

wyjatki zgtaszane podczas przetwarzania wiadomosci nie dotrg do
klienta

nie ma stanu

kontener odpowiada za rownolegte przetwarzanie (nie mozna nic
zaktadac o kolejnosci obstugi wiadomosci)

* Od EJB 2.1 konektory Java EE Connector Architecture mogq
stanowic zrodto komunikatow

11



Alternatywy

Whasne obiekty odpalajg Session Beany
- Nie trzeba pisac kodu, ktory zarejestruje nasz obiekt jako konsumenta.
- Nie trzeba pisac¢ wielowagtkowej aplikacji.
- Nie trzeba sie martwic startowaniem konsumentow.
- Mozemy korzystac z ustug kontenera.
Session Bean jako konsument

- Bean jest jednowatkowy i jezeli obstuguje wiasnie zadanie, nie bedzie
mogt obstuzy¢ wiadomosci.

- Co jak nie ma beanéw w chwili nadejscia wiadomosci?

12



Wymagania

does not exist

1. new instance()
2. dependency injection, if any
3. PostConstruct callback, if any

PreDestroy callback, if any

s ™
Method-ready
pool
h S
onMessage()

Wymagania
- bezargumentowy konstruktor
- dla JMS:

Javax.jms.Messagelistener

* ma metode
onMessage (Message m)

13



Przyktad

@MessageDriven (activationConfig =
{ @ActivationConfigProperty
(

ropertyName = "destinationType",
propertyValue = "javax.jms.Topic")
b

public class MyFirstMDB implements Messagelistener {

public MyFirstMDB () {
System.out.println ("MyFirstMDB()");

}

public void onMessage (Message msg) {
1if (msg instanceof TextMessage) {
TextMessage tm = (TextMessage) msg;
try |
String text = tm.getText () ;

System.out.println ("Odebrany komunikat : " + text);

} catch (JMSException e) {
e.printStackTrace () ;

}
}

@PreDestroy
public void remove () {
System.out.println ("MyFirstMDB.remove ()");

}

14



Deskryptor

<?xml version="1.0" encoding="UTF-8" 2>

<ejb-jar xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" version="3.0"

xsi:schemalLocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/ejb-jar 3 0.xsd">
<enterprise-beans>

<message-driven>
<ejb-name>LogBeanDD</ejb-name>
<ejb-class>examples.messaging.dd.LogBean</ejb-class>
<messaging-type>javax.jms.MessagelListener</messaging-type>
<transaction-type>Bean</transaction-type>
<message-destination-type>javax.jms.Topic</message-destination-type>

<activation-config>
<activation-config-property>
<activation-config-property-name>destinationType</...>
<activation-config-property-value>javax.jms.Topic</...>
</activation-config-property>
</activation-config>
</message-driven>

</enterprise-beans>
</ejb-jar>

* Mapowanie na konkretny temat/kolejke wskazujemy w deskryptorze kontenera

15



Opcjonalne podelementy
@MessageDriven oraz <message-driven>

@ActivationConfigProperty (
propertyName = "destinationType",
propertyValue = "jJavax.jms.Topic"

)

@ActivationConfigProperty (
propertyName="messageSelector",
propertyValue="JMSType = 'ala' AND

ma = 'kota'"

- m.setStringProperty("ma", "kota")

- sktadnia wzorowana na SQL

@ActivationConfigProperty (
propertyName="subscriptionDurability

"w
4

propertyValue="NonDurable"
)

o tranzakcjach jeszcze bedzie

<activation-config-property>
<activation-config-property-name>
destinationType
</activation-config-property-name>
<activation-config-property-value>
Jjavax.jms.Topic
</activation-config-property-value>
</activation-config-property>

<activation-config-property>
<activation-config-property-name>
messageSelector
</activation-config-property-name>
<activation-config-property-value>
JMSType="'ala' AND ma='kota'
</activation-config-property-value>
</activation-config-property>

<activation-config-property>
<activation-config-property-name>
subscriptionDurability
</activation-config-property-name>
<activation-config-property-value>
NonDurable
</activation-config-property-value>
</activation-config-property>

16



Zagadnienia zaawansowane

Transakcje

- konsument i producent nie nalezg do tej samej transakcji (wiadomosc¢
pojawia sie dopiero po zacommitowaniu)

Bezpieczenstwo
- nie ma standardowego sposobu przekazywania security identity
Rownowazenie obcigzenia
- posrednik i model pull
- to kontener jest odbiorcg wiadomosci, a nie poszczegolne egzemplarze
- wszystkie kontenery w klastrze bedg odbiorcami
Metody @PreDestroy sg wywotywana rzadko

- sprzatamy zanim zgtosimy wyjatek

17



Odpowiadanie

* Kolejka do odpowiedzi

e Kolejka tymczasowa (zwigzana z obiektem Connection)
- JMSReplyTo
- JMSCorrelationlID

- tymczasowa kolejka stworzona przez bean moze przepasc!

18



Kiedy stosowac/nie stosowac
komunikatow

Nie stosowac

Stosowac

kosztowne czynnosci, ktérych efekty
nie muszg by¢ natychmiastowe

nie trzeba sie blokowac jezeli nie
oczekujemy odpowiedzi (wartos¢
zwrotna void)

rownowazenie obcigzenia na zasadzie
pull; a nie push

tatwo wykryc¢ kiedy jest za mato
konsumentow

tatwa priorytyzacja

tatwa integracja z systemami
zastanymi

luzne sprzezenie

wieksza niezawodnosc przy stabym
taczu sieciowym

komunikacja wiele do wiele

jak oczekujemy wyniku

jezeli nie ma pewnosci, ze operacja sie
powiedzie

kiedy operacja ma byC czescig
wiekszej transakcji

kiedy nie ufamy klientom (mozna
samemu udoskonali€)

w matych aplikacjach, gdzie posrednik
moze byc¢ zbyt zasobozerny

jak potrzeba obiektowosci i silnych
typow

system ma bycC prosty i tatwy w
testowaniu i debugowaniu

19



