
Java wybrane technologie
spotkanie nr 9

Java Message Service
i

Message-Driven Beans



2

Alternatywa dla RMI-IIOP
● asynchroniczność (asynchrony)

– brak blokowania
– daje się fire-and-forget

● rozprężenie (decoupling)
– klienci nie muszą znać serwera

● niezawodność (reliability)
– serwer nie musi cały czas działać
– guaranteed message delivery

● certified message delivery
● store and forward

– trwali/nietrwali konsumenci 
(durable)

● wielu odbiorców i nadawców



3

Message oriented middleware (MOM)
● Przykładowe MOM:

– Tibco Rendezvous,
– IBM Web-Sphere MQ,
– BEA Tuxedo/Q,
– Sun Java System Messaging 

Server,
– Microsoft MSMQ,
– Sonic Software SonicMQ i
– FioranoMQ

● Niektóre funkcje
– gwarantowanie dostarczenia 

wiadomości
– odporność na błędy
– równoważenie obciążenia
– wykrywanie nieaktywnych 

odbiorców
– SOAP po JMS



4

Java Message Service (JMS)
● podobny pomysł do JDBC i JNDI
● API do wysyłania i odbierania komunikatów
● Service Provider Interface (SPI)



5

Style komunikacji
● Publish/Subscribe

– jak radio/telewizja
● Point-to-Point

– producenci/konsumenci
● Request-Reply

– asynchroniczne wywoływanie 
procedur

– rzadziej spotykane
– implementowane przy pomocy 

poprzednich



6

JMS bez kontenera



7

Przykład
import javax.jms.*;
import javax.naming.InitialContext;
public class Producent {
  public static void main(String[] args) throws Exception {
    InitialContext ctx = new InitialContext(...);

    TopicConnectionFactory factory =
      (TopicConnectionFactory) ctx.lookup("jms/mojaFabrykaT");

    TopicConnection connection = factory.createTopicConnection();
    TopicSession session = 
      connection.createTopicSession(false,Session.AUTO_ACKNOWLEDGE);

    Topic topic = (Topic)ctx.lookup("jms/mojT");

    TopicPublisher publisher = session.createPublisher(topic);

    TextMessage msg = session.createTextMessage();
    msg.setText("To jest komunikat.");
    publisher.send(msg);

    publisher.close();
  }
}



8

Rodzaje interfejsów
● ConnectionFactory

– QueueConnectionFactory
– TopicConnectionFactory

● Connection
– QueueConnection
– TopicConnection

● Destination
– Queue
– Topic

● Session
– QueueSession
– TopicSession

● MessageProducer
– QueueSender
– TopicPublisher

● MessageConsumer
– QueueReceiver, 
QueueBrowser

– TopicSubscriber



9

Rodzaje wiadomości
● BytesMessage
● ObjectMessage
● TextMessage
● StreamMessage
● MapMessage

Wiadomości mogą mieć nagłówki.



10

Message-Driven Beans



11

MDB
● Niedostępny dla klientów
● Zazwyczaj implementuje javax.jms.MessageListener i odbiera 

wiadomości JMS
– dostaje wszystkie wiadomości (chyba, że używamy selectora)
– trzeba się nagimnastykować żeby odpowiedzieć
– wyjątki zgłaszane podczas przetwarzania wiadomości nie dotrą do 

klienta
– nie ma stanu
– kontener odpowiada za równoległe przetwarzanie (nie można nic 

zakładać o kolejności obsługi wiadomości)
● Od EJB 2.1 konektory Java EE Connector Architecture mogą 

stanowić źródło komunikatów



12

Alternatywy
● Własne obiekty odpalają Session Beany

– Nie trzeba pisać kodu, który zarejestruje nasz obiekt jako konsumenta.
– Nie trzeba pisać wielowątkowej aplikacji.
– Nie trzeba się martwić startowaniem konsumentów.
– Możemy korzystać z usług kontenera.

● Session Bean jako konsument
– Bean jest jednowątkowy i jeżeli obsługuje właśnie żądanie, nie będzie 

mógł obsłużyć wiadomości.
– Co jak nie ma beanów w chwili nadejścia wiadomości?



13

Wymagania
● Wymagania

– bezargumentowy konstruktor
– dla JMS: 

javax.jms.MessageListener
● ma metodę 
onMessage(Message m)

● a



14

Przykład
@MessageDriven(activationConfig =
{ @ActivationConfigProperty
  (
    ropertyName = "destinationType",
    propertyValue = "javax.jms.Topic")
} )
public class MyFirstMDB implements MessageListener {
  public MyFirstMDB() {
    System.out.println("MyFirstMDB()");
  }

  public void onMessage(Message msg) {
    if (msg instanceof TextMessage) {
      TextMessage tm = (TextMessage) msg;
      try {
        String text = tm.getText();
        System.out.println("Odebrany komunikat : " + text);
      } catch (JMSException e) {
        e.printStackTrace();
      }
    }
  }

  @PreDestroy
  public void remove() {
    System.out.println("MyFirstMDB.remove()");
  }
}



15

Deskryptor
<?xml version="1.0" encoding="UTF-8" ?>
<ejb-jar xmlns="http://java.sun.com/xml/ns/javaee" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="3.0" 
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee 
http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd">
  <enterprise-beans>

    <message-driven>
      <ejb-name>LogBeanDD</ejb-name>
      <ejb-class>examples.messaging.dd.LogBean</ejb-class>
      <messaging-type>javax.jms.MessageListener</messaging-type>
      <transaction-type>Bean</transaction-type>
      <message-destination-type>javax.jms.Topic</message-destination-type>

      <activation-config>
        <activation-config-property>
          <activation-config-property-name>destinationType</...>
          <activation-config-property-value>javax.jms.Topic</...>
        </activation-config-property>
      </activation-config>
    </message-driven>

  </enterprise-beans>
</ejb-jar>

● Mapowanie na konkretny temat/kolejkę wskazujemy w deskryptorze kontenera



16

Opcjonalne podelementy
@MessageDriven oraz <message-driven>

● @ActivationConfigProperty(
  propertyName = "destinationType",
  propertyValue = "javax.jms.Topic"
)

● @ActivationConfigProperty(
  propertyName="messageSelector",
  propertyValue="JMSType = 'ala' AND
                 ma = 'kota'"
)

– m.setStringProperty("ma","kota")
– składnia wzorowana na SQL

● @ActivationConfigProperty(
 propertyName="subscriptionDurability
",
 propertyValue="NonDurable"
)

● o tranzakcjach jeszcze będzie

● <activation-config-property>
  <activation-config-property-name>
    destinationType
  </activation-config-property-name>
  <activation-config-property-value>
    javax.jms.Topic
  </activation-config-property-value>
</activation-config-property>

● <activation-config-property>
  <activation-config-property-name>
    messageSelector
  </activation-config-property-name>
  <activation-config-property-value>
    JMSType='ala' AND ma='kota'
  </activation-config-property-value>
</activation-config-property>

● <activation-config-property>
  <activation-config-property-name>
    subscriptionDurability
  </activation-config-property-name>
  <activation-config-property-value>
    NonDurable
  </activation-config-property-value>
</activation-config-property>



17

Zagadnienia zaawansowane
● Transakcje

– konsument i producent nie należą do tej samej transakcji (wiadomość 
pojawia się dopiero po zacommitowaniu)

● Bezpieczeństwo
– nie ma standardowego sposobu przekazywania security identity

● Równoważenie obciążenia
– pośrednik i model pull
– to kontener jest odbiorcą wiadomości, a nie poszczególne egzemplarze
– wszystkie kontenery w klastrze będą odbiorcami

● Metody @PreDestroy są wywoływana rzadko
– sprzątamy zanim zgłosimy wyjątek 



18

Odpowiadanie
● Kolejka do odpowiedzi
● Kolejka tymczasowa (związana z obiektem Connection)

– JMSReplyTo
– JMSCorrelationID
– tymczasowa kolejka stworzona przez bean może przepaść!



19

Kiedy stosować/nie stosować 
komunikatów

Stosować
● kosztowne czynności, których efekty 

nie muszą być natychmiastowe
● nie trzeba się blokować jeżeli nie 

oczekujemy odpowiedzi (wartość 
zwrotna void)

● równoważenie obciążenia na zasadzie 
pull, a nie push

● łatwo wykryć kiedy jest za mało 
konsumentów

● łatwa priorytyzacja
● łatwa integracja z systemami 

zastanymi
● luźne sprzężenie
● większa niezawodność przy słabym 

łączu sieciowym
● komunikacja wiele do wiele

Nie stosować
● jak oczekujemy wyniku
● jeżeli nie ma pewności, że operacja się 

powiedzie
● kiedy operacja ma być częścią 

większej transakcji
● kiedy nie ufamy klientom (można 

samemu udoskonalić)
● w małych aplikacjach, gdzie pośrednik 

może być zbyt zasobożerny
● jak potrzeba obiektowości i silnych 

typów
● system ma być prosty i łatwy w 

testowaniu i debugowaniu


