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Modele obliczeń równoważne maszynom Turinga

gramatyki typu 0

automaty z wieloma stosami

automaty z licznikami

automaty z kolejką

maszyny RAM (ang. random access machines) albo maszyny rejestrowe

while-programy

rachunek λ

. . .



Hierarchia Chomsky’ego

typ języki automaty gramatyki

typ 0 częściowo maszyny ?
rozstrzygalne Turinga

typ 1 kontekstowe ? ?

typ 2 bezkontekstowe automaty bezkontekstowe
ze stosem

typ 3 regularne automaty regularne
skończone



Gramatyka (typu 0)

G = (A,N,S , α)

A to skończony zbiór symboli końcowych (terminalnych)

N to skończony zbiór symboli niekońcowych (nieterminalnych), A ∩ N = ∅
S ∈ N to symbol początkowy

α ⊆ (A ∪ N)+ × (A ∪ N)∗ to skończony zbiór reguł przepisywania (produkcji)

Notacja

Reguły (v , v ′) ∈ α będziemy zapisywać v −→G v ′ albo v −→ v ′.

Reguły rozszerzamy do relacji −→−→G ⊆ (A ∪ N)∗ × (A ∪ N)∗:

w −→−→G w ′ ⇐⇒ ∃(v −→G v ′) ∈ α, ∃u, t ∈ (A ∪ N)∗, w = u v t, v = u v ′ t

i domykamy zwrotno-tranzytywnie: w −→−→∗G w ′ wtw. gdy istnieje ciąg

w = v0 −→−→G v1 −→−→G . . . −→−→G vn = w ′, n ≥ 0

zwany wyprowadzeniem (wywodem) w ′ z w (w gramatyce G).



Język generowany przez gramatykę

Język generowany przez gramatykę:

L(G) = {w ∈ A∗ : S −→−→∗G w }

Przykład

Gramatyka G:

A = {a, b, c}
N = {S ,X ,B}

S −→ ε X −→ aBXc Ba −→ aB

S −→ X X −→ abc Bb −→ bb

L(G) = ? B −→ b



Maszyny Turinga a gramatyki

Twierdzenie

Gramatyki ≡ maszyny Turinga.

Dowód:

gramatyka G ; maszynaM: maszyna symuluje gramatykę „wstecz”

v −→−→∗G w ⇐⇒ q w −→∗M q v ,

zaczyna w konfiguracji q w , akceptuje „w konfiguracji qS”.

maszynaM nad {0, 1} z taśmą jednostronnie nieograniczoną ; gramatyka G:

A = {0, 1} N = Q × {0, 1,B} ∪ {$,B, S}

Faza 1: S −→−→∗G $[qtak,B]B+

Faza 2: b [q′, c] −→ [q, a] c jeśli (q, a, q′, b,→) ∈ δ
[q′, c] b −→ c [q, a] jeśli (q, a, q′, b,←) ∈ δ
$ [q0, a] −→ a

aB −→ a

poprawność: S −→−→∗G w ⇐⇒ w ∈ L(M)



Nierozstrzygalność gramatyk

Problem słów

Dane: gramatyka G i dwa słowa v ,w

Wynik: czy v −→−→∗G w ?

Wniosek

Problem słów jest nierozstrzygalny.

Dowód:

Redukujemy problem stopu do problemu słów:

funkcja obliczalna: maszynaM, słowo w 7−→ G i słowa S,w

poprawność: w ∈ L(M) ⇐⇒ S −→−→∗G w

Pytanie

Czy problem słów jest częściowo rozstrzygalny?



Plan

1 Gramatyki równoważne maszynom Turinga

2 Wszystkie własności semantyczne programów są nierozstrzygalne.

3 Funkcje nieobliczalne: pracowite bobry



Wszystkie własności języków cz.r. są nierozstrzygalne

Ustalmy A, np. A = {0, 1}. Własność języków to dowolny podzbiór L ⊆ P(A∗).

Własność L jest trywialna jeśli

albo L nie zawiera żadnego języka częściowo rozstrzygalnego,

albo L zawiera je wszystkie.

Przykładowe własności nietrywialne:

skończoność,

ko-skończoność,

rozstrzygalność,

język zawiera wszystkie słowa długości parzystej.

Twierdzenie (Rice 1951)

Dla każdej nietrywialnej własności L, następujący problem jest nierozstrzygalny:

Dane: maszyna TuringaM
Wynik: czy L(M) ∈ L ?

Każda nietrywialna własność semantyczna programów jest nierozstrzygalna.



Dowód twierdzenia Rice’a

Dowód:

B.u.o. załóżmy, że ∅ /∈ L. Wybierzmy dowolną maszynęM0 t.że L(M0) ∈ L.

Problem stopu na ε

Dane: maszyna TuringaM
Wynik: czy ε ∈ L(M) ?

≤
Własność L

Dane: maszyna TuringaM
Wynik: czy L(M) ∈ L ?

Funkcja obliczalna:

M 7→ M′ :
najpierw sprawdź, czy ε ∈ L(M), ignorując słowo wejściowe;

następnie uruchomM0 na słowie wejściowym.

Poprawność:
ε ∈ L(M) ⇐⇒ L(M′) ∈ L



Lista problemów nierozstrzygalnych

Wszystkie semantyczne własności maszyn Turinga (np. problem stopu)

Wiele problemów dla języków bezkontekstowych (np. uniwersalność)

Problem odpowiedniości Posta

Problem słów dla gramatyk typu 0

Problem słów dla grup skończenie generowanych

Kafelkowanie nieskończonej płaszczyzny

Zdania arytmetyki (N,+,×)

10-ty problem Hilberta: diofantyczne równania wielomianowe

. . .
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Pracowite bobry

Ustalmy alfabet taśmowy T = {a,B}.

Bóbr def
= deterministyczna maszyna TuringaM,

δ : (Q − {qstop})× T → Q × T × {←, � ,→},

która zatrzymuje się na słowie pustym:

q0 ε −→∗M u qstop v dla pewnych u, v ∈ T∗.

Bóbr zaczyna obliczenie z pustą taśmą, a jego wynik to liczba symboli a na taśmie w
momencie zatrzymania.∗

Bobra o najlepszym wyniku spośród bobrów o n stanach (nie licząc qstop) nazwijmy
pracowitym.

BB(n)
def
= wynik pracowitego bobra o n stanach.

BB(1) = 1 BB(2) = 4 BB(3) = 6 BB(4) = 13,

BB(5) = 4098 BB(6) ≥ 101439 . . .

(BB(5) ≥ 4098 rok temu)

∗inna wersja: liczba kroków, po której się zatrzymuje.



Pracowite bobry

Twierdzenie (Radó 1962)

Funkcja BB : N→ N jest nieobliczalna.

Dowód:

Przypuśćmy, że jest. Wtedy obliczalna jest również funkcja F (n) = BB(2n) + 1, czyli
F = F (M) dla pewnej całkowitej maszynyM. Niech N liczba stanówM.

NiechMN będzie maszyną, która rozpoczynając z pustą taśmą wypisuje aN i
zatrzymuje się. Jej liczba stanów wynosi N. Złożenie maszyn

MN ; M

to maszyna o 2N stanach, która osiąga wynik BB(2N) + 1. Sprzeczność.

Wniosek

Funkcja BB dominuje,a dla wystarczająco dużych argumentów, każdą
funkcję obliczalną.

aDla każdej funkcji obliczalnej f : N→ N istnieje n0 ∈ N takie, że f (n) < BB(n) dla n > n0.



Niezależność od aksjomatów teorii zbiorów

Fakt

Istnieje deterministyczna maszynaM o 748 stanach taka, że ε /∈ L(M), ale nie da się
tego dowieść na gruncie teorii zbiorów.a

aZakładając niesprzeczność aksjomatów teorii zbiorów.

Wniosek

Wartość BB(748) nie może być wyznaczona na gruncie teorii zbiorów.



W następnym odcinku:

Złożoność czasowa i pamięciowa, klasa NP
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