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@ Jak dowodzi¢ nierozstrzygalnosci?



Problem L C A* redukuje sie (sprowadza si¢) do problemu K C B* jedli istnieje
funkcja obliczalna
f:A* — B*

taka, ze
weL < f(w)e K, dlakazdego w € A*.

Ozn. L< K.

Jesli L< K to L < K.

Jesli L < K i problem K jest (czesciowo) rozstrzygalny to problem L jest tez
(czesciowo) rozstrzygalny.

Dowdéd:




Dowdd nierozstrzygalnosci

Niech A = {0,1}.

Problem stopu

Niepustos$¢ jezyka maszyny Turinga

Dane: maszyna Turinga M <
i stowo w —

Wynik:  czy w € L(M) ?

Dane: maszyna Turinga M
Wynik: czy L(M) # 07?

funkcja obliczalna: Mw  — M
poprawnosc: weLM) = LWM) #D }

Maszyna M’ dziata nastepujaco:
@ ignoruje swoje stowo wejsciowe
@ pisze na tasmie stfowo w
o symuluje maszyne M na stowie w

o akceptuje, gdy M akceptuje



Dowdd nierozstrzygalnosci

Ta sama redukcja dowodzi:

Problem stopu

Problem stopu na ¢

Dane: maszyna Turinga M
i stowo w

Wynik:  czy w € L(M) ?

IA

Dane: maszyna Turinga M
Wynik: czye € L(M) ?

Problem stopu

Uniwersalnos¢ jezyka maszyny T.

Dane: maszyna Turinga M
i sfowo w

Wynik:  czy w € L(M) ?

IA

Dane: maszyna Turinga M

Wynik:  czy L(M) = A*?




Nierozstrzygalnosé x 2

Problem stopu

Uniwersalnos¢ jezyka maszyny T.

Dane: maszyna Turinga M
i stowo w

Wynik:  czy w € L(M) ?

IA

Dane: maszyna Turinga M

Wynik:  czy L(M) = A*?

Problem stopu

Nieuniwersalnos$¢ jezyka maszyny T.

Dane: maszyna Turinga M
i stowo w

Wynik:  czy w € L(M) ?

IA

Dane: maszyna Turinga M
Wynik:  czy L(M) # A*?




Dowdd nierozstrzygalnosci
Nieuniwersalnos¢ jezyka bezkont.

< Dane: jezyk bezkontekstowy
— LC A*

Wynik: czy L # A*?

Niepustos$¢ jezyka maszyny Turinga

Dane: maszyna Turinga M
Wynik: czy L(M) # 07

funkcja obliczalna: M — G
poprawnosé: LM) =0 <<= LG = A"
v
Bieg maszyny M: p = @—MC— M ... —>MCn
w), = $c%a% ... $ci$

Niech L(G) = {w, : p bieg akceptujacy maszyny M }

Jezyk { c$c’ : ¢ —>p !} jest efektywnie bezkontekstowy.




Problem stopu jest zupetny

Twierdzenie

Kazdy problem czesciowo rozstrzygalny redukuje sie do problemu stopu.

Dowad:
Niech L czesciowo rozstrzygalny i niech L = L(M).

funkcja obliczalna: w  —  Mw
poprawnos¢: weL << welLM) }

Jesli L jest czesciowo rozstrzygalny oraz (problem stopu) < L to L tez jest zupetny.




© Problem odpowiedniosci Posta



Problem odpowiedniosci Posta (ang. Post Correspondence Problem)

Problem odpowiedniosci Posta (PCP)

Dane: ciag par stéw (wi,v1), ..., (Wn, va).

Wynik: czy istnieje niepusty ciag (i1,...,im) t.ze wi ... w;

Odpowiedni ciag (i1, ..., im) nazywamy rozwiazaniem. _

Przyktad
Instancja 1 b bbb
(b, bbb), (babbb, ba), (ba, a) > T Babbb | ba
ma rozwiazanie (2,1, 1, 3): 3 ba a
babbb b b ba = ba bbb bbb a
a ponizsza instancja nie ma rozwigzah: 1 ba bab
2 | abb | bb
(ba, bab), (abb, bb), (bab, abb) 3 | bab | abb

Twierdzenie

Problem odpowiedniosci Posta jest nierozstrzygalny.




Dowéd nierozstrzygalnosci PCP

Ograniczony problem odpowiedniosci Posta (ograniczony PCP)

Dane: ciag par stéw (wy, v1),. .., (Wn, vn).
Wynik:  czy istnieje niepusty ciag (i1,...,im) t.ze W ...w; = Vi ...V
ip=17
Ograniczony PCP < PCP. I
Dowad:
0 *bsk *bxbxb
1 b bbb 1 bx xbxbxb
2 | babbb ba — 2 | bxaxbxbxbx xbxa
3 ba a 3 bsxax *a
4 $ *$

(1,i2,...,im) jest rozwiazaniem <=  (0,/2,...,im,n+ 1) jest rozwiazaniem



Dowéd nierozstrzygalnosci PCP (c.d.)

Problem stopu < ograniczony PCP.

Dowdd:

Bieg akceptujacy maszyny M na stowie w, czyli gqgw —p €1 — M --. — M Cny
odpowiada rozwigzaniu PCP postaci $qow$ci$ ... $cn$di$ ... $d;$¢:.$S.

$ $qow$
0 0
1 1
B B
$ $
qa ql’a: jesli (g,a,¢,a’, ©) €
Mow s qa s’;JCII jesli (g,a,q¢',a',—) €
’ q% aqs jesli (¢,B,q’,a’,—>) €
bga q ba jesli (q,a,q’,a', <) €
$ga | $¢'Ba’  jesli(q,a,q',a',<) €S
Jtak @ Grak
a Gtak Grak

Grak $% $



© .Najprostszy” problem nierozstrzygalny



Modele obliczehn réwnowazne maszynom Turinga

e gramatyki typu O

@ automaty z wieloma stosami

@ automaty z licznikami

@ automaty z kolejka

e maszyny RAM (ang. random access machines) albo maszyny rejestrowe
@ while-programy

@ rachunek X\



Automaty z licznikami

A = (A7 Qv 4o, Gstop; - 76)
o A — alfabet

@ Q - skonczony zbiér stanéw
@ o — stan poczatkowy

@ gstop — Stan akceptujacy

o C — skonczony zbiér licznikéw

0 5 C(Q —{gstop}) x (AU{e}) x {ct+,c——,c==0? : c€C} xQ

A={() L1
€ = {cd} et c==07; d==0?

bt @
L(A) = ?

Konfiguracje = Q x N€



Deterministyczne automaty z licznikami

Automaty bez wejscia: 6 C (Q — {gstop}) X {c++,c——,c==07 : c€ C} x Q.

Kiedy automat z licznikami jest deterministyczny? I




Automaty z licznikami sa réwnowazne maszynom Turinga

Twierdzenie

(Deterministyczne) maszyny Turinga = (deterministyczne) automaty z licznikami.

Dowdéd (idea):

Maszyna Turinga ~» automat z 3 licznikami:

q
V
[(BEIE[B[I[I[01[1[0[1[B[E]
q
V
[1[1[0] [1[1[0[1]
6 =4 +4+2 40 1 +2+0+8 =11

Potrzebne operacje na licznikach:

parz(c)? nparz(c)? c=c>>1 c=c<<1



Maszyna Turinga ~» automat z licznikami

Potrzebne operacje na licznikach:

parz(c)? nparz(c)? c=c>>1 c=c<<1

c==07?

c==07

start — c——; d++; d++
start —

c——; d++

Jesli maszyna deterministyczna to automat tez.



Automaty z 2 licznikami

Twierdzenie

Automaty z 2 licznikami potrafia symulowaé automaty z 3 licznikami.

Dowéd (idea):

3 liczniki ¢, d, e symulujemy za pomoca 2 licznikéw x, y:

x = 2¢.39.5¢

Czy automaty z 1 licznikiem potrafiag symulowa¢ automaty z 2 licznikami?

»Najprostszy” problem nierozstrzygalny

Dane: A — automat deterministyczny z 2 licznikami c1, co bez wejscia

Wynik: czy A zatrzyma sie, jesli rozpocznie w konfiguracji (qo, c1 = 0, c2 = 0)?




W nastepnym odcinku:

Gramatyki réwnowazne maszynom Turinga
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