
Języki, automaty i obliczenia
Wykład 10: Obliczalność

Sławomir Lasota

Uniwersytet Warszawski

30 kwietnia 2025

Plan

1 Teza Churcha-Turinga

2 Problem stopu

3 Rozstrzygalność

4 Obliczalność

Języki jako problemy decyzyjne

Języki będziemy utożsamiać z problemami decyzyjnymi.

Cykl Hamiltona

Dane: graf skierowany G

Wynik: rozstrzygnąć, czy G ma cykl Hamiltona ?

Graf można opisać słowem nad A = {0, 1,#}, np. 110#101#001

Dane wejściowe nazywamy instancją problemu decyzyjnego.

Dane wejściowe można opisać („kodować”) na różne sposoby słowem nad A.

A co ze słowami, które nie opisują żadnej instancji?

Teza Churcha-Turinga

języki rozpoznawane
przez maszyny Turinga =

problemy decyzyjne, dla których
istnieje efektywny algorytm, przy

założeniu nieograniczonych zasobów

albo:

maszyny Turinga ≡ komputery

Wątpliwości:

dlaczego nie maszyny Turninga z pamięcią stałą?

nieskończoność taśmy: rozmiar pamięci rośnie wraz z rozmiarem instancji

Modele obliczeń równoważne maszynom Turinga

gramatyki typu 0

automaty z wieloma stosami

automaty z licznikami

automaty z kolejką

maszyny RAM (ang. random access machines) albo maszyny rejestrowe

while-programy

rachunek λ

. . .

Plan

1 Teza Churcha-Turinga

2 Problem stopu

3 Rozstrzygalność

4 Obliczalność

Alfabet binarny

Bez u.o. możemy ograniczyć się do maszyn, w których

A = {0, 1} T = {0, 1,B}.

Faktycznie, np. słowa nad alfabetem

T = {a, b, c, d ,B}

można zapisać jako słowa nad {0, 1,B},

a b c aB d = 1000 0100 0010 1000 BBBB 0001

Język uniwersalny (problem stopu)

Problem stopu

Dane: maszyna TuringaM nad alfabetem A i słowo w ∈ A∗

Wynik: czy w ∈ L(M) ?

MaszynęM = (A,Q, q0, qtak,T ,B, δ) można opisać słowem wM ∈ {0, 1,#}∗, np.

000000#001000#000001##000100#001#010000#100#001## . . .

albo słowem wM ∈ {0, 1}∗, np.

000000 1 001000 000001 000100 001 010000 100 001 . . .

Program może stanowić dane wejściowe...

Język uniwersalny i maszyna uniwersalna

Język uniwersalny (problem stopu):

{ wM $w : w ∈ L(M) } ⊆ {0, 1, $}∗

{ (M,w) : w ∈ L(M) }

Twierdzenie

Problem stopu jest częściowo rozstrzygalny.

Dowód: Uniwersalna maszyna Turinga:

000000#001000#000001##000100#001#010000#100#001## . . . $

000100 $ 0010101010101111101011

Poza częściową rozstrzygalność

W pewnym mieście żyje fryzjer, który strzyże tych mieszkańców, którzy nie strzygą się
sami. Czy ten fryzjer strzyże się sam?

Twierdzenie

Język „przekątniowy”:
Lp = {wM : wM 6∈ L(M) }

Lp = {M : M 6∈ L(M) }

nie jest częściowo rozstrzygalny.

Dowód:

Przypuśćmy, że L(Mp) = Lp . Wtedy

wMp ∈ L(Mp) ⇐⇒ wMp /∈ L(Mp)

Mp ∈ L(Mp) ⇐⇒ Mp 6∈ L(Mp)

Plan

1 Teza Churcha-Turinga

2 Problem stopu

3 Rozstrzygalność

4 Obliczalność

Całkowite deterministyczne maszyny Turinga

Deterministyczna maszyna TuringaM = (A,Q, q0, qtak, qnie,T ,B, δ)

qtak ∈ Q – stan akceptujący

qnie ∈ Q – stan odrzucający

δ : (Q − {qtak, qnie})× T → Q × T × {←, � ,→}

Konfiguracje końcowe:

T∗{qtak, qnie}T∗ = {w q w ′ : q ∈ {qtak, qnie}; w ,w ′ ∈ T∗ }

Deterministyczna maszyna TuringaM zatrzymuje się dla słowa wejściowego w jeśli

q0 w −→∗M c

dla jakiejś konfiguracji końcowej c.

MaszynaM jest całkowita, jeśli zatrzymuje się dla każdego słowa wejściowego.

Przykład (całkowita maszyna deterministyczna)

qtak = ok

qnie = nok

a b B #

start→ (cont→,#,→) (check, b,→) (nok ,B, �) (nok ,#, �)

cont→ (cont→, a,→) (cont→, b,→) (start←,B,←) (start←,#,←)

start← (cont←,#,←) (nok , b, �) (nok ,B, �) (nok ,#, �)

cont← (cont←, a,←) (cont←, b,←) (nok ,B, �) (start→,#,→)

check (nok , a, �) (nok , b, �) (ok ,B, �) (ok ,#, �)

L(M) = { anb an : n ∈ N }

Problemy rozstrzygalne

Język (problem) L ⊆ A∗ nazywamy

częściowo rozstrzygalnym, albo rekurencyjnie przeliczalnym,

jeśli L = L(M) dla pewnej deterministycznej maszyny TuringaM.

Język (problem) L ⊆ A∗ nazywamy

rozstrzygalnym, albo rekurencyjnym,

jeśli L = L(M) dla pewnej całkowitej deterministycznej maszyny TuringaM.

Pytanie

Czy języki bezkontekstowe są rozstrzygalne? A ich dopełnienia?

Fakt

Jeśli L ⊆ A∗ jest rozstrzygalny to L = A∗ − L też.

Problem stopu jest nierozstrzygalny

Twierdzenie

Problem stopu jest częściowo rozstrzygalny, ale nie jest rozstrzygalny.

Dowód:

Przypuśćmy, że

L(Mu) = Lu = { (wM $w) : w ∈ L(M) }

dla całkowitej deterministycznej maszyny Mu .

Skonstruujemy (całkowitą deterministyczną) maszynę Mp dla języka

Lp = {wM : wM 6∈ L(M) }

rysunek

Wniosek

Istnieje deterministyczna maszynaM i słowo wejściowe w takie, że w /∈ L(M), ale nie
da się tego dowieść na gruncie teorii zbiorów.a

aZakładając niesprzeczność aksjomatów teorii zbiorów.

Dopełnienie

Fakt

Jeśli L i L są częściowo rozstrzygalne, to są rozstrzygalne.

Dowód:

Z dwóch deterministycznych maszyn Turinga dla języków L i L skonstruujemy
całkowitą deterministyczną maszynę dla L. . .

rysunek

Wniosek

Dla każdego języka L zachodzi dokładnie jeden z warunków:

L jest rozstrzygalny (i L też)

L jest częściowo rozstrzygalny, L nie jest częściowo rozstrzygalny

L jest częściowo rozstrzygalny, L nie jest częściowo rozstrzygalny

L i L nie są częściowo rozstrzygalne

rysunek

Problemy nierozstrzygalne

Inne przykładowe problemy częściowo rozstrzygalne, ale nierozstrzygalne:

Niepustość języka maszyny Turinga

Dane: maszyna TuringaM
Wynik: czy L(M) 6= ∅ ?

Nieuniwersalność języka bezkontekstowego

Dane: język bezkontekstowy L ⊆ A∗

Wynik: czy L 6= A∗ ?

Plan

1 Teza Churcha-Turinga

2 Problem stopu

3 Rozstrzygalność

4 Obliczalność

Funkcje częściowo obliczalne I

Relację R ⊆ (A∗)n możemy utożsamić z językiem

LR = {w1$w2$. . . $wn : (w1,w2, . . . ,wn) ∈ R }

Definicja 1: Funkcję częściową f : (A∗)n → A∗ nazywamy częściowo obliczalną, jeśli
język

Lf = {w1$w2$. . . wnf (w1,w2, . . . ,wn) : (w1,w2, . . . ,wn) ∈ dom(f) }

jest częściowo rozstrzygalny.

Pytanie

No dobrze, ale jak obliczyć wartość funkcji?

Funkcje częściowo obliczalne II

Deterministyczna maszyna TuringaM = (A,Q, q0, qstop,T ,B, δ)

qstop ∈ Q – stan końcowy

δ : (Q − {qstop})× T → Q × T × {←, � ,→}

Funkcja częściowa
F (M) : (A∗)n → A∗

obliczana przez maszynęM:

F (M)(w1, . . . ,wn) = v ⇐⇒ q0 w1$w2$. . . $wn −→∗M qstop v

Definicja 2: Funkcję częściową f : (A∗)n → A∗ nazywamy częściowo obliczalną, jeśli
f = F (M) dla jakiejś maszynyM.

Funkcje częściowo obliczalne i obliczalne

Funkcja częściowa f : (A∗)n → A∗.

Definicja 1: Lf jest częściowo rozstrzygalny.

Lf = {w1$w2$. . . wnf (w1,w2, . . . ,wn) : (w1,w2, . . . ,wn) ∈ dom(f) }

Definicja 2: f = F (M) dla jakiejś maszynyM.

F (M)(w1, . . . ,wn) = v ⇐⇒ q0 w1$w2$. . . $wn −→∗M qstop v

Pytanie

Czy te dwie definicje są równoważne?

Definicja:

Całkowitą, częściowo obliczalną funkcję f : (A∗)n → A∗ nazywamy obliczalną.

Podsumowanie

deterministyczne całkowite deterministyczne
maszyny Turinga maszyny Turinga

języki częściowo rozstrzygalne rozstrzygalne
(problemy decyzyjne)

funkcje częściowo obliczalne obliczalne
(problemy obliczeniowe)

Teza Churcha-Turinga

funkcje obliczane przez
maszyny Turinga =

problemy obliczeniowe, dla których
istnieje efektywny algorytm, przy

założeniu nieograniczonych zasobów

albo:

maszyny Turinga ≡ komputery

teoria obliczeń algorytmy

język problem decyzyjny
funkcja problem obliczeniowy
maszyna Turinga algorytm / program / system komputerowy
słowo wejściowe dane wejściowe / instancja
uniwersalna maszyna Turinga interpreter programów
częściowo rozstrzygalny / obliczalna rozwiązywalny algorytmicznie
rozstrzygalny / obliczalna rozwiązywalny algorytmicznie, własność stopu

W następnym odcinku:

Nieobliczalność

	Teza Churcha-Turinga
	Problem stopu
	Rozstrzygalnosc
	Obliczalnosc

