
Języki, automaty i obliczenia
Wykład 8: Obrazy przemienne języków. Automaty dwukierunkowe.

Sławomir Lasota

Uniwersytet Warszawski

16 kwietnia 2025



Plan



Obraz przemienny języka

Dla w = a1 . . . an ∈ A∗, zdefiniujmy funkcję (multizbiór nad A)

P(w) : A→ N P(w)(a) = |{ i ∈ {1 . . . n} : ai = a }|.

Dla ustalonego liniowego porządku na alfabecie A = {b1, . . . bk},

b1 < b2 < . . . < bk ,

P(w) można utożsamiać z wektorem, P(w) ∈ Nk :

P(w)(i) = P(w)(bi ).

Obraz przemienny języka L ⊆ A∗ to:

P(L) = {P(w) : w ∈ L }.

Przykład

Niech A = {a, b}, a < b.

P({ an bn a : n ∈ N }) = P((a b)∗ a) = { (n + 1, n) : n ∈ N }
P(palindromy) = ?



Zbiory liniowe

Dla P ⊆ Nk , zdefiniujmy P⊕ = { p1 + p2 + . . .+ pm : m ≥ 0, p1, p2, . . . , pm ∈ P }.

Zbiór liniowy X ⊆ Nk to dowolny zbiór postaci

X = b + P⊕ = { b + p : p ∈ P⊕ } (b ∈ Nk , P ⊆fin Nk )

= { b + p1 + . . .+ pm : p1, . . . , pm ∈ P } b baza, P okresy

Przykład

Niech b = (1, 2), P = {(2, 0), (0, 3)}.

b + P⊕ = { (n,m) ∈ N2 : n ≡ 1 (mod2), m ≡ 2 (mod3) }.

rysunek

Przykład

Niech b = (0, 0), P = {(1, 1), (0, 3)}.

b + P⊕ = { (n,m) ∈ N2 : 0 ≤ m − n ≡ 0 (mod3) }.

rysunek



Zbiory semiliniowe

Dla P ⊆ Nk , zdefiniujmy P⊕ = { p1 + p2 + . . .+ pm : m ≥ 0, p1, p2, . . . , pm ∈ P }.

Zbiór liniowy X ⊆ Nk to dowolny zbiór postaci

X = b + P⊕ = { b + p : p ∈ P⊕ } (b ∈ Nk , P ⊆fin Nk )

= { b + p1 + . . .+ pm : p1, . . . , pm ∈ P } b baza, P okresy

Zbiór semiliniowy X ⊆ Nk to dowolna skończona suma zbiorów liniowych:

b1 + P1
⊕ ∪ b2 + P2

⊕ ∪ . . . ∪ bn + Pn
⊕

Pytanie

Niech B,P ⊆fin Nk . Czy B + P⊕ = { b + p : b ∈ B, p ∈ P⊕ } jest (semi)liniowy?

Dla k = 1, zbiory semiliniowe to zbiory prawie okresowe.

Twierdzenie

Zbiór nieujemnych całkowitych rozwiązań układu równań liniowych o całkowitych
współczynnikach jest postaci B + P⊕.



Obraz przemienny jest semiliniowy

Twierdzenie (Parikh 1961)

Obraz przemienny języka bezkontekstowego jest semiliniowy.

Wniosek

Dla każdego języka bezkontekstowego L istnieje język regularny R t.że

P(L) = P(R).

Dowód:
b1 + P1

⊕ ∪ . . . ∪ bn + Pn
⊕

v + {v1, . . . , vm}⊕ ⊆ Nk 7−→ w (w1 + . . .+ wm)
∗ ⊆ A∗

rysunek

Wniosek

Dla alfabetów jednoliterowych, (języki bezkontekstowe) = (języki regularne).



Obraz przemienny jest semiliniowy (dowód)

Niech L = L(G), gdzie G = (A,N,S , α). Pokażemy, że P(L) jest semiliniowy.

Dla M ⊆ N, niech LM ⊆ L zawiera słowa posiadające M-drzewo wyprowadzenia,
tzn. takie, w którym pojawiają się wszystkie nieterminale z M (i żadne inne).

Ponieważ
L =

⋃
M⊆N

LM ,

wystarczy pokazać, że P(LM) jest semiliniowy, dla dowolnego M ⊆ N.

Drzewo wyprowadzenia nazwijmy płytkim, jeśli na żadnej gałęzi żaden nieterminal
nie pojawia się więcej niż |N| razy.

Pokażemy, że P(LM) = BM + PM
⊕ , gdzie

BM = {P(w) : w ma płytkie M-drzewo wyprowadzenia }
PM = {P(wv) : wXv ma płytkie M′-drzewo wyprowadzenia o korzeniu X ,

dla pewnego X ∈ N, M′ ⊆ M }.

rysunek
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Dwukierunkowość

Automaty jednokierunkowe:

q −→`

a a b a a b a b a

Automaty dwukierunkowe:

←− q −→`

` a b a a b a b a



Automat dwukierunkowy

(Niedeterministyczny) automat dwukierunkowy A = (A,`,a,Q, I ,F , δ)

δ ⊆ Q × (A ∪ {`,a})× Q × {−1, 0, 1}

(q, a, q′, k) ∈ δ: w stanie q czytaj a, zmień stan na q′, zmień pozycję o k

Przykład

qstart p

b,−1

b, 1

a, 1

`, 1

a, 1

a,−1 a,−1 (a nieużywane)



Konfiguracje automatu dwukierunkowego

Ustalmy automat dwukierunkowy A = (A,`,a,Q, I ,F , δ) i słowo

w = a1 . . . an ∈ A∗.

Konfiguracja automatu A na słowie w to para (q, i) ∈ Q × {0 . . . n + 1}

←− q −→`

` a b a a b a b a
0 1 . . . i n n+1

Konfiguracje początkowe: I × {1}
Konfiguracje akceptujące: F × {n + 1}

Zabraniamy przejść postaci

(q,`, q′,−1) (q,a, q′, 1),

czyli:
δ ∩

(
Q × {`} × Q × {−1} ∪ Q × {a} × Q × {1}

)
= ∅



Język automatu dwukierunkowego

Definiujemy relację przejścia pomiędzy konfiguracjami automatu A na słowie w :

(q, i) −−→ (q′, i + k)

wtw. gdy

1 ≤ i ≤ n oraz δ zawiera przejście (q, ai , q
′, k), lub

i = 0 oraz δ zawiera przejście (q,`, q′, k), lub
i = n + 1 oraz δ zawiera przejście (q,a, q′, k).

Bieg na słowie w to ciąg konfiguracji

(q0, i0) −−→ (q1, i1) −−→ . . . −−→ (qm, im)

gdzie q0 ∈ I oraz i0 = 1. Bieg jest akceptujący jeśli qm ∈ F oraz im = n + 1.

Pytanie

Jak długi może być bieg automatu dwukierunkowego na słowie w ?

Język rozpoznawany przez A:

L(A) = {w ∈ A∗ : A ma bieg akceptujący na w }.



Język automatu dwukierunkowego

L(A) = {w ∈ A∗ : A ma bieg akceptujący na w }.

Pytanie

Jaki język rozpoznaje ten automat?

qstart p

b,−1

b, 1

a, 1

`, 1

a, 1

a,−1 a,−1 (a nieużywane)



Automaty dwukierunkowe jako maszyny Turinga

←− q −→`

` a b a a b a b a

Automaty dwukierunkowe = maszyny Turinga z taśmą tylko do odczytu



Deterministyczne automaty dwukierunkowe

Automat dwukierunkowy A = (A,`,a,Q, I ,F , δ) jest deterministyczny, jeśli relacja
przejścia jest funkcją:

δ : Q × (A ∪ {`,a})→ Q × {−1, 0, 1}

Pytanie

Jaki język rozpoznaje ten automat?

A = {a, b}
Q = {q0, q1, q2, p0, p1, a}
I = {q0}
F = {a}

` a b a
q0 (q0,+1) (q1,+1) (q0,+1) (p0,−1)

q1 (q2,+1) (q1,+1)

q2 (q0,+1) (q2,+1)

p0 (a,+1) (p0,−1) (p1,−1)

p1 (p1,−1) (p0,−1)

a (a,+1) (a,+1) (a,+1)



Deterministyczne automaty dwukierunkowe

Pytanie

Ile stanów musi mieć deterministyczny automat dwukierunkowy dla języka

Ln = A∗ a An−1?

start
a

a,b

a,b a,b a,b a,b

Pytanie

Ile stanów musi mieć deterministyczny automat dwukierunkowy dla języka

Ln = A∗ a An−1 a A∗?

start
a

a, b

a, b a, b a, b a

a, b



Deterministyczne automaty dwukierunkowe

start
a

a, b

a, b a, b a, b a

a, b

Odpowiedź

deterministyczny automat dwukierunkowy dla języka Ln = A∗ a An−1 a A∗:

idź w prawo do pierwszej a
idź n kroków w prawo
jeśli a to akceptuj
w.p.p.

idź n − 1 kroków w lewo
kontynuuj od pierwszej instrukcji

wyjątek: jeśli a to odrzuć



Automaty dwukierunkowe a jednokierunkowe

Pytanie

Czy automaty dwukierunkowe rozpoznają więcej języków niż jednokierunkowe?



Automaty dwukierunkowe a jednokierunkowe

Twierdzenie (Rabin, Scott 1959; Shepardson 1959)

(Automaty dwukierunkowe) ≡ (automaty jednokierunkowe).

Dowód (Vardi 1989):

Niech A = (A,`,a,Q, I ,F , δ) automat dwukierunkowy.

Fakt

w = a1 . . . an 6∈ L(A) wtw. gdy ∃P0,P1, . . . ,Pn+1 ⊆ Q t.że

I ⊆ P1

∀i ∈ {0 . . . n + 1}, (q, ai , q
′, k) ∈ δ. q ∈ Pi =⇒ q′ ∈ Pi+k

F ∩ Pn+1 = ∅ (a0 = `, an+1 = a)

P0 P1 P2 P3 P4 P5 P6 P7 P8

` a b a a b a b a



Dowód (2N 7→ 1N)

P0 P1 P2 P3 P4 P5 P6 P7 P8

` a b a a b a b a

(P0,P1)
a−−−→ (P1,P2)

b−−−→ . . .
a−−−→ (P6,P7)

b−−−→ (P7,P8)

Dowód (c.d.): Definiujemy niedeterministyczny automat jednokierunkowy A′:

Q′ = P(Q)× P(Q)

δ′ = {((P,P′), a, (P′,P′′)) :
∀p′ ∈ P′, q ∈ Q. (p′, a, q,−1) ∈ δ =⇒ q ∈ P
∀p′ ∈ P′, q ∈ Q. (p′, a, q, 0) ∈ δ =⇒ q ∈ P′

∀p′ ∈ P′, q ∈ Q. (p′, a, q, 1) ∈ δ =⇒ q ∈ P′′}

I ′ = {(P,P′) :
I ⊆ P′

∀p ∈ P, q ∈ Q. (p,`, q, 0) ∈ δ =⇒ q ∈ P
∀p ∈ P, q ∈ Q. (p,`, q, 1) ∈ δ =⇒ q ∈ P′}

F ′ = {(P,P′) :
P′ ∩ F = ∅
∀p′ ∈ P′, q ∈ Q. (p′,a, q, 0) ∈ δ =⇒ q ∈ P′

∀p′ ∈ P′, q ∈ Q. (p′,a, q,−1) ∈ δ =⇒ q ∈ P}

Z faktu z poprzedniego slajdu wynika: w ∈ L(A′) ⇐⇒ w 6∈ L(A)



Determinizacja
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W następnym odcinku:


