
Lossy counter machines
and timed automata

Sławomir Lasota

Course notes

January 8, 2025

Contents

1 Lossy counter machines 5

1.1 Decidability of the halting problem 7

1.2 Non-primitive recursive lower bound 9

1.3 Problems 11

2 Timed automata 15

2.1 Decidability of emptiness 17

2.2 Undecidability of universality 18

2.3 Problems 21

Bibliography 23

1
Lossy counter machines

We start by recalling the model of deterministic counter
machines (called also Minsky machines1). 1 Marvin Minsky. Recursive unsolvability

of Post’s problem of ’tag’ and other
topics in theory of Turing machines.
Annals of Mathematics, 74(3):437–455,
1961

Counter machines are finite-state machines that manip-
ulate counters – variables that store nonnegative integers.
Transitions of a counter machine, besides changing con-
trol states, perform a specified operation on a counter:
increment by one, decrement by one, or zero test:

Increment of a counter is executable unconditionally, decrement is only executable when the
counter has positive value, and zero test is only executable when the counter is zero. There is
one distinguished initial state and one halting state. A machine is deterministic if every control
state (except for the halting one which has no outgoing transitions) has either exactly one
outgoing transition which increments a counter, or exactly two outgoing transitions which
decrement and zero test the same counter, respectively:

Formally, a configuration of a counter machine with d counters consists of a control state q and
a vector of counter values ~v ∈Nd. The initial configuration is the initial state with all counters
equal to zero. A halting configuration is any configuration with the halting state. A run of a
machine is a sequence c0, c1, c2, . . . of configurations such that

1. c0 is initial,

2. every next configuration ci+1 is obtained from ci by applying a transition of the machine
(which we denote as ci −→ ci+1),

3. the sequence is maximal, i.e., either ends in the halting configuration or is infinite.

6

Note that the successor configuration ci+1 in point 2. is determined uniquely by ci. Therefore a
deterministic counter machine has exactly one run, which may be either infinite (in which case
the machine loops), or finite (in which case the run necessarily ends in the halting state – we
call this run halting as well).

The model of (deterministic) counter machines is Turing-complete, and therefore the follow-
ing halting problem is undecidable (even for machines with 2 counters):

Input: A deterministic counter machineM.
Question: Is the only run ofM halting?

In this chapter we focus on the following weakening of the model of deterministic counter
machines: in each configuration along a run, every counter may spontaneously decrease by an
arbitrary amount.

This model we call lossy counter machines.2 Let Q be the 2 The model has been introduced in this
paper:

Richard Mayr. Undecidable problems
in unreliable computations. Theor.
Comput. Sci., 297(1-3):337–354, 2003

set of control states of a lossy counter machine. We nat-
urally extend the pointwise ordering v of vectors in Nd,
where d is the number of counters, to the configurations
Q×Nd,

(q,~v) v (q′,~v′) if q = q′ and ~v v ~v′.

By a run we mean now any maximal sequence c0, c1, c2, . . . of configurations such that c0 is
initial, and

2’. every next configuration ci+1 v c′ where ci −→ c′.

Note that the lossy model stops being deterministic: a lossy machine may have many runs
starting from the initial configuration, as a configuration may have many different successors.
Therefore we need to reformulate the halting problem accordingly:

Input: A deterministic counter machineM.
Question: DoesM have a halting run?

This central problem turns out, quite surprisingly, decidable for the lossy model.

Theorem 1. The halting problem is decidable for lossy counter machines.

Also surprisingly, its computational complexity is
tremendously high, namely it is not bounded by a prim-
itive recursive function.3 Most of computable functions 3 Primitive recursive functions is the

smallest subclass of recursive functions
which includes some basic functions
like successor or projections, and is
closed under composition and under
the scheme of primitive recursion:

h(0, y1, . . . , ym) = f (y1, . . . , ym)

h(x + 1, y1, . . . , ym) =g(h(x, y1, . . . , ym),

x, y1, . . . , ym).

N → N that appear in computer science are primitive
recursive, for instance so are the following functions:

n3 2n 222n
tower(n) = 22...2︸︷︷︸

n times

We have the following lower complexity bound for the
halting problem:

Theorem 2. The complexity of the halting problem for
lossy counter machines in non-primitive recursive.

lossy counter machines 7

As we know that Ackermann function 4 is dominated by 4 A non-primitive recursive (but still
recursive) function. Using an auxiliary
two argument function

A(0, n) = 2n

A(m + 1, 0) = 1

A(m + 1, n + 1) = A(m, A(m + 1, n)),

we define the Ackermann function
using diagonalisation:

A(n) =A(n, n).

no primitive recursive function, it is enough to show
that lossy counter machines can faithfully simulate
computations of ordinary machines where the counters
are bounded by the Ackermann function of the size of a
machine.

The two theorems are proved in Sections 1.1 and 1.2,
respectively.

Remark 1. One can apply the analogous lossy relaxation also to other models. One relevant
example is lossy FIFO automata (cf. Problem 14). The model is suitable for modeling finite-state
systems that asynchronously exchange messages via unreliable communication channels.

1.1 Decidability of the halting problem

The halting problem is easily semi-decidable: the semi-decision procedure systematically
enumerates all finite prefixes of runs, and terminates if some of them is a halting run. It is thus
enough to demonstrate that non-halting is also semi-decidable. To this end, the semi-decision
procedure will systematically enumerate all non-halting witnesses, to be defined below. To define
them, we need a notion of well quasi-order.

A quasi-order5 (X,�) we call well quasi-order (Wqo) if 5 The notion is traditionally defined for
quasi-orders, while we will only use it
for partial orders.

every infinite sequence of elements of X

x1, x2, x3, . . .

admits a domination pair, i.e., a pair of elements xi � xj for some i < j. Observe that, in
consequence of the definition, a Wqo has no infinite antichain. Alternatively, a quasi order is a
Wqo if, and only if, it is well-founded and has only finite antichains (cf. Problem 1).

Lemma 1 (Dickson). The set of vectors Nd of fixed length d, ordered pointwise, is a Wqo.

Let Q be the set of control states of a lossy counter machine. We deduce that the extension
v of the pointwise ordering of vectors to the configurations Q×Nd, where d is the number of
counters, is a Wqo too:

Corollary 1. The set of configurations Q×Nd of a counter machine, ordered by v, is a Wqo.

A subset Y ⊆ Q×Nd is downward closed if whenever y ∈ Y
and z � y then z ∈ Y. Likewise we define upward closed6 6 An upward-closed subset of a Wqo

looks like this:subsets Y ⊆ Q×Nd. We observe that the set of reachable
configurations of a lossy counter machine, i.e., the set of
all configurations appearing in some run, is downward
closed.

In consequence, the set of all non-reachable configu-
rations is upward closed. And, since the ordering v is a
Wqo, we have the following simple but very useful fact:

8

Lemma 2. Every upward closed subset Y ⊆ Q ×Nd

is unambiguously represented by the set min Y of its
minimal elements with respect to v, and min Y is finite.

Indeed, the set M = min Y is finite, being an antichain,
and Y is exactly the upward closure of M, i.e., Y = ↑M ={

y ∈ Q×Nd | ∃m ∈ M . m v y
}

.

So prepared, we are now ready to define finite non-halting witnesses. As such a witness we
choose any finite antichain M ⊆ Q ×Nd whose upper closure ↑M satisfies the following
conditions:

1. All halting configurations belong to ↑M.

2. The initial configuration does not belong to ↑M.

3. ↑M is closed under the reverse of −→: if c ∈ ↑M and c′ −→ c then c′ ∈ ↑M.

Correctness of the negative semi-decision procedure follows from the following fact:

Lemma 3. The machine does not halt if, and only if, the machine admits a finite non-halting
witness as defined above.

Proof. Denote by R the set of all configurations from which a halting one is reachable. In other
words, these are configurations reverse reachable from halting ones. For the only if direction
observe that the set R is upward closed and M = min R satisfies the defining conditions of non-
halting witness. For the if direction assume a non-halting witness M. The upward closure ↑M
excludes the initial configuration and, due to the closure under the reverse of −→, ↑M includes
R. Hence the initial configuration does not belong to R, i..e, the machine does not halt.

Finally, we observe that this characterization yields a negative semi-decision procedure, as it
can be effectively checked if a given finite subset M ⊆ Q×Nd is a non-halting witness, i.e., if it
is an antichain and satisfies the conditions 1–3 above (cf. Problem 3). In particular, condition 1

holds if, and only if, the configuration (qhalt,~0) belongs to M, where qhalt is the halting state.

Remark 2. There may be many different non-halting
witnesses M that induce different upward closures ↑M.
The least possible upward closure ↑M is ↑M = R (the set
of all configurations reverse reachable from the halting
ones). The largest possible upward closure contains all
configurations non-reachable from the initial one.

Any witness can be seen a separator between configu-
rations reachable from the initial one and configurations
reverse reachable from the final ones, as shown on the
figure. In general there is no guarantee the the negative
semi-decision procedure finds any of these two extremal
ones.

Furthermore, there is no algorithm to check if a given non-halting witness is the largest one.
In other words, one can not compute a representation of the set of all non-reachable configu-
rations (in consequence, one can not compute the set of all reachable configurations). On the

lossy counter machines 9

other hand, the set of configurations reverse reachable from the final ones can be computed
(cf. Problem 7).

1.2 Non-primitive recursive lower bound

For the lower bound of Theorem 2 we design an algo-
rithm to correctly compute Ackermann function using
a lossy counter machine. The presentation is based on
this 7 article but, for convenience, we prefer work with 7 Philippe Schnoebelen. Revisiting

Ackermann-hardness for lossy counter
machines and reset Petri nets. In
Proc. MFCS 2010, volume 6281 of LNCS,
pages 616–628. Springer, 2010

the variant of this fast-growing function defined above,
different than the one used in the article. All functions
below are from N to N:

A0(n) = 2n

Ak+1(n) = Ak
n(1) = Ak(Ak(. . . Ak(1) . . .))︸ ︷︷ ︸

n times

A(n) = An(n).

Note that all the auxiliary functions Ak are primitive recursive (why?). In particular: A1(n) =
2n; the next function A2(n) = tower(n) composes n times A1, starting from 1; the function
A3(n) is the supertower function that composes n times the tower function, starting from 1,
and so on.

We use the following vectorial notation, which can be thought of as a configuration of a
counter machine using m + 2 counters:〈

am, am−1, . . . , a0 ; n
〉
= Aam

m (Aam−1
m−1 (. . . Aa1

1 (Aa0
0 (n)) . . .)).

When using this notation we implicitly assume that am, am−1, . . . , a1, a0 ∈ N are nonnegative,
but n ∈ N \ {0} is positive. In particular, the notation

〈
1, 0, . . . , 0 ; n

〉
represents, intuitively,

a request to compute Am(n): The right-most counter will play a special role as it collects the
result of the computation. The remaining m + 1 counters we call normal counters, and the last
(right-most) one we call special counter.

Towards computing the Ackermann function we observe the following equalities:〈
1, 0, . . . , 0 ; n

〉
= Am(n)〈

0, 0, . . . , 0 ; n
〉
= n〈

am, am−1, . . . , a0 + 1 ; n
〉
=
〈

am, am−1, . . . , a0 ; 2n
〉〈

am, am−1, . . . , ak+1 + 1, 0, . . . , 0︸ ︷︷ ︸
k+1 zeros

; n
〉
=
〈

am, am−1, . . . , ak+1, n, 0, . . . , 0︸ ︷︷ ︸
k zeros

; 1
〉
.

(1.1)

These equalities, read from left to right, can be naturally transformed into computation rules.
The first equality says that the computation starts with all normal counter equal 0 except the
left-most one which equals 1. The second equality says that the computation ends when all
normal counters have value 0; the special counter shows then the result. The third equality

10

(cf. the definition of A0) describes the computation rule that allows to decrease by 1 the right-
most normal counter and to double the special one. Finally, the last equality (cf. the recursive
definition of Ak+1) describes a computation rule that is enabled if the right-most normal
counter has value 0; it allows to decrement the right-most non-zero normal counter by 1,
increment the next (necessarily empty) counter by n, where n is the current value of the special
counter, and set the special counter to 1. Note that it never happens that two or more different
rules are enabled simultaneously.

Clearly, the computation rules can be implemented on a counter machine. But what results
can we obtain, if the machine is lossy? The following fact implies that the results so obtained
are smaller or equal to the correct one (by v we denote the pointwise order on tuples of
integers of the same length):

Fact 1. If (am, . . . , a0) v (a′m, . . . , a′0) and n ≤ n′ then
〈

am, . . . , a0 ; n
〉
≤
〈

a′m, . . . , a′0 ; n′
〉
.

Indeed, the computation of the value of
〈

am, am−1, . . . , a0 ; n
〉

on a lossy machine can be organ-
ised so that every loss corresponds to a decrease of some of arguments am, . . . , a0. Therefore a
lossy counter machine using m +O(1) counters may weakly compute Am, i.e, given an input
n compute, as a result, the correct value Am(n) or any smaller value. The machine uses, in
addition to m + 2 above-mentioned counters, an additional counter in order to implement the
third rule which doubles the special counter, and the last rule, which essentially moves the
value of the special counter to a normal counter.

More importantly, we observe that the equalities (1.1) can be also read from right to left,
again inducing (reverse) computation rules. The first equality says that the computation ends
with the left-most counter equal to 1, all normal counters equal to 0, and the special counter
equal to n (this value n will be specified below). The second equality says that the computation
starts with all normal counters equal to 0. The third equality describes the computation rule
that is enabled if the special counter is even, and allows to divide its value by 2 and to incre-
ment the right-most normal counter by 1. Finally, the last equality describes a computation rule
that is enabled if the special counter is equal 1, and allows to move the value of the right-most
non-zero normal counter (ak = n) to the special counter, set the counter ak to 0, and increment
the next counter to the left (ak+1) by 1. Note that it may never happen that both the third and
the last rule are enabled simultaneously.

As before, the reverse computation rules can be implemented on a counter machine. Intu-
itively speaking, a lossy counter machine using m +O(1) counters can weakly compute inverse
of Am. As before, the machine uses an additional counter to implement a subroutine that tests
if the last rule is enabled—i.e., the special counter is 1—or the third rule is enabled—i.e., the
special counter is positive and even (cf. Problem 2).

A run of a counter machine is bounded by ` if the sum of values of all the counters is at most
` along the run. We are now prepared for proving the lower bound of Theorem 2, by reduction
from the following decision problem:

Input: A deterministic counter machineM of size n.
Question: Is the only run ofM halting and bounded by A(n)?

The problem is complete in the class Ack of problems
solvable in time (or space, there is no difference) equal to

lossy counter machines 11

Ackermann function applied to any primitive recursive
function applied to the input size 8 (that is A(p(n)), for 8 Sylvain Schmitz. Complexity hierar-

chies beyond elementary. ACM Trans.
Comput. Theory, 8(1):3:1–3:36, 2016

an arbitrary primitive recursive function p) under primi-
tive recursive reductions (that is, reductions computable
in primitive recursive time, or space).

Given a counter machineM of size n, the reduction yields a lossy counter machine M̃ consist-
ing of three partsMA,M′ andMrev

A which are composed sequentially. The first and the last
parts weakly compute An and its reverse, respectively, as discussed above, and use n +O(1)
counters each. The middle partM′ simulates the machineM while running, intuitively speak-
ing, on a budget, as described below. The machineM′ uses an additional counter b whose
initial value constitutes a budget, i.e., a bound on the sum of all counters along a run. At every
decrement of an arbitrary counter inM, the machineM′ increments the counter b; symmetri-
cally, at every increment of an arbitrary counter inM, the machineM′ decrements the counter
b (or, if b = 0, it enters an additional error state). Note thatM′ is lossy and hence, intuitively
speaking, its budget may also decrease spontaneously during a run. W.l.o.g. we may assume
that whenever M enters its halting state, all its counters equal 0. Due to this assumption, if the
counter b is not decreased spontaneously due to loss, its final value is the same as the initial
one.

The three parts of M̃ are composed as follows. The special counter ofMA is identified
with the budget counter b ofM′, and also with the special counter ofMrev

A . Machine M̃
starts by incrementing the left-most normal counter ofMA by 1, and incrementing the special
counter ofMA by n (thus reaching a configuration corresponding to

〈
1, 0, . . . , 0 ; n

〉
, albeit

possibly decreased due to losses) and then it runsMA (which thus weakly computes An(n) =
A(n)). This part ends once all normal counter have value 0 (thus reaching a configuration〈

0, 0, . . . , 0 ; `
〉

with ` ≤ A(n)).
OnceMA ends, the control is transferred to the machineM′ that performs its computation

until a halting or error state is reached. In the former case the control is transferred to the
machineMrev

A (hence it starts in a configuration corresponding to
〈
0, 0, . . . , 0 ; `

〉
for some

` ≤ A(n)). The machine performs its computation until its left-most normal counter gets
value 1 (the intention is to reach a configuration corresponding to

〈
1, 0, . . . , 0 ; n

〉
) or no reverse

computation rule is enabled (in which caseMA enters an error state). In the first case the
machine checks if the special counter equals n, and moves to the halting state.

A crucial observation is that every halting run of M̃ is perfect, i.e., without losses. Indeed,
any loss in any of the three parts is non-revertible and prevents M̃ from reaching the final
halting state. This observation underlies correctness of our reduction:

Lemma 4. The following conditions are equivalent:

1. The only run ofM is halting and bounded by A(n).

2. M̃ has a halting run.

1.3 Problems

Problem 1. Show that a quasi order is a Wqo if, and only if, it has no infinite descending
chains (i.e., it is well-founded) and no infinite antichains.

12

Problem 2. Design the details of lossy counter machines that weakly compute Ackermann
function and its inverse.

Problem 3. Design a procedure to check if a given antichain in Q×Nd is a non-halting witness,
as defined in Section 1.1.

Problem 4. Do the results of Chapter 1 hold for nondeterministic lossy counter machines?

Problem 5. Do the results of Chapter 1 hold for gainy counter machines which witness sponta-
neous increments of counters instead of spontaneous decrements?

Problem 6. Show that a Wqo (X,�) has no infinite strictly increasing sequence of upward
closed subsets, i.e., there is not infinite sequence

U1 ⊂ U2 ⊂ U3 ⊆ . . .

where each Ui ⊆ X is upward closed with respect to �. Is this condition sufficient for (X,�) to
be a Wqo?

Problem 7. Desing a procedure that computes the set of configurations reverse reachable from
a given configuration in a lossy counter machine, and use it to obtain a decision procedure for
the halting problem.

Problem 8. Show decidability of the following non-termination problem:

Input: A nondeterministic lossy counter machineM.
Question: DoesM have an infinite run?

Problem 9. Show undecidability of the following repeated (Büchi) reachability problem:

Input: A nondeterministic lossy counter machineM and a control state q ∈ Q.
Question: DoesM have an infinite run which visits q infinitely often?

Note close similarity of repeated reachability and non-termination from the previous problem.
Hint: repetitive simulation of a counter machine on an unbounded initial budget.

Problem 10. Prove that the set Σ∗ of all words over a finite alphabet Σ, ordered by subse-
quence ordering, is a Wqo.

Problem 11. Show that every language closed under removing letters from its words is
regular.

Problem 12. A lossy FIFO automaton consists of a finite number of finite-state machines
that communicate (asynchronously) through a finite number of FIFO buffers, which witness
spontaneous disappearances of letters. Show that emptiness tests of a FIFO automaton may be
eliminated.

Problem 13. Reduce the halting problem of a multi-party lossy FIFO automaton to a single-
party lossy automaton with a single FIFO.

Problem 14. Reprove the results of Chapter 1 for lossy FIFO automata. What about lossy FIFO
VASS?

lossy counter machines 13

Problem 15. Adapt the decidability argument of Chapter 1 to the coverabiliy problem in
VAS. Try formulate abstract conditions sufficient for correctness of the negative semi-decision
procedure.

2
Timed automata

In this chapter we present an extension1 of finite au- 1 The model has been introduced in this
paper:

Rajeev Alur and David L. Dill. A
theory of timed automata. Theor. Comput.
Sci., 126:183–235, 1994

tomata that takes into account time elapsing between the
input letters.

In the presented approach, the automaton’s input
consists of pairs of the form (a, t) ∈ Σ × R+, where
a ∈ Σ is a letter from a finite alphabet, and t ∈ R+ =

{r ∈ R | r ≥ 0} is a nonnegative real timestamp. Finite (or
infinite) sequences An example timed word:

(a1, t1), (a2, t2), . . . , (an, tn)

of such pairs, satisfying the monotonicity condition:
t1 ≤ t2 ≤ . . . ≤ tn, we call timed words over an alphabet Σ,
and sets of timed words we call timed languages.

How the amount of time elapsed between letters can be measured? To this aim we will
use real-values variables called clocks. A clock can be reset to 0 at any moment, and then its
value increases with the elapse of time until a next reset. Thus at every moment the clock value
(age) shows the amount of time elapsed since its last reset. The clock value can be tested using
(in)equalities between clocks and integer constants, for instance

x > 1 x > y + 2 x ≥ y− 1 x = 3.

Formally, a clock constraint is any Boolean combinations of inequalities of the form

x > n x > y + n

where x, y are clocks and n ∈ Z is an integer. We use syntactic sugar and write, e.g., x = y + 3
instead of ¬(x > y + 3∨ x < y + 3).

An example transition:

The input letter and the clock constraint
are above the arrow, and the reset
clocks below.

A timed automaton is like an ordinary finite automaton,
but additionally equipped with a finite set of clocks
X = {x, y, z, . . .}. Moreover, each transition of a timed
automaton is equipped with a clock constraint (which
must be satisfied in order to fire a transition) and a subset
of clocks to be reset.

16

Formally, a transition is a quintuple 〈q, a, ϕ, Y, q′〉 where q, q′ are control states of the timed
automaton, a ∈ Σ is an input letter, ϕ is a clock constraint, and Y ⊆ X is an arbitrary subset of
clocks.

For defining semantics of timed automata we need to define configurations 〈q, v〉, which
consist is a control state q and a clock valuation v : X → R+. Intuitively, v(x) is the age of the
clock x, i.e., the amount of time elapsed since its last reset. A transition 〈q, a, ϕ, Y, q′〉 induces
an a-step from a configuration 〈q, v〉 to a configuration 〈q′, v′〉 if v |= ϕ and v′ = v[Y 7→ 0] is
obtained from v by setting v(x) = 0 for all x ∈ Y. Furthermore, for any t ∈ R+ we have also
a t-time elapse step from 〈q, v〉 to 〈q, v′〉 where v′ = v + t is obtained from v by adding t to all
clocks: v′(x) = v(x) + t for all x ∈ X. Clearly, time elapse steps do not change control state. The
steps we denote, respectively, as:

〈q, v〉 a→ 〈q′, v′〉 〈q, v〉 t
 〈q, v′〉.

A timed word (a1, t1)(a2, t2) . . . (an, tn) is accepted by a timed automaton if it has a sequence of
alternating ai-steps and (ti+1 − ti)-time elapse steps of the following form (put δi = ti − ti−1):

〈q0, v0〉
t1 〈q0, v0 + t1〉

a1→ 〈q1, v1〉
δ2 〈q1, v1 + δ2〉

a2→ 〈q2, v2〉 . . .
δn 〈qn−1, vn−1 + δn〉

an→ 〈qn, vn〉,

for some control states q0, q1, . . . , qn where q0 is an initial state and qn is an accepting one, and
some clock valuations v0, v1, . . . , vn. We assume that v0(x) = 0 for all x ∈ X thus, intuitively
speaking, a timed automaton starts will ages of all clocks equal 0. Analogously one may define
the language of timed ω-words recognized by a timed automaton.

Example 1. What is the language recognized by the following timed automaton with one
clock? The alphabet is a singleton and hence we omit input letters. We omit also trivial clock
constraints ϕ = true vacuously true, and trivial reset sets Y = ∅.

The automaton accepts words that contain two timestamps of difference equal to 1.

Example 2. What is the language recognized by the following timed automaton with two
clock? The alphabet is Σ = {a, b, c, d}.

Remark 3. Why we only allow integer constants in clock constraints, and not rational or even
real ones? First, as we want timed automata to be finitely representable, we should restrict to
rational constants. Furthermore, timed automata with rational constants are essentially equally
expressive as ones with integer constants, see Problem 16.

timed automata 17

2.1 Decidability of emptiness

The configuration space of a timed automaton is infinite (uncountable in fact). Nevertheless,
some decision problems, including the most central nonemptiness problem, are decidable due
to a construction called regions.

Theorem 3. The nonemptiness problem is decidable for timed automata.

For proving the theorem, consider a fixed timed au-
tomaton A with clocks X. Without loosing generality
assume that the automaton uses no diagonal clock con-
straints, i.e., inequalities of the form x > y + n (see
Problem 19). As disjunction may be eliminated by dis-
tributing conjunct to separate transitions, we may assume
that every constraint in A is a conjunction of constraints
of the form x > n or x = n or x < n.

Clock regions for two clocks
x, y and nx = 2 and ny = 3:

For each clock x let nx be the greatest value of a con-
stant to which x is compared in a constraint. We call
nx the threshold of x. We consider two clock valuations
v, u : X → R+ as equivalent if, intuitively speaking, (i) the
same clocks have values below their thresholds in v and
u, (ii) the integer parts of clock values are the same in v
and u, and (iii) the fractional parts of clocks are ordered
in the same way in v and u. Furthermore, the last two
conditions only apply to clocks with value below the
threshold.

We write below brc and 〈r〉 for integer and fractional part of r ∈ R, respectively. Formally, we
define an equivalence over clock valuations as follows: v ≡ u if

(i) ∀x ∈ X . v(x) ≤ nx ⇐⇒ u(x) ≤ nx

(ii) ∀x ∈ X . v(x) ≤ nx =⇒ bv(x)c = bu(x)c ∧
(
〈v(x)〉 = 0 ⇐⇒ 〈u(x)〉 = 0

)
(iii) ∀x, y ∈ X . v(x) ≤ nx ∧ v(y) ≤ ny =⇒

(
〈v(x)〉 < 〈v(y)〉 ⇐⇒ 〈u(x)〉 < 〈u(y)〉

)
.

Equivalence classes of ≡ we call clock regions. The number thereof is finite, but exponential
with respect to the number of clocks. Some of regions are bounded, and some are not. Observe
that every bounded region is a minimal nonempty set of clock valuations definable using
(possibly diagonal) clock constraints, i.e., a bounded clock region can’t be further split into
smaller subsets definable using such constraints.

Fact 2. if v ≡ v′ then:2 2 Question: How to adapt the definition
of regions so that the fact holds for A
having diagonal constraints?• for every clock constraint ϕ in A, v |= ϕ ⇐⇒ v′ |= ϕ,

• for every Y ⊆ X, v[Y 7→ 0] ≡ v′[Y 7→ 0],

• for every t ∈ R+ there is some t′ ∈ R+ such that v + t ≡ v′ + t′.

Relying on the fact we build the region automaton R(A), a nondeterministic finite automa-
ton over Σ. Its states are regions, i.e., pairs (q, R) where q is a control state and R a clock region.

18

Relying on the first point in the above fact we may write R |= ϕ for a clock region R, and
relying on the second point we may speak of a clock region R′ = R[Y 7→ 0] obtained from R by
reseting a subset Y ⊆ X of clocks. We define transitions of R(A) as all triples of the form:

(q, R) a→ (q′, R′)

such that A has a transition 〈q, a, ϕ, Y, q′〉 with R |= ϕ and R′ = R[Y 7→ 0]. Furthermore, due to
the last point in the above fact we may write R R′ for clock regions R, R′ if for some v ∈ R
and t ∈ R+ we have v + t ∈ R′. In order to account for time elapse in A, the region automaton
R(A) has ε-transitions of the form

(q, R) ε→ (q, R′),

for every control state q, and regions R, R′ satisfying R R′. Initial states of R(A) are those
pairs (q, R) where q is initial in A and R contains only one clock valuation constantly equal to
0. Accepting states of R(A) are those pairs (q, R) where q is accepting in A. The nonemptiness
of A reduces to the nonemptiness of R(A):

Lemma 5. The language of A is nonempty iff the language of R(A) is nonempty.

The only if direction is immediate, while the if direction relies on the last point in Fact 2. As the
construction of R(A) is effective, we thus complete the proof of Theorem 3.

Remark 4. The non-emptiness problem is PSpace-
complete (see Problem 21). The original hardness proof3 3 Rajeev Alur and David L. Dill. A

theory of timed automata. Theor. Comput.
Sci., 126:183–235, 1994

requires 3 clocks, while a recent beautiful construction of
Fearnley and Jurdziński4 requires just 2 clocks. 4 John Fearnley and Marcin Jurdzin-

ski. Reachability in two-clock timed
automata is PSPACE-complete. Inf.
Comput., 243:26–36, 2015

2.2 Undecidability of universality

Languages of timed automata are not closed under complement, and therefore timed automata
do not determinize (see Problem 22). We now inspect a closely related issue - undecidability of
the universality problem (does a given timed automaton accept all timed words over its input
alphabet?).

Theorem 4. The universality problem is undecidable for timed automata.

In consequence of this result we easily deduce undecidability of language containment and
language equality problems.

We prove Theorem 4 by reduction from the halting problem of 2-counter Minsky machines
(cf. the beginning of Chapter 1). Given such a machineM, we are going to construct a timed
automaton A with two clocks which is not universal if, and only if,M halts. The negation is
necessary as both the halting problem and the non-universality problem are semi-decidable.

Let Q denote states ofM. For simplicity we assume, without loosing generality, thatM has
no two different transitions with the same source and target control states. Before proving a
construction we need to define the notion of an encoding of a run ofM in a timed word over
the alphabet Σ = Q ∪ {a, b}. In the encoding, consecutive half-open unit intervals [0, 1), [1, 2), . . .

timed automata 19

store a description of consecutive configurations in a run ofM. A configuration (q, n, m) ofM,
consisting of a state q ∈ Q and values n, m of the two counters, is represented by q with integer
timestamp (left end of an interval) followed by n letters a, and then by m letters b, with strictly
increasing timestamps arbitrarily chosen inside the unit interval.

In the example shown in the picture, the first configuration is (q, 2, 3) and the second one
is (p, 3, 3). Thus the following structural consistency holds: letters from Q have consecutive
integer timestamps, and other letters from {a, b} have non-integer ones, and untiming of a
word belongs to the regular language (Q a∗ b∗)∗, i.e., letters a preced letters b within each unit
interval.

Furthermore, on every pair of consecutive unit intervals we impose the following semantic
consistency, (corresponding, intuitively speaking, to the successor relation on configurations
of a Minsky machine). Consider a fixed pair consecutive unit intervals, and let q and p be the
control states in the first and in the second interval, respectively. First of all, letters a appearing
in the first interval can be matched, one-to-one, to letters a in the second interval, in such a
way that timestamps of matched letters differ by exactly 1, and likewise for letters b, except
for at most one letter a or b in some of the two intervals that may be unmatched (red a is
unmatched in the picture above). Furthermore, only last a or last b may be unmatched (the
red a in the picture is not the last one, so the semantics consistency is violated by this timed
word). Finally, the last a (resp. b) in the first interval is unmatched only if the corresponding
transition ofM from q to p increments the first (resp. the second) counter. Likewise, the last
a (resp. b) in the second interval is unmatched only if the corresponding transition ofM
decrements the first (resp. the second) counter. Intuitively, full match represents a step ofM
which preserves values of both counters, while an unmatched letter a or b corresponds to
decrement or increment of one of counters.

We observe that a timed word satisfying the two consistency conditions encodes a run ρ of
M (such a timed word we call an encoding of a run ρ); reciprocically, every run ofM has an
encoding (actually infinitely many different encodings). Let RunsM be the set of all timed
words that are encodings of accepting runs ofM. Our reduction computes, givenM, a timed
automaton AM that recognizes the complement of RunsM.

Lemma 6. There is a timed automaton AM recognizing the complement of RunsM.

Proof sketch. The automaton AM uses nondeterminism to choose which of the conditions is
violated: either the first control state is not initial, or the last one is not accepting, or any of the
two consistency conditions fail. The structural consistency (or its violation) is checkable by a
deterministic timed automaton with 1 clock. For the semantic consistency, the automaton AM
additionally uses nondeterminism to guess a pair of consecutive unit intervals and a position
therein where the condition is violated (the pair of intervals and a position need not be unique).

20

Let q, p ∈ Q denote the control states in the two intervals and let t be the (unique) transition of
M from q to p. We distinguish several cases of violation.

1. The first case of violation is an unmatched not-last a in the first interval (on the left in the
picture below); or an unmatched last a (on the right in the picture below) while t is not
decrementing the first counter:

Likewise for unmatched b. This condition is checkable using 1 clock.

2. The second case is an unmatched letter in the second interval, say a, which is a non-last
one (on the left in the picture below); or an unmatched last one (on the right in the picture
below) while t is not incrementing the respective counter:

Likewise for unmatched b. This condition is checkable using 2 clocks (how?).

3. The third case is when the last a in the first interval is matched (or there is no a in the first
interval), while t is decrementing the first counter, and likewise for the second counter. This
is checkable with 1 clock.

4. The fourth case is when the last a in the second interval is matched (or there is no a in
the second interval), while t is incrementing the first counter, and likewise for the second
counter. This is checkable with 1 clock.

5. The last fifth case is when t is zero-testing the first counter while the first interval contains
some a, and likewise for the second counter. This is checkable with no clock.

We observe that a timed word satisfying the structural consistency violates the semantic one if,
and only if, some pair of consecutive unit intervals and some position therein satisfies one of
the five conditions listed above.

Remark 5. The undecidability proof shown in this sec-
tion works for timed automata with 2 clocks. One can use
a variant of the region construction for a symbolic deter-
minization of timed automata with 1 clock, which allows
us to regain decidability5 of the universality problem. 5 Joël Ouaknine and James Worrell. On

the language inclusion problem for
timed automata: Closing a decidability
gap. In Proc. (LICS 2004, pages 54–63,
2004

Likewise one proves decidability of language contain-
ment and equality for timed automata with 1 clock.
Concerning the lower bound, one can show non-primitive
recursive lower bound for automata with 1 clock (see

timed automata 21

Problem 26) by adaptation of the undecidability proof of
this section.

2.3 Problems

Problem 16. Are timed automata with rational constants essentially more expressive? Is the
nonemptiness problem for those generalized timed automata reducible to the nonemptiness
problem for ’ordinary’ timed automata?

Problem 17. Do ε-transitions increase the expressive power of timed automata?

Problem 18. Show that every timed automaton is equivalent to a one without diagonal con-
straints. What is the blowup of automaton size?

Problem 19. Show that time abstraction of the language L of a timed automaton, defined as
{a1a2 . . . an ∈ Σ∗ | ∃t1, t2, . . . , tn ∈ R+ . (a1, t1)(a2, t2) . . . (an, tn) ∈ L}, is a regular language.

Problem 20. Show decidability of the non-emptiness
problem6 for timed automata with two clocks x, y, ex- 6 Interestingly, the problem becomes

undecidable for 4 clocks, while its
status is unknown for 3 clocks.

tended with additive constraints of the form x + y ≤ n
where n ∈N.

Problem 21. Prove that the nonemptiness problem
for timed automata is PSpace-complete, NP-hard7 for 7 It is actually PSpace-complete even for

2 clocks, as shown in:

John Fearnley and Marcin Jurdzin-
ski. Reachability in two-clock timed
automata is PSPACE-complete. Inf.
Comput., 243:26–36, 2015

automata with 2 clocks and solvable in polynomial time
for automata with 1 clock.

Problem 22. Find a non-complementable timed automa-
ton, i.e., recognising a language whose complement is not
recognized by a timed automaton.

Problem 23. Propose a definition of deterministic timed automata and use the automaton from
Problem 22 to show that deterministic timed automata are less expressive than nondeterminis-
tic ones.

Problem 24. Using Higman’s lemma, show decidability8 8 The details concerning solutions of
this and the next problem are to be
found in:

Joël Ouaknine and James Worrell. On
the language inclusion problem for
timed automata: Closing a decidability
gap. In Proc. (LICS 2004, pages 54–63,
2004

of the universality problem of timed automata with one
clock.

Problem 25. Refine the construction from the previous
problem to derive decidability of language containment
L(A) ⊆ L(B) for a timed automaton A and a timed
automaton B with one clock.

Problem 26. Adapt the reduction from Section 2.2
to prove non-primitive recursive complexity9 of the 9 The details concerning solutions of

this and the next problem are to be
found in:

Slawomir Lasota and Igor
Walukiewicz. Alternating timed
automata. ACM Trans. Comput. Log.,
9(2):10:1–10:27, 2008

universality problem for timed automata with 1 clock.
Use the lower bound of Section 1.2.

Problem 27. Adapt further the reduction to show un-
decidability of the universality problem for Büchi timed
automata with 1 clock.

Bibliography

[1] Rajeev Alur and David L. Dill. A theory of timed
automata. Theor. Comput. Sci., 126:183–235, 1994.

[2] John Fearnley and Marcin Jurdzinski. Reachability in
two-clock timed automata is PSPACE-complete. Inf.
Comput., 243:26–36, 2015.

[3] Slawomir Lasota and Igor Walukiewicz. Alternating
timed automata. ACM Trans. Comput. Log., 9(2):10:1–
10:27, 2008.

[4] Richard Mayr. Undecidable problems in unreliable
computations. Theor. Comput. Sci., 297(1-3):337–354,
2003.

[5] Marvin Minsky. Recursive unsolvability of Post’s
problem of ’tag’ and other topics in theory of Turing
machines. Annals of Mathematics, 74(3):437–455, 1961.

[6] Joël Ouaknine and James Worrell. On the language
inclusion problem for timed automata: Closing a
decidability gap. In Proc. (LICS 2004, pages 54–63,
2004.

[7] Sylvain Schmitz. Complexity hierarchies beyond
elementary. ACM Trans. Comput. Theory, 8(1):3:1–3:36,
2016.

[8] Philippe Schnoebelen. Revisiting Ackermann-hardness
for lossy counter machines and reset Petri nets. In
Proc. MFCS 2010, volume 6281 of LNCS, pages 616–
628. Springer, 2010.

	Lossy counter machines
	Decidability of the halting problem
	Non-primitive recursive lower bound
	Problems

	Timed automata
	Decidability of emptiness
	Undecidability of universality
	Problems

	Bibliography

