Theory of concurrency 2023/24

Lecture 7

Approximate analysis of using linear algebra Petu pets A) invariants
B) continuous
veadrability hard problems: very hard problems: - Coverdoi Lity - reachability - boundedness Liveress - finituess general Petri nets Model - courter automata do 0-tests - VASS VAS = Petri nets without tight A) invariants Example: $\frac{1}{2}p_1 + \frac{1}{2}p_2 + p_3 = cost$ P3 = Goest 10p1 + 5 p2 + 4 P3 = wast 18 pn + p2 + 4 p3 = const 5 pg + P3 = coast

$$N \in \mathbb{Z}[d \times n]$$

$$\begin{bmatrix} \times_1 & \times_d & J & \begin{bmatrix} 1 & 1 & 1 \\ t_1 & t_2 & \cdots & t_n \\ \end{bmatrix} & \begin{bmatrix} 5_1 & 1 \\ 5_n & \end{bmatrix}$$

Petri net:

$$\sum_{p \in \mathcal{E}} I(p) \cdot F(p,t) = \sum_{p \in \mathcal{E}} I(p) \cdot F(\mathcal{E}_{ip})$$

$$\sum_{t \in P} I(t) \cdot F(t_{iP}) = \sum_{t \in P} I(t) \cdot F(p_{i}t)$$

Fact: Let VCRd subspace generaled by T Prinvariants = subspace V ovtogonal to V

necessary wordition:

Fact:
$$M \longrightarrow M' \implies M \longrightarrow M' = M + N \cdot X$$

for Some $X \in M'$
 $MP-complete$

 $\forall P$ -invariant I $I \cdot M = I \cdot M'$ $\Rightarrow M' = M + N \cdot X$ for some $x \in \mathbb{Q}^n$

(M'-M) ortogonal to V (=) (M'-M) EV

mere, sur of	all trans	ctions		[.
condition:	all trans	ul in M		
- 1 · M			So la eve	
Fact: M	Cive		> 0 for ever	J
	isolated places			
		LIZO,	$T \neq \delta$	
Proof o Le	et pep s-t.	I(p) > 0		
Le	t 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5" M 1" " " (, t " -	. M . (F. D	
	<u>I</u> .	• M = I		
sufficient.				
condition:				
	ifive P-invar			
7	ippose M-	* * * * * * * * * * * * * * * * * * *	lot + EP	
Troot; Su	ppose			
<u> </u>	[.M= I.M(> I(p). M	1 (p) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1/
			to bounded V	J- II
mecessary and sufficient budi	fdoù :			
M	\mathcal{M}	Semi-positive	e T-invariace	- 1 · · · · · · · · · · · · · · · · · ·
·		•		

B) continuous reachabelity $M \longrightarrow * M' \Longrightarrow$ M ---->* M($M' = M + N \cdot X$ for some $X \in IN^n$ (NP-complete) $M' = M + N \cdot X$ for some $X \in \mathbb{Q}_+$ $M \xrightarrow{t} M' \stackrel{(a)}{=} M + t$ €7 $M \xrightarrow{g t} M' \qquad (=) M' = M + q \cdot t$ M, M'E Q+ $M \xrightarrow{\times} M' \qquad \times \in \mathbb{Q}_{+}^{m}$ Lemma 1: $M \xrightarrow{\times} M \iff M' = M + M \cdot X$ Proof (\feat, \forall pet, \times (\forall) > 0 => M(p) > 0 $\forall t \in T, \forall p \in t$, $\times (t) > 0 \Rightarrow M(p) > 0$

Lemma 2 Confine out vaic short continuous rec Continuous van Satisfying (*) Theorem 1: Continuous reachability is in P. Proof: encode in linear equations with implications
(by Lemma 2 and Thm 2) short continuous rec M ---> M2 ---> M2 ---> M d Continuous van trasidioc. Satisfying (*) Which? M - 92 M2 - 22 M2 --- > Wan Main (by Leuna 1) system of linear equations with syster of linear equations implications. with d2m + dn variables with 2d to variables

theorem 2: Solvability of linear equations
with implications of the form

xi >0 => xj >0

over Ox is in P