Teorir wapotbieinosci

$$
2023 / 24
$$

WykTad 2

Elementary nets

$$
S=\left(\underset{\uparrow}{P} T, F, M_{0}\right)
$$

conditions $\in\{0,1\}$
Configurations $=$ subsets of places $M \subseteq P$

$$
\begin{aligned}
& M \underset{\xi}{\rightarrow} \xrightarrow{t} \Leftrightarrow \quad t \subseteq M, \quad t^{\circ} \cap M=\phi \\
& t \text { enabled }
\end{aligned}
$$

Cjraph of reachable configurations

$$
M \xrightarrow{t} M^{\prime} \quad(\text { steps })
$$

DFA without accepting grot (S) states

Question: Is every $D F A$ the configuration graph of some elementary net?

Assumption: no tight loops

$$
\underbrace{(\underbrace{5}_{0}}_{\ldots \rightarrow \infty} \rightarrow \ldots
$$

Relations between transitions

- simultaneous cuabledness

$$
\begin{aligned}
& { }^{\exists}{ }_{V}^{n} \Rightarrow \\
& \begin{array}{l}
t \cap \mu^{\cdot}=\phi \\
t^{\cdot} \cap \cdot \mu=\phi
\end{array} \quad(J) \\
& \left(M=\cdot t u \cdot{ }^{*}\right)
\end{aligned}
$$

- sequential enableluess

$$
\begin{aligned}
& { }^{\exists} M \xrightarrow{t_{\mu}} \Rightarrow \\
& \begin{aligned}
\cdot t \cap i_{\mu}=\phi \\
v^{*}=\phi
\end{aligned} \quad(S) \\
& t^{\circ} \cap u^{0}=\phi \\
& \left.\begin{array}{l}
\cdot t \cap \dot{j}_{\mu}=\phi \\
v^{\cdot}=\phi
\end{array} \right\rvert\,(S) \\
& \left(M=\cdot t \vee\left(j \vee t^{*}\right)\right)
\end{aligned}
$$

$\xrightarrow{\text { Fact }}: M \underset{y}{t /} M \xrightarrow{t \mu} \Rightarrow M \xrightarrow{\mu t}$

(A) Concurrency
$(z) \wedge(S)$
${ }^{\prime} \cdot \cap \dot{\mu}^{\prime}=\phi$

$$
\left(M={ }^{\prime} t \cup \cdot u\right)
$$

concurrent step
(B) conflict: $(J) \wedge \neg(S)$

$$
\left(M={ }^{\prime} t \cup{ }^{\circ} u\right)
$$

(C) causality: $7(\gamma) \wedge(s)$
(direct)

$$
\left(\mu=\cdot^{t} U \cdot_{\mu} \backslash{ }^{\circ} t\right)
$$

$$
(D) \neg(\gamma) \sim \neg(S)
$$

$$
(\mu=\cdot t)
$$

Elementary nets $v s$ 1-bounded nets

Contact $: \quad{ }^{\bullet} \in M \subseteq t^{\bullet} \cap M \neq \phi$

$$
(t \nsubseteq P \backslash M)
$$

contact - less elementary nets

11 1-bounded general nets

Reconstruction (synthesis) problem

Question:
Is giver NFA isomorphic to the configuration graph of some elementary net?
(no tight loops)

Answer: Exactly when

$$
G \simeq \operatorname{graph}(\operatorname{net}(G))
$$

Region \approx all configuration containing a given place

Def: Graph $G=\left(V, \delta: V \times T \rightarrow V, v_{0}\right)$ $R \subseteq V$ is a region if $\forall a \in T$, all a-edges
(1) either go from R t. $V \backslash R \quad R \neq \phi, R \neq V$
(2) either go from $V \backslash R$ to R
(3) either go from R to R or from $\backslash \backslash$ t. $V \backslash R$

Region in graph (S) is a subset of reachable configurations of S

$$
\begin{aligned}
*_{a} & :=\{R:(1)\} \\
a^{*} & :=\{R: \text { (2) }\}
\end{aligned}
$$

net (G) - region net

- places $=$ regions
- transitions $=T$
- arcs: *a a^{*}
- initial configuration $:\left\{R: v_{0} \in R\right\}$

net
(a) $\rightarrow 6$
$\longrightarrow a b$

Lena: $G \simeq \operatorname{graph}(S)$ for some net S

$$
G \simeq \stackrel{\Uparrow}{\stackrel{\pi}{\sim}} \operatorname{graph}(\text { net }(G))
$$

Proof: $(\mathbb{V}) \quad$ Fact: R-region in graph (S).
$S+R$: add place p and $\operatorname{arcs}(P, t): R \in^{*} t$
As long as some $(t, p): R \in t^{*}$ region R has no cores -

Then $\operatorname{graph}(S) \simeq \operatorname{graph}(S+R)$

- pounding place in S, add R to S.

$$
{ }^{*} R={ }^{0} P \quad R^{*}=P^{0}
$$

