Acta Informatica 33, 297-315 (1996) A

i
Infofptica

© Springer-Verlag 1996

The synthesis problem of Petri nets

Jorg Desel, Wolfgang Reisig
Institut fiir Informatik der Humboldt-Universitiit zu Berlin, Unter den Linden 6, D-10099 Berlin, Germany

Received October 5, 1992 / April 11, 1995

Abstract. The synthesis problem of concurrent systems is the problem of synthesiz-
ing a concurrent system model from sequential observations. The paper studies the
synthesis problem for elementary Petri nets and transition systems. A characterization
of the class of transition systems which correspond to elementary Petri nets is proven.
It is shown how to generate all elementary Petri nets corresponding to a given tran-
sition system. If there is any such elementary Petri net, it is proven that there always
exists a small one which has only polynomially many elements in the size of the
transition system.

Introduction

The synthesis problem of concurrent system models is the problem of synthesiz-
ing a concurrent system model from sequential observations. This problem has
been attacked for various different formalisms, including parallel programs
[Lengauer, Hehner 82], COSY-expressions [Janicki 85] and Petri Nets [Krieg 77],
[Ehrenfeucht, Rozenberg 90], [Nielsen, Rozenberg, Thiagarajan 92], [Mukund 92],
[Bernadinello 93].

The sequential observations of a concurrent system are usually given as a transition
system, i.e. a directed, arc-labelled graph & with a distinguished “initial” node. Nodes
and arcs of & denote global system states and transitions, respectively. The initial
node represents the initial state. Any path of & starting with the initial node represents
a sequential observation of a system run.

In the setting of this paper, the synthesis problem for a transition system ¥ is
the problem of constructing an elementary Petri net such that the state graph of this
net is isomorphic to & . Each such net is called a solution of the synthesis problem.
For this setting, a basic solution of the synthesis problem has been suggested by
[Ehrenfeucht, Rozenberg 90], employing the theory of partial 2-structures. Necessary
and sufficient conditions are given to decide whether to a given transition system there
exists an elementary Petri net which solves the synthesis problem. For each accepted
transition system, a corresponding Petri net is constructed.
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Based on this work, six conditions are given in [Nielsen, Rozenberg, Thiagara-
jan 92] which characterize the transition systems with solvable synthesis problem.
This paper employs a categorical framework and also establishes relations between
behaviour preserving mappings of elementary transition systems and, respectively,
elementary Petri nets.

Instead of proving the existence of a solution before constructing it, we suggest
to construct a canonical candidate Petri net 3 and then to check whether X in fact is
a solution. If not, we show that there exists no solution at all. The existence checks
of [Ehrenfeucht, Rozenberg 90] and [Nielsen, Rozenberg, Thiagarajan 92] are hence
replaced by a simple isomorphism check between transition systems.

The elementary Petri net constructed in [Ehrenfeucht, Rozenberg 90] and [Nielsen,
Rozenberg, Thiagarajan 92] is a canonical solution, satisfying a maximality property
w.r.t. its conditions. However, this solution is in general exponential in the size of
the given transition system. We show how to construct all solutions and in particular
small ones, which are polynomial in the size of the transition system.

Sections 1 to 3 provide the (few) standard notations on graphs and elemen-
tary net systems, to be employed in the sequel. We adopt the core idea of “re-
gions” from [Ehrenfeucht, Rozenberg 90] in Sect. 4. Section 5 gives the basic so-
lution to the synthesis problem; we provide an algorithm to decide if there ex-
ists a solution. This result could have been proven using the theory developed
in [Nielsen, Rozenberg, Thiagarajan 92]. Instead, we present an independent direct
proof. We consider all solutions of the synthesis problem in Sect. 6. As one central
result of this section, we show that each elementary Petri net which solves the syn-
thesis problem for a given graph & is isomorphic to a Petri net constructed from
an “admissible” set of regions of &. Moreover, admissibility of sets of regions is
characterized directly, employing the structure of the graph & . Based on this results,
Sect. 7 provides rules for identifying “redundant” regions. Small solutions of the syn-
thesis problem can then be obtained by constructing small admissible sets without
redundant regions.

1 Directed, arc-labelled, initialized graphs

Sequential system observation, consisting in global state occurrences and state transi-
tions is conveniently described by help of transition systems. A transition system can
formally be represented as a graph. Its nodes and its directed arcs represent states and
state transitions, respectively. As different state transitions may be caused by equal
events, different arcs may be labelled by equal symbols. The initial state is identified
by a distinguished “initial” node.

1.1 Definition. Let K and L be finite disjoint sets, let G C KxLx K, andletky € K.
Then & = (K, L,G, ko) is a finite, directed, arc-labelled, initialized graph.

K and L are the sets of nodes and labels of &, respectively. Each (h,l,k) € G is an
arc of &, labelled by | and leading from h to k. The node ky is the initial node of %.

It is often assumed that every node of an initialized graph can be reached from the
initial node:

1.2 Definition. Let & = (K, L,G, ko) be a finite, directed, arc-labelled, initial-
ized graph. A node k is reachable iff k = ko or there exists a sequence of arcs
(ko, L, k1), (k1ybay k2), - . .y (-1, ln, kn) Such that k = k,,.
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1.3 Convention. In this paper, the term “graph” always denotes a finite, directed,
arc-labelled, initialized graph with every node being reachable.

We employ the usual graphical conventions for graphs, indicating the initial node by
an extra arc without source and label.

1.4 Example.

ﬂ\
RV

This graph has nodes 1,...,5 and labels a,...,d. Its initial node is 1.

Isomorphism of graphs is defined as follows:

1.5 Definition. Let ¥ =(K,L,G, ko) and &' =(K',L',G’, k}) be graphs.
A bijection f: K — K’ is an isomorphism from & to &’ (written f: & — &) iff

f(ko) = k§ and
(h, 1L, k) € Giff (f(h),1, f(k)) € G

We call two graphs & and &’ isomorphic (written & ~ &) iff there exists an
isomorphism f: & — &',

Note that we do not employ a bijection from L to L’ but rather demand that the set
of labels of L appearing at arcs of & coincides with the set of labels of L’ appearing
at arcs of &,

An immediate consequence of Definition 1.6 is that ~ is an equivalence relation
on graphs.

2 Elementary net systems

We recall the basic definition of the fundamental class of Petri nets, usually called
elementary net systems ([Thiagarajan 87]). We only consider elementary net systems
with finitely many conditions and events.

2.1 Definition. Let B and E be disjoint finite sets, let F C (B x EYU (E x B), and
let co C B. Then X = (B, E, F, ¢p) is called elementary net system (en-system, for
short). The elements of B and E are called conditions and events, respectively. F is
the flow relation and cy is the initial state.

2.2 Notation. Let X = (B, E, F, cp) be an en-system. For x € BU E, we denote the
pre-set {y | (y,z) € F} of = by *z and the post-set {y | (x,y) € F} of = by z°.
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We employ the usual graphical representation for en-systems: Circles denote con-
ditions and squares denote events. The flow relation is represented by arrows. The
elements of the initial state are distinguished by a token (a dot) in each corresponding
circle.

2.3 Example.

a
[
O
A

This en-system has five conditions A, ...,E, and four events a,...,d. Its initial state
is {B,C}. *a = {B, C} is the pre-set of a and C*® = {a, b} is the post-set of C.

Every state ¢ of an en-system is determined by a subset of its conditions. A condition
is said to hold at the state c if and only if it is an element of ¢. An event is enabled
at c if all its pre-conditions (i.e. conditions in its pre-set) hold at ¢ and moreover
none of its post-conditions holds at ¢. The occurrence of an enabled event removes
its pre-conditions from ¢ and adds the post-conditions to c¢. Formally, the dynamics
of an en-system is described by its state transitions:

2.4 Definition. Let X' = (B, E, F, cy) be an en-system, let c,d C B, and lete € E.

i cenableseiff*eCcande®*nNc=4.
ii. (c,e,d) is a state transition (written ¢ —— d) iff c enables e and d = (¢ \*e)ue®.
iii. A set ¢ C B is a reachable state iff either ¢ = ¢y or there exists a sequence of
state transitions cp — ¢; — - -- =% ¢, such that ¢, = c.
iv. A state transition c - d is reachable iff c is a reachable state.

2.5 Example. 'The initial state {B,C} in 2.3 enables the events a, b and c. The cor-
responding  state transitions are: {B,C}— {A}, {B,C}L{B,D} and

{B,C}-—={C, E}. {D,E} is another reachable state and {D, E} LN {C,E} is an-
other reachable state transition.

Starting with the initial state cp, sequences ¢ Lo -5 e =25 ... of state tran-
sitions form the sequential behaviour of an en-system X'. Since we only consider
en-systems with finite sets of conditions, the set of states and in particular the set of
reachable states of an en-system is also finite. Hence the sequential behaviour can
finitely be represented as the paths in a graph, the state graph of X.

2.6 Definition. Let X = (B, E, F,cy) be an en-system, let C be the set of reach-
able states, and let G be the set of reachable state transitions of X. Then the graph
sg(X) = (C, E, G, ) is the state graph of X.
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2.7 Example.

N8
, 18} A

c
d
(8,0} {C.E}
c b
d
{D.E}

The state graph of the en-system given in 2.3

An abstract state graph is a “potential” state graph, where the identity of the involved
states is unknown:

2.8 Definition. A graph & is an abstract state graph iff there exists an en-system
X such that & ~ sg(X).

2.9 Examples.

i. The state graph of the en-system in 2.3, shown in 2.7, is isomorphic to the graph
in 1.4. Hence 1.4 shows an abstract state graph.
ii. There exists no en-system with a state graph isomorphic to (this will later be

proven). Hence this graph is not an abstract state graph.

The central issue of this paper can now be stated as follows:

The synthesis problem:

Is a given graph & an abstract state graph?
If yes, construct some (“small”) en-system X satisfying & ~ sg(X).

3 Isomorphism and reduction of en-systems

Let X and X be en-systems which coincide up to the names of conditions. Then the
behaviours of X' and X’ are closely related; their state graphs are isomorphic. If ¥
is a solution to the synthesis problem for a given graph &, then so is X",

3.1 Definition. Let ¥ = (B,E, F,co) and X' = (B',E, F',c}) be en-systems with
identical sets of events. A bijection f: B — B’ is an isomorphism from X to X’ iff
Jfor every condition b € B and every event e € E holds:
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b,e) € Fiff (fb),e) € F,
(e,b) € F iff (e, (b)) € F’ and
be oo iff fB)E ch

X and X' are isomorphic iff there exists an isomorphism from X to %',

Usually, two en-systems are considered isomorphic if the sets of conditions and the
sets of events are related by suitable bijections. The definition used here is the re-
stricted case that the bijection between events is the identity mapping.

3.2 Proposition. If X and X' are isomorphic en-systems then sg(X) ~ sg(X").

Proof. Let ¥ =(B,E,F,c) and X' = (B', E, F',c}) and let f be an isomorphism
from X to X’. We extend f to sets of conditions ¢ in the canonical way, i.e., for
¢ C B, f(c) denotes the set {f(b) € B’ | b € c}.

(1) f(co) = cg, by Definition 3.1.

(ii) Let e be an event of X. Then, by Definition 3.1, a condition b is in the pre-set
of e in X if and only if f(b) is in the pre-set of e in XZ’. The same holds for the
respective post-sets.

(iii) ¢ —> d is a state transition of X iff f(¢c) — f(d) is a state transition of %, by
the occurrence rule and (ii).

(iv) A set ¢ of conditions of X' is a reachable state of X iff f(c) is reachable in X”.
This follows inductively from (i) and (iii).

This way f induces a bijection between the set of reachable states of X' and the set of
reachable states of 2. It remains to be shown that this bijection is an isomorphism
from sg(X) to sg(X’):

fleo)=¢cy by (). ¢ - d is a reachable state transition of X iff f(c) — f(d) is
reachable in X’, by (iii) and (iv). O

Events not occurring in any state transition do not affect the behaviour of an en-
system. In an en-system without “useless events”, two conditions which agree on all
reachable states have identical pre-sets, post-sets and initial tokens. Hence they can
be interpreted as identical conditions. Since we will be interested in small en-systems,
we define reduced en-systems without such conditions.

3.3 Definition. An en-system is called reduced iff

every event occurs in a reachable state transition and
Jor each two distinct conditions b and V' there exists a reachable state c satisfying
eitherbe candb’ ¢ c,orb’ € candb ¢ c.

All en-systems used in examples of this paper are reduced.

3.4 Proposition. For every en-system X there exists a reduced en-system X' such
that sg(X) ~ sg(X").

Proof. An event of X which does not occur in any reachable state transition does
not contribute to the state graph of X. Hence assume w.l.o.g. that X has no such
events.

Let b, b’ be distinct conditions of X which agree on all reachable states. Let
e € *b. By assumption, there exists a reachable state transition ¢ — d. Then b éc
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and b € d. Since b and b’ agree on all reachable states, b’ ¢ ¢, ¥’ € d and therefore
e € *H'. Hence *b C *b'. By symmetry, *b’ C *b and so *b = *¥’. It is shown similarly
that b® = b'°.

Let X be the en-system obtained from X' by removing &', its adjacent arcs, and
possibly its initial token. Since b and b’ have identical pre- and post-sets and agree
on all reachable states, an event e is enabled by a reachable state ¢ of X' iff it is
enabled by ¢\ {¥'} in T. Moreover, e leads to a state ¢’ in X iff e leads to ¢\ {b'}
in . Hence there is an isomorphism f: sg(X) — sg(X) defined by f(c) = c\ {b'}
for every reachable state ¢ of X.

As Y is finite, exhaustive repetition of this transformation finally yields a reduced
en-system X’ satisfying sg(X) ~ sg(X"). O

4 Regions

The notion of “regions”, introduced in [Ehrenfeucht, Rozenberg 90], is one of the
essential concepts of this paper. Roughly speaking, a region R of a graph is a set
of nodes corresponding to an existing or a potential condition b of an associated
en-system: R is the set of the reachable states containing b. More concretely, every
condition b of an en-system X' can be assigned the set R, of nodes of sg(X') defined
by ¢ € Ry, if and only if b € c. As an event e of X is related to b in exactly one of
four manners (1. b€ ®eand b ¢ e*, 2. b¢ ®candbece®,3. b¢ eand b ¢ e* or
4. b€ ®e and b € e°®), the set R, relates to e by one of the following alternatives: In
case 1, all source nodes and no target node of e-labelled arcs belong to R,. In case
2, no source node, but all target nodes of e-labelled arcs belong to R,. In case 3,
each e-labelled arc has either both its source and target node in Ry, or none of them.
Finally, in the 4th case, e belongs to no state transition of X' since, in every state of
X2, b is either an unmarked pre-condition or a marked post-condition of e. Hence, in
this case there exists no e-labelled arc in & .

Formulated in terms of state graphs, each set R; of nodes which is induced by a
condition b meets the above properties. Those properties can be formulated not only
for state graphs but for arbitrary graphs. So we define:

4.1 Definition. Let & be a graph. A set R of nodes of & is a region of & iff for
equally labelled arcs (h,l, k) and (W', 1, k") holds:

ifhe Randk ¢ Rthen h' € Rand k' ¢ R, and
ifh¢ Randk € Rthenh' ¢ Rand k' € R.

0 and K are called trivial regions of &. reg(&’) denotes the set of all regions of &.
4.2 Examples.

i. The graph in 1.4 has 10 nontrivial regions:
A={2}, B={1,3}, C={1,4}, D={3,5}, E={4,5}, F={1,3,4,5}, G={2,4,5},
H={2,3,5}, 1={1,2,4} and J={1,2,3
Some of them are outlined in the following figure:
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ii. The graph in 2.9.ii has 4 nontrivial regions:
A={1,2},B={1,3},C={2,4} and D={3,4}.

The essential of a region is the uniform treatment of equally labelled arcs: Given a
region R and an arc label [, either all I-labelled arcs “enter” R or all I-labelled arcs
“leave” R, or [ does not touch R. This motivates the following definition.

4.3 Definition. Let | be a label of a graph &. The pre-set °l and the post-set I° are
the sets of regions of & satisfying

R e °l iff for all arcs (h,l,k) of ¥,h€ Rand k ¢ R, and
R e l° ifffor all arcs (h,l,k) of ¥,h ¢ Rand k € R.

4.4 Example. For the graph in 1.4 and the notions of 4.2.i we have °c = {B,J} and
c® = {E,G}.

The following propositions state that the conditions of an en-system and the regions
of its state graph are tightly related.

4.5 Proposition. Let X be an en-system and let b be a condition of X. Let Ry, be the
set of reachable states c of X satisfying b € c. Then R, is a region of sg(X).

Proof. Let (c,e,d) and (¢, e,d’) be arcs of sg(X).

Assume ¢ € R, and d ¢ R,. Then ¢ - d and ¢ —> d’ are reachable state
transitions of X and b € ¢, b ¢ d. Therefore b € *e and b ¢ e®. Hence b € ¢/, because
¢’ enables e. By the definition of state transition, b ¢ d’. So ¢’ € Ry and d’ ¢ Ry,

It is shown similarly that ¢ ¢ R, and d € R, implies ¢’ ¢ R, and d' € Rp. O

Conversely, a region does not necessarily correspond to an existing condition but to
a “potential” condition. Adding this condition to the en-system preserves behaviour,
i.e., the augmented en-system has an isomorphic state graph.

4.6 Definition. Let X = (B, E, F, ¢o) be an en-system and let R be a region of sg(X).
Let by, be a new condition, bp ¢ B U E. Then the en-system X*R = (B, E', F', c}) is
defined by

B'=BU{bR},

E'=E,
F'=FU{(br,e)| R € °e} U{(e,br) | R € e°},
co=coU{br}ifco€ Randcy=coifco ¢ R

4.7 Proposition. Let X' be an en-system and let R be a region of sg(X). Then
59(X) = sg(Z*F).



The synthesis problem of Petri nets 305

Proof. Let X =(B,E,F,cp) and let +*F = (BU {br}, E, F’,c}). Let C be the set
of reachable states of X and let C’ be the set of reachable states of 2. Define, for
each c € C, f(c)=cU {br} if c € R and f(c) = cif c ¢ R. We show that f is an
isomorphism from sg(X) to sg(=Z*%).

(i) f(co) = ¢} holds by the definition of f and c.

(ii) ¢ € C enables an event e in X iff f(c) enables e in Z*+F,
Assume c enables e and let ¢ — d. If, in £*E, br € *e, then R € °e and hence
¢ € Rand by € f(c). If, in Z*E, by € €*, then R € e° and hence ¢ ¢ R and
br &€ f(c). Therefore f(c) enables e in X*R_¥f f(c) enables e in Z*F, then ¢
enables e in X, by definition of f and since ®e in X is a subset of *e in X+ and
e®* in X is a subset of e® in T*E,

(iii) Let c € C.
¢ - d is a state transition of X iff f(c) — f(d) is a state transition of L*E.
Assume c enables e in X’ and — which is by (ii) equivalent — f(c) enables e in
3.
Let ¢ = d and f(c) — d’ be the respective state transitions. For proving
d’' = f(d) it suffices to show that bg € d' iff bg € f(d):

bred iff either bgp € f(c) and br ¢ ®e or bg € €°
iff eitherce Rand R¢ °eor R¢e°
iff de€eR

iff bgr € f(d).

(iv) f is a bijection from C to C’, by induction using (i) and (iii).
(v) ¢ => d is a reachable state transition of X iff f(c) -2 f(d) is a reachable state
transition of X+, by (iii) and (iv).

By definition, the sets of nodes of sg(X) and sg(Z*%) are C and C’, and the sets of
arcs are the reachable state transitions of X and X*%, respectively. By (iv), (i) and
(v), f is an isomorphism from sg(X) to sg(X*F). O

5 The basic solution of the synthesis problem

In this section, we develop a procedure to decide whether or not a given graph &
is an abstract state graph. In the positive case, the procedure provides an en-system
with a state graph isomorphic to &.

Since every condition corresponds to a region and every region generates a po-
tential condition we can construct an en-system from a graph, using only generated
conditions. -

5.1 Definition. Let & = (K, L, G, ko) be a graph and let m be a set of regions of &
Then the m-generated en-system is sy(&, m) = (m, L, F, cy) where for each R € m
and eachl € L:

R,heFiffRe°l,
({,R)e Fiff Recl® and
Recyiff ko € R.
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5.2 Examples.

i. The graph in 1.4 with the regions A, ...,J of 4.2.i generates the en-system

ii. The graph in 2.9.ii with the regions A, ..., D of 4.2.ii, generates the en-system

a

BO—{1}—0OC

A@—{1}—OD
b

In the rest of this section, we consider en-systems generated by all regions of a graph.

The basic solution to the synthesis problem can now be formulated as follows:
Given an arbitrary graph &, construct the en-system generated by the regions of &.
If the state graph of this en-system is isomorphic to &, then this en-system is a
basic solution to the synthesis problem and we are finished. Otherwise, there exists
no en-system which corresponds to & and so & is no abstract state graph, as is
shown in the following theorem.

5.3 Theorem. A graph & is an abstract state graph iff & ~ sg(sy(¥, reg(¥))).

Proof. If & =~ sg(sy(&,reg(¥))) then & is an abstract state graph by definition.

Let conversely & be an abstract state graph. By Proposition 3.4, & ~ sg(X)
for some reduced en-system X. Since X is reduced, there exists for each region
R of sg(X) at most one condition b which belongs exactly to the states of R. If
there is a region R of sg(X) with no corresponding condition then the addition of
such a condition to X' yields the system X+, By Proposition 4.7, X and Z*F have
isomorphic state graphs. Let X’ be an en-system obtained by exhaustive addition of
conditions which have no corresponding regions. Then sg(X') ~ sg(X") and for every
region of sg(X)) there is exactly one corresponding condition of X’ and vice versa.
Hence the en-systems X’ and sy(%,reg(¥)) are isomorphic. By Proposition 3.2,
they have isomorphic state graphs. So we get

T = 59(X) = sg(Z') ~ sg(sy(F, reg(F))). O

5.4 Examples.

i. The graph & in 1.4 is an abstract state graph. The state graph of sy(%, reg(%))
is shown below (using the notions of 4.2.i and K = {1, 2, 3,4, 5}). It is isomorphic
to &.
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Py a
b {B,C,F\,J.K}——{A,GH|,J.K}
c
d
{B.D,FH K} {C.E.F.G,LK}
b
c
d
{D.E,F,GHK}

ii. The graph & in 2.9.i is not an abstract state graph. The state graph of
sy(¥F,reg(¥)) is shown below (using the notions of 4.2.ii and K = {1,2,3,4}).
It is not isomorphic to & .

{A,.D.K} b
~N y \
{AB,K} {C.D.K}
b a
{B.C,K}

It is in general a nontrivial problem to decide if two graphs are isomorphic.
However, for our procedure, to decide if a graph & is an abstract state graph we
have to decide if & ~ sg(sy(¥F,reg(¥))). This is easy since there exists at most
one such isomorphism, as shown in the following proposition:

5.5 Proposition. Let & = (K, L,G, ko) be an abstract state graph. Then there is
exactly one isomorphism f from & to sg(sy(&,reg(¥))) which is defined by f(k) =
{R creg(¥) | k € R}.

Proof. By Theorem 5.3, there exists an isomorphism g: & — sg(sy(¥&, reg(£))).
We wish to prove g = f where f is defined as above.

By definition of sy(&,reg(¥)), its initial state is the set of regions of & that
contain k. Hence, by the definition of f, g(ko) = f(ko).

Next we show that, for every arc (h, !, k) of &, f(h)= g(h) implies f(k) = g(k).

Let (h,l, k) be an arc of &. Then (f(h),l, f(k)) and (g(h),l, g(k)) are arcs of

sg9(sy(¥F,reg(¥))), because f and g are isomorphisms. Therefore f(h) LN f)

and g(h) LN g(k) are state transitions of sy(¥,reg(¥)). Now assume f(h) = g(h).
By the occurrence rule, the resulting state of a state transition is uniquely determined
by the current state and the occuring event. Hence f(k) = g(k).

The result follows inductively because every node of & is reachable. [

6 The general solution of the synthesis problem

Theorem 5.3 provides a decision procedure as well as (together with Definition 5.1) a
constructive solution of the synthesis problem. This way the distinguished en-system
sy(¥,reg(¥)) is assigned to each abstract state graph &. This en-system is re-
duced in the sense of Definition 3.3. However, the number of its conditions can grow
exponentially with the number of nodes of & . Consider the following example:
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6.1 Example.

~181_ 52 A

The graph %, forn > 2

In 6.1, no label occurs more than once. Therefore, by the definition of regions, every
subset of nodes is a region of the graph. Hence the number of regions grows expo-
nentially with the number of nodes. The same holds for the number of conditions of
the system generated by all regions:

6.2 Example.

sy(G, reg(%)) has 2* = 16 conditions (instead of a;, a5, a3, a4 we use the labels
a,b,c,d).

The aim of this section is to show that, for every abstract state graph & with n
nodes and m labels, there exists an en-system X' satisfying sg(X) ~ & with at most
n - (n+m) conditions. Since every condition of X corresponds to a region of its state
graph, and consequently to a region of &, an en-system X' can be generated by a
subset of regions of & . In order to achieve the polynomial growth we characterize
sets of regions which suffice to construct suitable en-systems. Example 6.3 shows
such en-systems for the graph & of 6.1.

6.3 Example.

n {2}

4 {3}
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The left en-system is generated from % by the set of regions {{1}, {2}, {3}, {4} }.
The right en-system is generated from % by the set of regions {{1, 3}, {2, 3}, {3,4}}.

Somewhat surprising, both en-systems exhibit the same behaviour; their state graphs
are isomorphic to &. This fact is obvious for the en-system on the left hand side.
For the en-system on the right hand side we recall that an event can only occur when
the current state contains none of the conditions in its post-set; so b is not enabled at
the initial state (this situation is sometimes called “contact”).

This en-system proves that a set m of three (of the sixteen) regions suffices
to construct an en-system sy(%;, m) satisfying sg(sy(&,m)) ~ sg(sy(%a, reg(¥)))
(where in this case, by Theorem 5.3, sg(sy(%,reg(¥))) ~ & since & is an abstract
state graph). Of course, not every set of regions has this property. So, we distinguish:

6.4 Definition. Let & be a graph and let m C reg(¥). m is called admissible iff
sy(F,reg(¥)) and sy(&, m) have isomorphic state graphs.

6.5 Example. Let & be as in 6.1. The sets m; = {{1}, {2}, {3},{4}} and
m, = {{1,3}, {2,3},{3,4}} are admissible. No proper subsets of these sets are ad-
missible.

The set of conditions of an en-system corresponds to an admissible set of regions of
its state graph. Conversely, for each reduced en-system, the conditions are generated
by an admissible set of regions:

6.6 Theorem. Let & be an abstract state graph. A reduced en-system X satisfies
& ~ sg(X) iff there exists an admissible set m C reg(¥) such that X and sy(*¥, m)
are isomorphic en-systems.

Proof. (=>): By Proposition 4.5, every condition of X corresponds to a region of
sg(X) and, hence, to a region of &. Let m be the set of region corresponding to
conditions of X. Then, for every R € m, there exists at least one condition b such that
R corresponds to b. There exists at most one such condition b because X is reduced.
Again since X is reduced, every event of X occurs in some reachable state transition.
Therefore, and by construction of sy(%,m), *b in X equals *R in sy(¥,m) and
the same holds for the respective post-sets. b belongs to the initial state of X' iff the
initial state is in the corresponding region R iff R, belongs to the initial state of
sy(¥,m). Hence X' and sy(&, m) are isomorphic.

m is admissible because sg(X) ~ sg(sy(¥F,reg(¥))) by Theorem 5.3 and
59(X) ~ sg(sy(¥, m)).
(<=) follows from Definition 6.4, Proposition 3.2 and Theorem 5.3. O

This result gives a complete picture of all solutions of the synthesis problem. It
implies that each reduced en-system is entirely characterized (up to isomorphism) by
an admissible set of regions of an abstract state graph.

Now let us return to our original task: How can we find “small” solutions of the
synthesis problem? Since we construct en-systems from admissible sets of regions,
we study necessary conditions for admissibility.

Let & be an abstract state graph with an admissible set of regions m. Then m
satisfies the following properties:

Assume h and k are distinct nodes of & . The corresponding states of the en-
system generated by m are also distinct, because m is admissible. So there exists a
place of this en-system which is contained in exactly one of the states. By definition
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of the generated en-system, this place is generated by a region which separates h and
k, i.e. contains exactly one of these nodes.

Consider a node k£ and a label I. Then k corresponds to a reachable state of the
generated en-system and [ is a transition of that en-system. Either [ is enabled at that
state — then there is an [-labelled arc of & with source k — or [ is not enabled — then
the state contains not all pre-conditions or it contains some post-conditions of /. In
other words, if there is no l-labelled arc with source k, then m contains a region of
the pre-set of  which does not contain k or a region of the post-set of | which does
contain k.

The following theorem shows that these conditions are not only necessary but
also sufficient for admissibility.

6.7 Theorem. Let & be an abstract state graph. A set m C reg(¥) is admissible
iff for every two different nodes h and k of &, there exists a region R € m satisfying

(@ he Randk ¢ R or
(b) hé Rand k € R,

and, for every node k of & and every label | of &, at least one of the following
conditions is true:

(c) there exists an arc (k,l, k") of & for some node k',
(d) there exists a region R € m satisfying R € °l and k ¢ R,
(e) there exists a region R € m satisfying R € I° and k € R.

Proof. Define X = sy(F,reg(¥)) and X’/ = sy(¥&, m). Since ¥ is an abstract state
graph, and by Theorem 5.3, there is an isomorphism f: & — sg(X).

(i) The isomorphism f maps each node k of & to the set of regions of & containing

k, by Proposition 5.5.

(ii) Let cp be the initial state of 3. Then coNm is the initial state of X, by construction
of X and X'.

(i) Let ¢ = d be a state transition of . We show that (cNm) - (dNm) is a
state transition of X', .
The pre-set of e in £’ equals the intersection of m and the pre-set of e in X'. The
same holds respectively for the post-set of e. Hence, ¢ N m enables e in X’ and
the occurrence of e yields d N m.

(iv) Let ¢ — d be a reachable state transition of X. From (ii) and (1ii) inductively
follows that (¢ N'm) — (d N m) is a reachable state transition of X".

(=): Since m is admissible, there is an isomorphism g: sg(X) — sg(X”). By (ii) and
(iv), each node c of sg(X) is mapped to cNm.

Let h and k be two different nodes of &. Since f is bijective, f(h) # f(k). Since
g is bijective, g(f(h)) # g(f(k)) and, hence, (f(h) N m) # (f(k) N m). Therefore, by
the definition of f, at least one region of m contains A but not k or k but not k. So
either (a) or (b) holds.

Let k be a node and let { be a label of & such that (d) and (e) do not hold for &
and l. Then g(f(k)) is a reachable state of X’, | is an event of X”, every condition
in *{ belongs to g(f(k)) (since (d) does not hold) and no condition in [® belongs to
g(f(k)) (since (e) does not hold). Hence, g(f(k)) enables [ in X/. & ~ sg(X’), so
(c) does hold.

(<=): We prove that g: sg(X) — sg(X"), defined by g(c) = ¢ N'm for every reachable
state ¢ of X, is an isomorphism.
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By (ii) and (iv), g is surjective. g is injective because, by (a) or (b), for each two
different nodes f(h) and f(k) of sg(X'), there is a region of m which is contained in
exactly one of these nodes and, hence, g(f(h)) # g(f(k)).

By (ii), g maps the initial node of sg(X) to the initial node of sg(X’).

Let (c, e, d) be an arc of sg(X). By (iv), (g(¢), e, g(d)) is an arc of sg(X").

Let conversely (g(c), e, g(d)) be an arc of sg(X’). Let ¢ = f(k). Neither (d) nor
(e) holds for k and e since g(c) enables e in X’. Hence (c) holds for k and e. So
there exists an e-labelled arc leaving k in & and, by & ~ sg(X), there exists
an arc (c,e,d’) in sg(X). By (iv), there exists an arc (g(c), e, g(d")) in sg(X’). So
g(c) = g(d) and g(c) — g(d’) are state transitions of X’. Since the resulting state
of a state transition is uniquely determined by the current state and the occurring
event we obtain g(d) = g(d’). Since g is bijective, d = d’. Hence (¢, e,d) is an arc of
sg(X). O

We will use the characterization provided by this theorem in the following section.
An immediate consequence is the following corollary:

6.8 Corollary. For every abstract state graph & = (K, L,G, ko), there exists an
en-system X satisfying & ~ sg(X) with at most

IKl- (K| - 1D +|K]|-|L| - |G]

conditions. An upper bound of this value is |K| - (|(K| + |L|).

7 Construction of solutions of the synthesis problem

Given an abstract state graph &, we obtained with Theorem 5.3 a method to construct
a (reduced) en-system which solves the synthesis problem. However, in general this
system has unnecessarily (in general exponentially) many conditions. Exploiting The-
orem 6.7, small solutions with a polynomial number of conditions can be constructed
as follows:

7.1 Construction. Let & = (K, L, G, ko) be an abstract state graph.

Step 1: For each node k € K and each label | € L such that there is no arc (k, [, k') €
G, choose a region R of & satisfying R € °l and k € R (or take K\ R, then R € [°
and k ¢ R).

Step 2: For each two different nodes h,k € K choose a region R which contains
exactly one of these two nodes.

By Theorem 4.7, we find such regions and the set of all chosen regions is admissible.

Consider a sequence of all pairs (k,[) of nodes and labels of an abstract state graph.
Starting with the empty set, a set of regions according to Step 1 of Construction 7.1 is
obtained by successively adding regions to the current set, if necessary for the current
pair (k,!). However, this method does not necessarily yield minimal admissible sets
of regions. Consider the following example:

7.2 Example. Let the graph & be defined as in 6.1. Then Step 1 of Construction 7.1
may yield an admissible set as follows
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list of pairs current set of regions
(1,ap) there is an arc (1,a;,2) [ 0
(1,a2) add {2} {{2}}
(1,a3) add {3} {{2}, (3}}
(1,a4) add {4} {{2}7 {3}’ {4}}
2,a1) use {2} {{2},{3},{4}}
2,a;) there is an arc (2, a3,3) | {{2}, {3}, {4}}
(2,a3) use {3} {{2}.{3}.{4}}
(2,a4) use {4} {12}, {3}, {4}}
(3,a1) add {2,3} {{2},{3}.{4}.{2,3}}
3, az) use {2} or {3} {{2},{3},{4},{2,3}}
3,as3) there is an arc (3, a3,4) | {{2}, {3}, {4},{2,3}}
(3,a4) use {4} {{2},{3},{4},{2,3}}
4,a1) add {1} {{1},{2},{3},{4},{2,3}}
(4,a2) use {2} {{1},{2},{3},{4},{2,3}}
(4,a3) use {3} or {4} {{1},{2},{3}.{4},{2,3}}
4,aq) there is an arc (4,a4,1) | {{1}, {2}, {3}, {4}, {2,3}}

The set {{1}, {2}, {3}, {4}, {2,3}} is not a minimal admissible set because its
proper subset {{1}, {2}, {3}, {4}} is admissible as well.

In Example 7.2, the region {2,3} is redundant, i.e. its removal preserves admis-
sibility. The obtained set of regions {{1}, {2}, {3}, {4}} is a minimal admissible set,
i.e. none of its regions is redundant. It corresponds to a net with a more intuitive
choice of places. Minimal admissible sets are not necessarily those with minimal
cardinality. For the graph &% in 6.1, Example 6.3 shows an admissible set of three
regions.

Redundant regions can be detected by help of Theorem 6.7. Sometimes it is easier
to identify redundant regions using simple sufficient conditions for redundancy. Such
conditions will be considered in the rest of this section.

7.3 Definition. Let & be an abstract state graph and let m be an admissible set of
regions. R € m is redundant (w.r.t. m) iff m \ { R} is admissible.

A region R is redundant w.r.t. a set m if the systems sy(¥, m) and sy(¥,m \ {R})
have the same behaviour, i.e. they have isomorphic state graphs.

It is easily seen that trivial regions are always redundant. In terms of associated
reduced en-systems, the empty region corresponds to an isolated condition which
never holds. Likewise, the region consisting of all nodes corresponds to the condition
which always holds.

7.4 Proposition. Let & = (K, L, G, ko) be an abstract state graph and let m be an
admissible set of regions. The trivial regions K and 0 are redundant w.r.t. m.

Proof. We apply Theorem 6.7.

Neither (a) nor (b) holds for K and 0.

Since, forl € L, K ¢ °l,0 ¢ °l, K ¢ 1° and § ¢ [°, neither (d) nor (e) holds for
K and 0. O

A first nontrivial criterion for redundancy of regions is the presence of complements
aregion R € m is redundant if the set of all nodes not in R (which clearly is a region
as well) is in m. In terms of reduced en-systems, two conditions by and b; satisfying
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*bo = by, b§ = *by and by is in the initial marking iff b, is not in the initial marking,
are complements. One of them may be skipped without affecting the behaviour.

7.5 Proposition. Let & = (K, L, G, ko) be an abstract state graph and let m be an
admissible set of regions. If m contains a region R and its complement R = K \ R,

then R is redundant (and, by R= R, R is also redundant).

Proof. 'We apply Theorem 6.7.

If (a) holds for a pair of nodes h and k and the region R, then (b) holds for h
and k and the region R and vice versa.

If (d) holds for a node k, a label ! and R then (e) holds for k, [ and R and vive
versa. (]

The next rules concern regions which are intersections of other regions. Note that this
condition is in general not sufficient for redundancy. But, if moreover the complement
of a region R (which does not need to be in m) is the intersection of regions of m
as well, then R is redundant.

7.6 Proposition. Ler & = (K, L,G, ko) be an abstract state graph and let m be
an admissible set of regions. If m contains regions R, R,, Ry, Rs, R4 such that R =
Ry N R, and R = Ry N Ry then R is redundant.

Proof. We apply Theorem 6.7.

If (a) holds for a pair of nodes h and k and the region R then 4 is in R; and in
R, and k is either not in R; or not in R,. Hence (a) holds either for R; or for R;.
(b) is preserved by a similar argument.

Assume that (d) holds for a node k, a label [ and R. Then k € R. Hence k € R;
and k € Ry. Since R € °l, R € [°. Hence either R; € I° or Ry € I°. So (e) holds
either for k, l and R; or for k, ! and Ry.

Assume that (e) holds for a node k, a label [ and R. Then k € R, and k € R,.
Since R € I°, either R, € I° or R, € I°. So (e) holds either for &,  and R; or for k,
land R,. O

7.7 Corollary. Let & = (K, L,G, ko) be an abstract state graph and let m be an
admissible set of regions. If m contains regions R, Ry, R;, R3, R4 such that R = R, U
Ry and R = R3 U Ry then R is redundant.

w.r.t. m’. By Proposnhon 7.6 and since R = Rl NR;and R=R; ﬂR4 R is redundant
w.r.t. m’ \ {R}. Applying Proposition 7.5 again, m \ {R} is admissible. O]

7.8 Example. The set {2,3} in the admissible set considered in 7.2 is redundant:
{2,3}={2} U {3} and {2,3} = {1,4} = {1} U {4}.

Finally, we introduce a sufficient condition for redundancy which does not only de-
pend on the regions but also takes the arcs of & into account.

7.9 Proposition. Let & = (K, L,G, ko) be an abstract state graph and let m be an
admissible set of regions. If m contains regions R, Ry, Ry such that R = R, N\ R, and
every arc (k,l,k') € R x L x R satisfies k' ¢ Ry and k' ¢ R;, then R is redundant.
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Proof. We apply Theorem 6.7.

(a) and (b) is preserved as in Proposition 7.6.

Assume that (d) holds for a node k, a label [ and R. Then R € °l and R, € °l
by assumption. Since k ¢ R; or k ¢ R;, (d) holds either for k, [ and R; or for k, !
and Rz.

(e) is preserved as in Proposition 7.6. O

7.10 Example. Consider the graph & defined in 6.1. The set {{3}, {1,3}, {2,3},
{3,4}} is admissible. {3} is redundant since {3} = {1,3} N {2,3}, the only arc
leaving {3} is (3,a3,4), and 4 ¢ {1,3} as well as 4 ¢ {2,3}.

Conclusion

We have given a direct proof that a graph is an abstract state graph if and only if it is
isomorphic to the state graph of its associated en-system. This en-system is constructed
using the concept of regions of graphs, introduced in [Ehrenfeucht, Rozenberg 90].
In that paper, abstract state graphs (there called “abstract sequential case graphs™) are
characterized by a number of requirements, including (in our terminology) isomorphy
of & and sg(sy(¥,reg(¥))). Theorem 5.3 shows that this condition is sufficient.

[Ehrenfeucht, Rozenberg 90] and [Nielsen, Rozenberg, Thiagarajan 92] restrict
their studies to en-systems where different events with equal pre- and post-sets are
excluded. We have shown that this restriction is not necessary. Even side-conditions,
modelled by a different interpretation of self-loops, can be tackled, demanding how-
ever a more involved formalism.

For simplicity we only considered finite en-systems. This restriction is not nec-
essary; [Ehrenfeucht, Rozenberg 90] and [Nielsen, Rozenberg, Thiagarajan 92] study
also infinite en-systems. In a quite early contribution, [Krieg 77] has shown that, for
the case of place/transition systems (a generalisation of elementary net systems), it is
decidable whether a given graph is an abstract state graph. [Mukund 92] solves the
synthesis problem for the case of finite place/transition systems, by construction of
one solution. In a recent contribution, {[Bernadinello 93] also strives for small solu-
tions of the synthesis problem for en-systems. In this paper, the structure of regions
is investigated; only “small regions” are used to generate an en-system. Thus, instead
of conditions, the number of tokens in reachable states is minimized.

Further considerations concern contact-free, small solutions. A contact situation
is a reachable state which contains all conditions in the pre-set of an event e but does
not enable e (since it also contains post-conditions). Taking again Example 6.3, the
left system is contact-free whereas the right system is not (°b = ), hence the initial
state includes *b but does not enable b). Contact-free systems are in general much
more intuitive than systems exhibiting a contact. The left system of 6.3 can be seen
as a “canonical” solution of the synthesis problem whereas the right system has less
conditions. The admissible sets yielding contact-free solutions can be characterized
by skipping line (e) in Theorem 4.7. An en-system can be considered “optimal” if it is
contact-free and has no redundant conditions, i.e. each condition is either crucial for
contact-freeness or for the behaviour of the system. The left system of 6.3 is optimal.
However, not every abstract state graph has corresponding optimal en-systems. We
leave it an open problem if the existence of optimal solutions can be characterized in
terms of state graphs. It is also unknown if there always exists at most one optimal
solution (up to isomorphism), which then could be considered canonical.
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