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8.1 Introduction 
In th is chap te r we consider recognizable t race languages from the viewpoint of 
au toma ta - theo re t i c a l character iza t ions . We use t he asynchronous (cellular) a u t o m a 
ton , which is character ized by a d i s t r ibu ted control s t ruc tu re . A detai led investi
ga t ion a b o u t these a u t o m a t a and their control s t ruc tures is given in C h a p t e r 7. 
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250 C H A P T E R 8. CONSTRUCTION OF ASYNCHRONOUS AUTOMATA 

By Zielonka's theorem [277, 278], both, deterministic asynchronous automata (an 
exclusive-read-exclusive-write model) and deterministic cellular asynchronous au
tomata (a concurrent-read-owner-write model) characterize recognizability of trace 
languages precisely. This characterization is in fact one of the major contribu
tions in the theory of Mazurkiewicz traces, due to the non-interleaving semantics 
of asynchronous (cellular) automata. 

Zielonka's construction starts with a trace language recognized by a homomor-
phism to a finite monoid, and it yields a deterministic asynchronous cellular automa
ton. Its basic component is a bounded time-stamping which allows to determine 
the actuality of information received in a distributed way. 

A crucial aspect of Zielonka's construction is given however by the notion of 
asynchronous mapping, which will be presented in Section 8.3.2. Asynchronous 
mappings, originally introduced by R. Cori and Y. Metivier [45] (see also [53]), 
are mappings which can be computed in a distributed manner. This property 
makes them directly translatable into deterministic asynchronous cellular automata. 
In Zielonka's original construction asynchronous mappings appear implicitly, only. 
Once one has constructed a deterministic asynchronous cellular automaton, the 
translation to an asynchronous automaton (as originally defined by Zielonka) is 
straightforward. The difference between both models is of minor importance here. 
The polynomial-time transformations from asynchronous cellular automata into 
equivalent asynchronous automata and vice-versa have been already discussed in 
Chapter 7, see also e.g. [227, 229]. 

The question whether a substantially simpler construction for Zielonka's theorem 
exists, is still open. Recently, two determinization constructions for asynchronous 
(cellular) automata have been presented [154, 198], both still relying on Zielonka's 
time-stamping function. So far, only in the special case of acyclic dependence graphs 
a simpler solution is known: in [196] Y. Metivier exhibited a surprisingly elegant 
construction which provides in a natural way deterministic asynchronous automata. 
The drawback of this construction is the fact that the hypothesis of an acyclic 
dependence relation is a strong restriction, which is often violated. In fact, even the 
special case of complete dependence, i.e. the free monoid, is not included. Following 
the presentation of [63] we generalize in the next section Metivier's construction to 
the larger class of triangulated graphs. From a practical point of view, this means 
that by adding sufficient dependence, i.e. triangulating in a dependence alphabet, 
we can obtain simple deterministic asynchronous automata for every recognizable 
trace languages, by loosing some concurrency, only. 

We conclude this section by fixing the notations used in this chapter, which are 
in fact the standard ones. 

By (E, D) we denote a finite dependence alphabet, with E being a finite alphabet 
and D C E x E a reflexive and symmetric relation called dependence relation. 
The complementary relation I = (E x E) \ D is called independence relation. The 
monoid of finite traces, M(E,D) , is defined as a quotient monoid with respect to 
the congruence relation induced by I, i.e., M(S, D) = E*/{ ab = ba \ (a, 6) G I}. 

Recognizability for trace languages can be defined by recognizing homomor-
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8.1. INTRODUCTION 251 

phisms: a trace language L C M(E, D) is recognizable if there exists a finite monoid 
S and a homomorphism r\ : M(E, D) —> S recognizing L, i.e. satisfying L = r]~1r](L). 
Alternatively, by Zielonka's characterization theorem, recognizability can be defined 
by means of asynchronous (cellular) automata. (We shall work here with determin
istic automata, only.) We denote the family of recognizable trace languages by 
Rec(M(E,L>)) (or Rec(M) for short). 

Definition 8.1.1 An asynchronous automaton A is a tuple 

m 

•A=(Y[Qi,(6a)aex,q0,F) 
i = l 

satisfying the following conditions: 

• The global state set Q = YITLi Qi *s a direct product of local states sets Qi, 
1 < i < m.. 

• Each letter a € £ has an associated domain dom(a) C { l , . . . , m } such that 
for all (a, b) € I we have dom(a) D dom(b) = 0. 

• Each letter a 6 E has a (partially defined) local transition function 6a : 
ILedomfa)^ -* IliedomCa)^- A 9^bal transition step q' = 5(q,a), q = 
(qi)i<i<m,q' = {q'i)i<i<m € Q, is defined if and only if <5a((ft)iedom(a)) is 
defined. In this case only the components of the domain of a change, i. e. we 
have 

1. q'j = qj if j $ dom(a) 

%• (l'i)iedom(a) = 8a((qi)iedom(a)) 

The language accepted by A is L(A) = {t € M(E, D) | S(q0,i) £ F}. 

Note that asynchronous automata enable concurrent transitions, since write- and 
read-domains of independent letters do not overlap. They can be seen as EREW 
(exclusive-read-exclusive-write) devices, whereas asynchronous cellular automata, 
which are defined in the following, correspond to the CROW (concurrent-read-
owner-write) type. 

Definition 8.1.2 An asynchronous cellular automaton A is a tuple 

A = ( ( Q a ) a e E , ( 5 a ) a e E , 9 0 , F) 

For each letter a 6 E a set of local states Qa and a (partially defined) local transition 
function 6a : (YlbeDla) Qb) —* Qa are given. Further, q0 e Ilaex: Qa denotes the 
global initial state and F C Hags Qa denotes the set of final global states. The 
(partially defined) global transition function 6 : Y\aPY: Qa x E —> f T _ s Qa is defined 
by 

q' = S(q,a) <S> q'a = Sa((qb)beD{a)) and 
1c = Qc for all c ^ a 
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252 C H A P T E R 8. CONSTRUCTION OF ASYNCHRONOUS AUTOMATA 

Thus, an a-transition q' = 6(q,a) is defined if and only if fia((qb)beD(a)) is defined; 
and in this case, the change affects only the local a-state. The accepted language is 
defined as above. 

8.2 Metivier 's Construction for Triangulated De
pendence Graphs 

Before giving the proof of Zielonka's theorem, which turns out to be rather technical, 
we consider here the much easier case of triangulated dependence graphs. We show 
that Metivier's construction can be extended from acyclic graphs to this case and 
that triangulated graphs represent the maximal graph class where this construction 
may be applied to. 

The aim of this section is to give a flavour of the behaviour of asynchronous 
automata and of the problems the general solution has to deal with, without the 
necessity of using the bounded time-stamping. 

We also think that this section may serve as the basis for a course on distributed 
automata, where the important aspect of asynchronous automata can be presented 
without having the time to present the general solution. 

Let us start with the paradigm behind Metivier's construction. The idea is that 
each component of the state set is associated with a single letter of the alphabet. 
Thus, we consider Q = Iloei: Q°- a s se* °^ sl°b a l states. The communication be
tween different components is realized as usual by defining for each a £ £ a set 
dom(o) C £ such that (a, b) £ I implies dom(o) fl dom(6) = 0. The main idea 
is to use a suitable linear ordering on the alphabet, i.e. we have £ = { a i , . . . , an} 
and ai < . . . < an. We now transmit the information between components in a 
fixed, directed way, by letting dom(a) = {6 € D(a) \ a < b}. The natural ques
tion is to determine the class of dependence graphs where this approach yields an 
asynchronous automaton. 

8.2.1 Triangulated Graphs 
An undirected graph G = (V, E) with vertex set V and edge set E is triangulated 
if all its chord-less cycles are of length three. Trivial examples are complete graphs 

(i.e. graphs where E = I „ I), or acyclic graphs. 

For u € V let E(u) denote the set of vertices adjacent to u, i.e. E(u) = {v € 
V | uv G E}. A perfect vertex elimination scheme is a linear ordering < of the 
vertices such that for all u e V the set {v e E(u) \ u < v} forms a clique (i.e. a 
complete subgraph). We may represent a perfect vertex elimination scheme by a 
list [vi,..., vn] such that «$ < Vj if and only if i < j . 

By induction on n it is easy to see that a graph having a perfect vertex elimi
nation scheme is triangulated. The converse is also true. This characterization of 
triangulated graphs is due to G. A. Dirac [67]. The result can be found e.g. in the 
textbook of M. C. Golumbic [125] [Thm. 4.1]. For convenience we sketch the proof: 
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8.2. M E T I V I E R ' S CONSTRUCTION 253 

let G = (V, E) be a triangulated graph. If G is a complete graph, then any ordering 
of the vertex set is a perfect vertex elimination scheme. Otherwise, let us prove by 
induction that there are at least two vertices c,d £ V such that cd £ E and E(c) 
as well as E(d) are cliques. 

Start with two vertices a,b £ V with ab £ E. Let S be some minimal separator 
of a, 6. This is any subset S C V of minimal cardinality with the property that 
removing 5 from G puts a and b in two different connected components Ca and Cb 
respectively. Since G is triangulated, an easy reflection shows that S is a (possibly 
empty) clique. 

Let Ga {Gb respectively) be the induced subgraph of G by Ca U S (Cb U 5* 
respectively). Either Ga (Gb respectively) is a complete graph or we apply the 
induction hypothesis in order to obtain a vertex c of Ga (d of Gb respectively), 
which does not belong to S and such that the set of vertices adjacent to c (d 
respectively) is a clique in Ga (Gb respectively). Note that all neighbors of c (d 
respectively) are contained in Ga (Gb respectively). Hence, E(c) and E(d) are both 
cliques of G. Since c, d £ S we also have cd £ E and the induction step follows. 
This completes the proof of Dirac's result. 

If G = (V, E) is acyclic, then any ordering which represents a topological sorting 
yields a perfect vertex elimination scheme. For a complete graph every order is a 
perfect vertex elimination scheme. Hence, the construction given below will apply 
to acyclic graphs and complete graphs as well. 

8.2.2 Metivier's Construction 

In [196] Y. Metivier gave an elegant and amazingly simple construction for asyn
chronous automata in the case of acyclic dependence alphabets (E, D) (see also the 
survey of D. Perrin [223]). The basic idea is to choose a tree (forest) structure and 
to move the distributed information to the top of the tree(s) as soon as available. 
We will show here that the construction applies to triangulated graphs, too. All we 
need is a perfect vertex elimination scheme, as defined in the previous subsection. 

Let (£,.D) be any triangulated dependence alphabet and let < be a linear or
dering of E such that for all a, b, c € E, a < b < c, (a, c) G D and (6, c) £ D, we have 
(a, b) € D, too. Thus, if E = { a 1 ; . . . , an} (n = |E|) is written in increasing order 
a\ < • • • < an, then [an,..., ai] is a perfect vertex elimination scheme of (E, D). 

Let r] : M(E, D) —> S be a homomorphism to a finite monoid S and L = 77_1(i?) 
for some subset R C S. We are going to construct an asynchronous automaton A 
recognizing L. 

The state set of A will be an n-fold direct product of S, n = |E|. First we 
define ordered products in S. Let V C E and sc 6 S, for all c 6 T. Define the 
ordered product I lcer *<= by ELer sc = sCl • • • sCm, if F = { c i , . . . , c m } , m > 0, with 
ci < • • • < cm . All products of elements of S used in the following will be ordered 
ones. 
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254 C H A P T E R 8. CONSTRUCTION OF ASYNCHRONOUS AUTOMATA 

Let now A = (YlaeS Qa, 6, qo, F) be defined by 

S : J ] Qa x £ - Y[ Qa, 
aeS agS 

where for every a £ E: 

Qa = S 

6(q, a) = q • a = q1 with qb — < 

( I I 9c) • v{a) if 6 = a 

(a,c)6£) 

1 if a < b, (a, b) e D 
qb otherwise 

Furthermore, let qQ = ( l ) a £ E and F = {(ga)agE 6 Ha€xQa. \ U qa € r){L)}. 
agE 

P r o p o s i t i o n 8.2.1 Let L G Rec(M) be recognized by the homomorphism r\ : 
M(E, D) —> S to the finite monoid S. Let A be the automaton defined above. 
Then A is asynchronous and we have L(A) = L. 

Proof: First we show that A is asynchronous. The write- and read-domain of a 
letter a G E is given by the index set {c G E | a < c and (a,c) G D}. Assume 
that for some a, b, c G E, a < b < c we have (a, c) G D and (6, c) e D. Then 
(a, b) G D follows, due to the ordering. Hence, if (a, 6) G / , then a and 6 have 
disjoint write- and read-domains. Thus, A is asynchronous. In particular, for any 
trace w G M(E, D), the global state q0 • w = <5((l)oei;, w) is well-defined. 

For (ga)aeE = 9o • w we show the following two invariants: 

1. a < b and (a, 6) G I imply qbri{a) = v(a) lb-

2. a < b < c, (a, b) G 7, and (a, c ) e B imply (ft, gc = qc qi,. 

In order to verify these invariants we need some alphabetic information. We observe 
that for each local state qa, a G E, there exists some subset r a C E with the 
following properties: qa is an element of the submonoid generated by 77(c), with 
c G T a , and for each c G r a there exists a chain a = ao < • • • < a^ = c, k > 0, such 
that (a;_i ,ai) G D for 1 < i < k. This crucial observation can be easily derived 
from the inductive definition of the transition function 5. 

Consider now a < b < c with (a, b) € I and Tb, Fc C £ as introduced above. 
Invariant (1) follows by showing that {a} x Vb C I. Invariant (2) follows by showing 
that Tb x r c C J, whenever (a, c) G D. 

For invariant (1) let b^ G Tb and b = bQ < • • • < bk, k > 0, such that (6j_i, h) G 
£> for 1 < i < k. Assume that we would have (a,bk) G D. Then k > 1 and 
(6fc_i,bfc) G -D implies (a, 6fc_i) G .D. We can continue this way and we arrive 
to (a,b0) G D (see also Figure 8.1). This is a contradiction to (a,b) G I. Thus, 
(o, bi) G I for all 1 < i < k; this fact will be used below, too. 
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8.2. M E T I V I E R ' S CONSTRUCTION 255 

Figure 8.1: Consequence of (a, bk) G D. 

For invariant (2) let (a, c) G D, bk G T^, cm G r c with b = b0 < • • • < bk 

and c = Co < ••• < c m , fc,m > 0, such that (&;_i,6j) G D and (cj_i,Cj) G D 
for 1 < i < k, 1 < j < m. We show by induction that (bi,Cj) G I for all i,j. 
Assume first that cm < bk. Then we have k > 1 (since 6 < c) and (cm,&fc) G D, 
(6fc_i, bk) G Z? imply (cm , bk-i) G £>. Hence we may assume bk < cm. Suppose next 
that m > 1. Then (6fc,cm) G D, ( c m _ 1 ; c m ) G D imply (6fc,cTO_!) G D. Hence, we 
may assume m = 0 and we obtain the following situation: 

a < b = &0 < • • • < 6fc < c, fc > 0. 

Finally, suppose that we would have (fcj, c) G D for some 1 < i < k. Since (a, c) £ D 
this implies (a, &i) G Z?, contradicting the fact mentioned in the proof of (1) above. 
Thus, both invariants (1) and (2) are valid. 

The proposition follows from the following claim: 

For (qa)aes = 1o • w we have J J qa = r)(w). 

The claim is satisfied for \w\ = 0 since q0 = (l)a6E- By induction assume that the 
claim holds for q = qo • w and let q' = q • a for some letter a G E. It is enough to 
show: 

( i r ^ ( a ) = ( n 9c)v(a)( n *)• 
a<c a<c, a<6, 

(a,c)ED (a,b)£I 

However, this last formula is immediate from the two invariants shown above. This 
completes the proof of the proposition. • 

The example below illustrates the construction for a dependence alphabet on 
four letters E = {a, b, c, d} with the following dependence relation D: 
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256 C H A P T E R 8. CONSTRUCTION OF ASYNCHRONOUS AUTOMATA 

The alphabet E can be ordered as a < b < c < d (note that [d, c, b, a] is a perfect 
vertex elimination scheme). Let 77 : M(E, D) —> 2 / n Z be a homomorphism comput
ing the length of a trace modulo n, n > 1. Then the construction for asynchronous 
automata given above yields e.g. the following transition mappings, together with 
some concrete computations in Z/roZ: 

= xa + Xb + xc + 1 mod n 

x\, + xc + 1 mod n 

xc + Xd + 1 mod n 

aiv) = xa + 1 mod n 
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8.2. ASYNCHRONOUS CELLULAR AUTOMATA 257 

% o , 
/ c 
V 

) = 

6(q0,a-

1 
0 

V 1 / 
/ i \ 

I -d) = 
I 

V 1 / 

6(qo, d — c —b —a) 

/ 4 \ 
0 
0 

R e m a r k 8.2.2 Note that as soon as the dependence graph contains a chordless 
cycle of length greater than three, the automaton constructed above is not asyn
chronous anymore. More precisely, for any ordering < of the alphabet E there exist 
letters a < b < c (on the cycle) satisfying (a, c) € D, (6, c) G D, but (a, 6) e / . In 
this case however, c belongs to both write- and read-domains of a and b. 

8.3 Asynchronous Cellular Automata for Recog
nizable Trace Languages 

In this section we give the general solution of constructing asynchronous automata 
for arbitrary (symmetric and reflexive) dependence alphabets. The presentation 
follows ideas from [277, 278, 45, 53, 46]. The main piece of work is to construct 
a suitable asynchronous mapping, as proposed in [45] (see also [53] for a corrected 
version). From an asynchronous mapping one can easily obtain a deterministic 
asynchronous cellular automaton, which furthermore can be easily transformed in a 
deterministic asynchronous equivalent automaton. This last step is not done here, 
since it has been already discussed in Chapter 7. 

8.3.1 Prefix Order for Traces 
Let us recall in this section some basic notions concerning prefixes of traces and 
ordering between them. We denote by < the partial (prefix) order given by u < v 
if v = ut for some t G M(E, D). As usual, for u, v € M(E, D), u < v if both u < v 
and v ^ u; we denote by u n v the greatest lower bound of u, v with respect to the 
prefix order. Whenever it exists, the least upper bound of u, v is denoted by u U v. 
Clearly, u U t exists if and only if u < w and v < w for some w G M(E, D). 

Another notation used frequently is max(t) for t G M(E,Z>), denoting the la-
bellings of the maximal elements of the partial order represented by t, i.e. max(t) = 
{a G E | 3x G E* : xa G <£-1(£)}, for the canonical surjective homomorphism 
<p : E* —• M(E,.D). Since the elements of max(i) are pairwise independent and 
therefore commute, max(t) can also be viewed as a trace. 

The following definition introduces a basic notation for studying properties of 
the prefix order. 
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258 C H A P T E R 8. CONSTRUCTION OF ASYNCHRONOUS AUTOMATA 

Definition 8.3.1 Let t € M(T,D), A C S . We define the least prefix oft which 
contains all letters from A by 

dA{t) = H{u < t | Va € A : |u|„ = | i |0} 

For i , B C E we write <9A,B(£) instead of dA(dB(t)). Additionally, whenever A = 
{a} we write directly da(t) (resp. da,B{i) etc.). 

The following lemma gives an equivalent characterization of dA(t). 

L e m m a 8.3.2 Lett e M ( E , D ) and ACT. Then 

dA(t) = U{u < t | max(u) C A}. 

Proof: Clearly m.a,x(dA(t)) C A, hence dA(t) < u{u < t | max(u) C A}. For the 
other direction, consider u, v < t such that max(u) C A and |u|„ = \t\a, for every 
a £ A. Let x, y € M(£, .D) be such that t = ux = vy and let us apply Levi's lemma 
to this equation. We obtain traces p,r,s 6 M(E, D) with alph(r) x alph(s) C I and 
u = pr, v = ps. 

Finally, max(u) C A implies max(r) C A, hence r / l would contradict the 
definition of v. C] 

R e m a r k 8.3.3 Note that for every ACT,, the prefix dA(t) is equal to UaeAda(t). 
Furthermore, for every t € M(T,D) we have t = ds(t) = 9max(t)(^)-

The following proposition summarizes some basic properties of dA(t) prefixes. 
The easy proof is omitted and left to the reader. 

Proposit ion 8.3.4 Let t,u,v £ M(E,D), A, B C T and aCT. We have 

1. t <u implies dA(t) < dA{u). 

2. dA,A(t) = dA{t). 

3.ACB implies both dA(t) < dB{t) and dA(t) = dA>B{t) = dBA{t). 

4- dA(tu) = dAur>(B){t)dA{u), where B = &\ph{dA{u)). Especially we have 
da(ta) = dD{a)(t)a. 

5. IfuUv exists, then dA(u) UdA(v) exists, too, and dA(u) U dA(v) = dA(u\Jv). 

6- daiA(t) = Ub£Adatb(t). Hence, for A ^ $ we have da,A(t) — da,b(t) for some 
be A. 

7. For A + %, da(t) < dA(t) implies da(t) = daib(t) for some b e A. 

In the remaining part of this section we consider a typical situation which will 
be encountered in the context of asynchronous mappings. Briefly speaking, we 
are interested in the interconnection between two prefixes dA(t),dB(t) of a trace 
t = dAuB{t). 

 T
he

 B
oo

k 
of

 T
ra

ce
s 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 L
A

 T
R

O
B

E
 U

N
IV

E
R

SI
T

Y
 o

n 
03

/0
2/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.



8.3. DETERMINISTIC ASYNCHRONOUS CELLULAR AUTOMATA 259 

Proposit ion 8.3.5 Let A, B C E and t G M(£,£>) such that t = dAuB(t). We 
denote in the following tA = dA(t), tB = dB(t). Consider traces r,u,v as given by 
Levi's lemma such that r = tA n tB, tA = ru, tB = rv with alph(u) x alph(«) C I. 
Then with C = {c 6 E | dc(tA) = 9c(tB)} *^e following assertions hold: 

1. For every a G E we have da(tA) < da(tB) if and only if a G alph('u). Moreover, 
a G alph(u) implies da(tA) = da(r). 

2. r = dc(t) = dc(tA) = dc{tB). In particular, max(r) C C. 

3. £ \ C = alph(m;). 

Proof: 

1. Use Proposition 8.3.4(4) and alph(it) x alph(v) C I. 

2. With the definition of C and Proposition 8.3.4(5) it is easily seen that we have 
both dc{t) = dc{tA) = dc{tB) and dc(t) < r. 

If r / 1 consider a G max(r) and let us assume da(tA) < da(tB). With (l) we 
obtain a G alph(u). Furthermore, D(a) PI alph(w) / 0, since with Proposition 
8.3.4(4) 

ru = dA(ru) = dALsD(B){r)dA{u), where B - alph(9 / t(w)). 

hence r = dAuD^B-)(r) and u = dA{u), and thus max(r) C i U D(alph(u)). 
Now, with a G A one obtains by Proposition 8.3.4(3) da(tA) = da(t), thus 
contradicting the assumption da(tA) < da(tB). 

Hence, we obtained a contradiction to alph(w) x alph(v) C I. By symmetry, 
dai^A) = da(tB), which yields a G C and finally r = 9m a x( r)(r) < dc(r) < 

dc(t). 

3. Follows directly with the definition of C together with (1). 

• 

Corollary 8.3.6 Let t G M(E,D) and 0 / A , B C E, and suppose that the sets 
Ca,b = {c G E | dc,a(t) = 9Ci(,(i)} are known for all a,b € AL> B. Then we are able 
to determine for every c G E which of the following situations occurs: 

• dc<A(t) = dc,B(t) 

• dCtA(t) < dCtB(t) 

• dc>B{t) < dCtA(t) 
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Proof: Assume a,b £ Al) B and let r, u, v £ M(E,D) such that da(t) = ru, 
db(t) = rv with alph(w) x alph(w) C I. Applying Proposition 8.3.5(1) we obtain 
dc,a(t) < dc^{t) if and only if c £ alph(v). By Proposition 8.3.5(3) we obtain 
that c £ alph(w) implies that c, b belong to the same connected component of 
£ \ Cati,- Furthermore, c and a can not be connected by a path in E \ C0](,, since 
alph(u) x arph(ij) C / . 

Applying this argument to all pairs (a, a') £ A x A we determine a £ A such 
that dCiA(t) = 9c,a(i)- An analogous calculation yields 6 with 9Cls(i) = dc^(t) and 
finally we have to compare 9c,a(*) a n d dc,b(t)- • 

8.3.2 Asynchronous Mappings 

The aim of this section is to introduce the notion of asynchronous mapping due to 
Cori and Metivier and to show the close connection to asynchronous cellular au
tomata. Briefly speaking, asynchronous mappings are mappings which can be com
puted stepwise in a distributed way, thus being easily transformed into an equivalent 
asynchronous cellular automaton (with respect to recognition). 

Definition 8.3.7 A mapping fi : M(E,Z)) —> S is called asynchronous if for any 
t £ M(E, D), a £ E and A, B C E the following conditions are satisfied. 

• [i{dr)(a)(t)) and the letter a uniquely determine the value n(da(ta)). 

• £t((9,t(t)) and (j,(dg(t)) uniquely determine the value n(dAuB(t))-

The relevance of asynchronous mappings is given by the following proposition, 
which establishes the connection to asynchronous cellular automata. Note that in 
general, an asynchronous mapping fi : M(E, D) —> S does not give any natural 
monoid automaton structure. This is due to the fact that for t / dD(a){t) the value 
of ii{t) does not suffice for computing n(ta), where a £ E. 

However, given (/x(dt,(£)))6gmax(t): °ne can compute fi(ta), since for A = max(t)n 
7(a) we have ta = <9A(£) U da(ta). Furthermore, /X(9A(£)) is computable from 
(fi(db(t)))beA (by the 2nd condition in Definition 8.3.7), whereas fi(da(ta)) is deter
mined analogously using both conditions by a and (/4<M*)))&er>(a)' Finally, fi(ta) 
can be computed using again the 2nd condition (note that 3^(4) = ^ ( i a ) ) . 

Proposit ion 8.3.8 Let fi : M(E, D) —> S be an asynchronous mapping and R C S 
a subset of S. Then there exists an asynchronous cellular automaton A^ such that 
L(Al,) = n-1(R). 

Proof: Let us define A^ — ((Qa)ae£> (*a)aes, 1o,F) by 

Qa = {li{da(t))\teM{-£,D)}, a e E 

*((/i(0a(t)))«6E,&) = (^(Sa(*6)))a€E 
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8.3. DETERMINISTIC ASYNCHRONOUS CELLULAR AUTOMATA 261 

With da(tb) = da(t) for a ^ 6 it is easily seen that a 6-transition merely changes the 
local 6-state. Moreover, with db(tb) = 9D(&)(<)& a n d due to the ability of computing 
n(db(tb)) from (n(da{t)))aeD(b) a n d b we obtain that the change of the local b-
state depends only on the local states corresponding to the subset D(b). Hence, 
S is well-defined and the automaton is asynchronous cellular. We accomplish the 
construction by letting q0 = ( / i ( l ) ) a € S and F = {(v(da(t)))aei: \ t 6 /x_1(i?)}. 

In order to show £(-4M) = n~1(R) note that t € I<(-4.M) if and only if for some 
u G M-1(-R), 

fx{da(t)) = n(da(u)), for all a G £ . 

Finally, with t = d^ (t) we note that /i(t) (and fi(u) as well) is determined by 
(/u(9a(t)))a6s! hence it follows that /i(t) = n{u). • 

8.3.3 Asynchronous Mappings for Recognizable Trace Lan
guages 

The first aim in this section is to exhibit an asynchronous mapping v indepen
dent from the given recognizable trace language, which corresponds to a bounded 
time-stamping. This mapping contains crucial information about the prefix order 
between prefixes da(t), a € E, needed in order to be able to establish actuality of 
information. Concretely, the value v{t) contains enough information in order to 
compute the set C = {c G E | dc,A{t) = dc>B{t)} for any t G M(E, D), A , B C S . 

The main idea for the construction consists in labelling trace prefixes of the form 
dx(t), x G E, in such a way that for a, b, c G E the equality dc>a(t) = dc^{t) holds if 
and only if the labellings of these two traces coincide. 

Definition 8.3.9 Let v : M(E,D) —> N E x E be defined inductively as follows: 

• u(l)(a,b) = 0. 

• Ift j= da,b(t) then v(t)(a,b) = i/(datb(t))(a,a). 

• If t = da(t) and t ^ 1 then 

i/(t)(a, a) = min{n > 0 | n f̂  v(t)(a, c) for all c ^ a} 

Lemma 8.3.10 The mapping v : M(E,D) —» N S x E is well-defined and satisfies 
for every t € M(E, D), a, b, c G E, and A , J ? C S the following properties: 

1. 0 < u{t)(a,b) < |E|. 

2. v(t)(a,b) = v(db(t)){a,a) = v(da>b(t))(a,a). 

3. v(t)(a,b) = 0 is equivalent to dab(t) = 1. 

4- dc,a{t) = dc,b{t) is equivalent to v(t){c,a) = v(t)(c,b). 

5- dc^A{t) — 9C ,B(*) *S equivalent to ^(9^(t))(c, c) = i/(ds(i))(c, c). 
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Proof: 

1. Follows directly from \{n > 0 | n ^ i/(t)(a,c) for every c ^ a}\ < |E| — 1. 

2. Obvious. 

3. Follows directly from v(t)(a, b) = v(datb(t)){a, a) using the definition of v. 

4. The implication from left to right is clear due to (2). Conversely, assume 
w.l.o.g. that dCta(t) < dc,b{t)- By Proposition 8.3.5 we have with r = da(t) n 
dCtb(t) the equality dc<a(t) = dc(r). Hence, for some d e max(r) (for r / 1 ) we 
obtain dc,a{t) = dCid(r) = dc,d(dc,b{t)) (= dCtd(da(t))). Note also that d ^ c, 
since otherwise 9C;a(t) = 9Cjb(t). 

Finally, the definition of v yields: 

v(t)(c,b) = i/(8c,6(i))(c,c) V i/(ac,6(t))(c,d) = ^(9c,d(9c,6(i)))(c,c), 

thus contradicting the hypothesis i/(t)(c,a) = v(t)(c,b). 

5. Assume that 7l ,B / I (otherwise we use (3) and the definition of v). For 
suitable a £ A, b e B we have 5C IA(£) = dc,a{t) and 9C )B(^) = 9c^{t). Together 
with 

u(dA(t))(c,c) (=} i / (0M( t ) )(C ,C) = i/(0c,o(t))(C)c) ® i/(t)(c,a), 

(i/(i)(c, 6) = i/(<9g(t))(c, c) analogously) and (4) the result follows immediately. 

• 

Remark 8.3.11 Note that the value of v(t) allows to determine whether da(t) < 
db(t) holds, with a, b 6 E. To see this note that da(t) < db(t) is equivalent to 
da(t) = 9a}b(t), hence to i>(t)(a,a) = v{t){a,b) by Lemma 8.3.10. 

For the asynchronous cellular automaton Av defined at the beginning of the 
section this implies the following: given a trace t and the local states qx := S(qo, t)x, 
x 6 {a, 6}, one can determine if da(t) < db(t) or db(t) < da(t) holds, or da(t) and 
db(t) are incomparable, since: 

8a{t) < db(t) <=^ 

v{da{t)){a, a) 8 3 = (2) u(t){a, a) = u(t)(a, b) 8 ' 3 = (2) v(db(t))(a, a) <=> 
qa(a,a) = qb(a,a) 

Proposit ion 8.3.12 The mapping v is asynchronous. 
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Proof: Let us first show that for any t € M(E, D), a € E the value i/(c*£>(a)(f)) and 
the letter a suffice for determining v(da(ta)). With Lemma 8.3.10(2) we directly 
obtain for b, c g E with c ^ a resp. c = a / 6, 

i/(9a(to))(6,c) = i/(0D(a)(t))(6,c), 

since db^a(ta) = db,c(dD(a)(t)a) = 9&)C(0D(a)(*)), r e s P- db,a,a{ta) = db{dD(a)(t)
a) = 

db,D(a){t) = dbia{dD(a)(t)). 
Finally, z/(da(ta))(a, a) = min{n > 0 | n / v(da(ta))(a, d),d ^ a} , which 

is computable using v(da(ta))(a,d) = v(dD^{t))(a,d) (note that a ^ d implies 

da,d,D(a) (*) = 9a,d,a(to))-
Now assume that i/(9^(t)) and v{dg(t)) are given, with A,-B C E. Due to 

Lemma 8.3.10(2) it suffices to show that using v(dA{t)), f (9s( t ) ) we are able to 
determine whether for a given c 6 E, 

dc,B(t) < dc,A{t)( = dc,AuB(t)) or dCfA(t) < 9 C ,B(*) ( = dc.AusW) 

holds. By Corollary 8.3.6 it suffices to know the sets Caib = {c 6 E | dCta(t) = 
&c,b(t)} f ° r a,b £ AU B. This can be achieved using the information provided by 

Q q -i f)(')\ 

^ ( 9 A ( £ ) ) and i/(dB(t)), since v{t)(c, a) = i/(9/i(t))(c, a) for a 6 A (analogously 
for B) and 

9e,a(t) = ac,6(*) 8 ' < ^ 4 ) l /(*)(c,a) = I/(t)(c,6) 

D 

The information provided by Zielonka's time-stamping is sufficient in order to 
obtain a more complex structural information about a trace. More precisely, with 
the knowledge of v(t) we are able to compute the second approximation introduced 
by Cori and Metivier in [45] and used in the construction of asynchronous cellular 
automata. The second approximation Aa(t) of a trace t is the directed graph with 
vertex set E x E and edge set {((a, c), (6, d)) | da<c{t) < db^{t)}. However, Cori, 
Metivier and Zielonka showed that the computation of the mapping v provides suffi
cient information about trace prefixes in order to obtain an asynchronous mapping 
[46]. Since the second approximation is an interesting information for itself, we 
show in the following how to compute it. 

First, let us show the following property for A2(i), which is a stronger variant 
of the first property required for asynchronous mappings. 

L e m m a 8.3.13 Let t 6 M(E,Z)) and a e E. Then the second approximation 
A2(ta) is computable using A2(i) and the letter a. 

Proof: Let 6, c e E. Then we have 

{ db,c(t) if c ^ a 

db,D{a)(t) i f 6 / c = a 
dD(a)(t)a = da(ta) if 6 = c = a 
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Note that if b ^ c = a holds, then we can use A2(t) for computing a letter c' G D{a) 
with #(,,£>(«)(*) = db:c'(t). 

Finally, we note that dD^ {t)a is not a prefix of t; conversely, a prefix of t is 
a prefix of dD(a)(t)

a if and only if it is a prefix of dD^{t). To conclude, we have 
dD(x){t)x < dD(y)(t)y if and only if x = y. U 

Proposit ion 8.3.14 Let t G M(E,Z>) and 4 , B C E be given and denote t± = 
<9A(*)> *2 = 9g(t), r = ti Ht2, ti = ru and t2 = rv with u, v G M(E,D) , alph(u) x 
alph(«) C / . 

Let n(ti) = (i>(ti), A2(ti)), i = 1,2. Then we can compute the second approxi
mation A2(£) from fi(ti), ufa). 

Proof: Let C = {c G E | d ^ ) = de(t2)}
 8 = 1 0 {c G E | i/(«i)(c,c) = i/(t2)(c,c)}. 

For convenience we use the following notations: for x, y G E we denote (a;, y) a 
u-point if c ^ c ^ i ) is a strict prefix of dXtV{t\), i.e. ft^c^i) < ^x,i/(ii); (x>y) is a 

u-point if dx^c{t2) < 9Xty(t2). Otherwise, (x,y) is r-point. The above notations 
illustrate the graphical meaning, i.e. the position of the maximal vertex oidXtV{t) in 
the subgraph of the dependence graph which corresponds to u, v, or r respectively. 

Note that if C = 0 then (x, y) is a it-point if and only if dx,y(ti) ^ 1, hence if 
u(ti)(x, y) ^ 0; analogously, (x, y) is a v-point if and only if v{t2){x,y) ^ 0 and 
finally, (x, y) is a r-point if and only if v(ti)(x, y) = v{t2){x, y) = 0. 

If C 7̂  0, then with Corollary 8.3.6 we may use v(t{) in order to determine 
whether (x,y) is a tt-point (resp. ^(i2) for a v-point). We assume in the following 
C ^ 0. Observe that for a, c G E, 

datC(ti) if (a,c) is a M-point 
Jt) = { aa,c(*2) if (a, c) is a u-point 

U da,c(U) < da(r) if (o, c) is a r-point 
i= l , 2 

Furthermore, if (a, c) is a r-point, then we have to distinguish if (c, c) is a u-, v-
or r-point. Note that we have da>c(t) = 50iC(ti), if (c, c) is a w-point, respectively 
daA*) = aa,c(*2), if (c, c) is a w-point and finally, da<c(t) = <9a,c(*i) (* = 1, 2), if (c, c) 
is a r-point (hence, c G C). 

Consider now for a,b,c,d G E the question, whether or not 9a,c(i) < &b,d(t) 
holds and suppose (a, c) is a a-point and (6, d) is a /3-point, where a, /3 G {w, v, r } . 

First, observe that if {a,/3} = {u, v} or (/? = r and a 7̂  r ) , then the answer 
is negative. Else, if a = /3, then we can provide an answer using either A 2 ( t i ) or 
A 2 ( i 2 ) . 

We now consider the situation a = r, f3 = u (the case (3 = v can be handled 
analogously). Now, if (c, c) is either a u- or a r-point, then we can use again A2(<i) 
(see remark above) and check da^c{t\) < df,td(ti). 

Finally, we consider the case where a = r, (3 = u and (c, c) is a v-point, hence 
da,c{t) = 9a,c(*2)- It suffices to show that a letter / G E exists effectively such that 
da,c(t2) = 9o,/(*i) holds. 
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8.3. DETERMINISTIC ASYNCHRONOUS CELLULAR AUTOMATA 265 

Assume 9a,c(t2) ^ 1 (otherwise, da,c(ti) = 1) too, and we choose / = c). Recall 
f = 9c(t) = dc{t\) = dc(t2) and consider the trace r ' = r n 9c(t2), with r = r'x, 
dcfo) = r'y and alph(a;) x alph(y) C I (see also Figure 8.2). 

Figure 8.2: a = r, (5 = u and (c, c) is a u-point. 

With 9a,c(t2) = da,c{t) < 9a{r) we immediately obtain 9aiC(t2) = <9a(r'), in 
particular r' ^ 1. Let C = {e 6 E | 9e{9c(t2)) = 9 e ( r )} , hence with Proposition 
8.3.5 we obtain C" 3 max(r') =̂  0. Furthermore, with Proposition 8.3.4 we have 
9a,c{t2) — da(r') = daj(r') = daj(r) for some / e max(r'), hence / e C. We 
show df(r) = df(ti). For this, note that by definition of r', we have / ^ alph(a;). 
Moreover, due to y ^ 1 (otherwise we contradict (c,c) being a w-point), together 
with / € max(r ') , we obtain / € Z)(alph(y)), hence / £ _D(alph(v)). Thus, since 
alph(w) x alph(u) C I, we deduce / ^ alph(u). Finally, since i i = r'xu we immedi
ately conclude 9/ ( t i ) = df(r') = df(r). 

A letter / with 9aiC(t2) = 9aj{t{) can now be computed effectively as follows: 
using v(ti), v(t2) we first determine the sets C and alph(v) (see Corollary 8.3.6). 
Using again v{t2) we compute C". Finally, using v{t\) we choose / € Cn£)(alph(t;)) 
such that da<c(ti) < 9aj(ti). We obtain finally 

0a,/(ti) /eD(lLph(, , ) )
 S o i /( r) 'IF' a„i/iC(t2) < 9a>c(t2) < a„iC(t2) = a ^ ) < ^ ( t o 

a 

In the remaining of this section we accomplish the construction of an asyn
chronous mapping \i : M(£,.D) —> S for a given trace language L € Rec(M), such 
that L = fi~xn(L). The mapping /x is obtained by augmenting the basic mapping v 
by a component depending on a homomorphism to a finite monoid recognizing L. 
For this new component we use Zielonka's V notation. 
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Definition 8.3.15 Let t G M(E,£»), A C E . By VA{t) we denote the maximal 
suffix oft containing letters from A, only, i.e. the unique suffix s oft witht = dA(t)s, 
where A = E\A. 

Remark 8.3.16 It follows easily that T7AVB(t) = VAnB(t), for every t G M(E,Z>), 
A,BC E. 

The next proposition shows that the mapping associating with each trace t the 
tuple C^A{t))Acs is asynchronous. 

Proposit ion 8.3.17 We have 

1. Let t1:t2 G M(E,£>), ACT,. Then 

VA(t1t2) = VAnI{B)(t1)VA(i2), 

where B = alph(0^(i2))-

2. Let t e M(E, D), a € E. Then 

yA{da{ta)) = { ZA{dD{4t))a
(^

 f°,raeA 
AK aV " \ VAn/(o)(9i5(a)(<)) else 

3. Let t e M(E,I>), A,B C £ such that t = dAuB(t). With the notations of 
Proposition 8.3.5 we have for every £ C S 

Vfi(t) = V£n/(ir)(tA)V iSn(5(<i3), where F = alph(%(w)). 

Proof: 

1. By Proposition 8.3.4(4) we obtain dA(tit2) = 9AuD^(ti)dA(t2). With Re
mark 8.3.16 and the cancellative property of M(£, D) the result immediately 
follows. 

2. Is a direct consequence of (1) for ti = dr>{a){t), ti = a. 

3. First note that for E C E and G :- alph(%(uu)) D F, 

V B ( t ) = VEnI{G)(r)VE(uv) = VEnI{a)(r)VE(u)VE(v), 

where the last equality is due to alph(w) x alph('u) C / . Let us now consider 
the right side of the claimed identity, noting that dEuD/FJu) = dE(u) (since 
F C alph(v)): 

• VB n j (F)( tA) = VB n / ( G )(r-)VB(u) 
• Let H = alph(9jr;uC(u)). Then, 

V £ n c ( f s ) = VEncnI(H)(r)VEnc(v) = V B (u) , 

due to max(r) C C and VQ{V) = v by Proposition 8.3.5, together with 
Remark 8.3.16. 
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Corollary 8.3.18 Let N be a finite monoid and rj : M(E,D) —> N a homomor-
phism. Let S be the finite set 

S = {(>(*)> MVA(*)))ACS) I * e M(E, D)} 

Then the mapping \x : M(E, D) —> S, //(*) = {v{t), (»7(Vi(t)))/iCE) ** asynchronous 
and the homomorphism n factorizes through \x. 

Proof: The mapping /x is asynchronous by Propositions 8.3.12, 8.3.17. Since t = 
Vs( i ) for any t € M(E,D) , fi(t) = n{t') implies n(t) = r](t'), hence the assertion. 

D 

Main Theorem 8.3.19 Let D C E x E be a symmetric and reflexive dependence 
relation and L C M(E, D) a recognizable trace language. Then there exists a deter
ministic finite asynchronous cellular automaton recognizing L. 

Proof: Corollary 8.3.18 provides an asynchronous mapping with finite image such 
that L = / i _ 1 p(L) . The asynchronous cellular automaton A^ constructed in Propo
sition 8.3.8 accepts exactly L. • 

8.4 Concluding Remarks 

Relating the algebraic recognizability of trace languages to recognizability by de
vices with distributed control has been a subject of considerable efforts during 
the eighties. Very interesting constructions providing partial solutions have been 
given, like C. Duboc's mixed products of automata [75] or Y. Metivier's solution for 
acyclic dependence graphs [196], presented in a generalized form in Section 8.2. Of 
course, the most important contribution is W. Zielonka's solution for the general 
case [277, 278] (see also [45, 46, 53]). The construction given by Zielonka is involved 
and the question, whether a simpler construction exists, is still of actuality. 

The importance of constructing asynchronous automata is also underlined by 
applications, where automata of small size are highly required. Considerations con
cerning efficient (and simpler) constructions are also the topic of two kinds of cur
rent contributions. The first one concerns modular constructions of asynchronous 
automata, based on concurrent rational representations of recognizable trace lan
guages, and yields non-deterministic asynchronous automata [228]. The second one 
deals also with a classical approach and can be regarded as a completion of the 
first one: determinization of asynchronous automata. The inherent difficulty of the 
problem of constructing deterministic asynchronous automata is also suggested by 
both determinization procedures given recently by Klarlund et. al. [154] and by the 
second author [198]. 
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