
Chapter 8

Construction of
Asynchronous Automata

Volker Diekert Anca Muscholl
Universitat Stuttgart , Institut fur Informatik

Breitwiesenstr. 20-22, 70565 Stuttgart , Germany
{diekert,muscholl}<3 i n f o r m a t i k . u n i - s t u t t g a r t . d e

Contents

8.1 Introduct ion 249

8.2 Met iv ier ' s Construct ion for Triangulated D e p e n d e n c e
Graphs 252

8.2.1 Triangulated Graphs 252

8.2.2 Metivier's Construction 253

8.3 Asynchronous Cellular A u t o m a t a for Recognizable
Trace Languages 257

8.3.1 Prefix Order for Traces 257

8.3.2 Asynchronous Mappings 260

8.3.3 Asynchronous Mappings for Recognizable Trace
Languages 261

8.4 Conc luding Remarks 267

8.1 Introduction
In th is chap te r we consider recognizable t race languages from the viewpoint of
au toma ta - theo re t i c a l character iza t ions . We use t he asynchronous (cellular) a u t o m a
ton , which is character ized by a d i s t r ibu ted control s t ruc tu re . A detai led investi
ga t ion a b o u t these a u t o m a t a and their control s t ruc tures is given in C h a p t e r 7.

249

 T
he

 B
oo

k
of

 T
ra

ce
s

D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 L
A

 T
R

O
B

E
 U

N
IV

E
R

SI
T

Y
 o

n
03

/0
2/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.

http://informatik.uni-stuttgart.de

250 C H A P T E R 8. CONSTRUCTION OF ASYNCHRONOUS AUTOMATA

By Zielonka's theorem [277, 278], both, deterministic asynchronous automata (an
exclusive-read-exclusive-write model) and deterministic cellular asynchronous au
tomata (a concurrent-read-owner-write model) characterize recognizability of trace
languages precisely. This characterization is in fact one of the major contribu
tions in the theory of Mazurkiewicz traces, due to the non-interleaving semantics
of asynchronous (cellular) automata.

Zielonka's construction starts with a trace language recognized by a homomor-
phism to a finite monoid, and it yields a deterministic asynchronous cellular automa
ton. Its basic component is a bounded time-stamping which allows to determine
the actuality of information received in a distributed way.

A crucial aspect of Zielonka's construction is given however by the notion of
asynchronous mapping, which will be presented in Section 8.3.2. Asynchronous
mappings, originally introduced by R. Cori and Y. Metivier [45] (see also [53]),
are mappings which can be computed in a distributed manner. This property
makes them directly translatable into deterministic asynchronous cellular automata.
In Zielonka's original construction asynchronous mappings appear implicitly, only.
Once one has constructed a deterministic asynchronous cellular automaton, the
translation to an asynchronous automaton (as originally defined by Zielonka) is
straightforward. The difference between both models is of minor importance here.
The polynomial-time transformations from asynchronous cellular automata into
equivalent asynchronous automata and vice-versa have been already discussed in
Chapter 7, see also e.g. [227, 229].

The question whether a substantially simpler construction for Zielonka's theorem
exists, is still open. Recently, two determinization constructions for asynchronous
(cellular) automata have been presented [154, 198], both still relying on Zielonka's
time-stamping function. So far, only in the special case of acyclic dependence graphs
a simpler solution is known: in [196] Y. Metivier exhibited a surprisingly elegant
construction which provides in a natural way deterministic asynchronous automata.
The drawback of this construction is the fact that the hypothesis of an acyclic
dependence relation is a strong restriction, which is often violated. In fact, even the
special case of complete dependence, i.e. the free monoid, is not included. Following
the presentation of [63] we generalize in the next section Metivier's construction to
the larger class of triangulated graphs. From a practical point of view, this means
that by adding sufficient dependence, i.e. triangulating in a dependence alphabet,
we can obtain simple deterministic asynchronous automata for every recognizable
trace languages, by loosing some concurrency, only.

We conclude this section by fixing the notations used in this chapter, which are
in fact the standard ones.

By (E, D) we denote a finite dependence alphabet, with E being a finite alphabet
and D C E x E a reflexive and symmetric relation called dependence relation.
The complementary relation I = (E x E) \ D is called independence relation. The
monoid of finite traces, M(E,D) , is defined as a quotient monoid with respect to
the congruence relation induced by I, i.e., M(S, D) = E*/{ ab = ba \ (a, 6) G I}.

Recognizability for trace languages can be defined by recognizing homomor-

 T
he

 B
oo

k
of

 T
ra

ce
s

D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 L
A

 T
R

O
B

E
 U

N
IV

E
R

SI
T

Y
 o

n
03

/0
2/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.

8.1. INTRODUCTION 251

phisms: a trace language L C M(E, D) is recognizable if there exists a finite monoid
S and a homomorphism r\ : M(E, D) —> S recognizing L, i.e. satisfying L = r]~1r](L).
Alternatively, by Zielonka's characterization theorem, recognizability can be defined
by means of asynchronous (cellular) automata. (We shall work here with determin
istic automata, only.) We denote the family of recognizable trace languages by
Rec(M(E,L>)) (or Rec(M) for short).

Definition 8.1.1 An asynchronous automaton A is a tuple

m

•A=(Y[Qi,(6a)aex,q0,F)
i = l

satisfying the following conditions:

• The global state set Q = YITLi Qi *s a direct product of local states sets Qi,
1 < i < m..

• Each letter a € £ has an associated domain dom(a) C { l , . . . , m } such that
for all (a, b) € I we have dom(a) D dom(b) = 0.

• Each letter a 6 E has a (partially defined) local transition function 6a :
ILedomfa)^ -* IliedomCa)^- A 9^bal transition step q' = 5(q,a), q =
(qi)i<i<m,q' = {q'i)i<i<m € Q, is defined if and only if <5a((ft)iedom(a)) is
defined. In this case only the components of the domain of a change, i. e. we
have

1. q'j = qj if j $ dom(a)

%• (l'i)iedom(a) = 8a((qi)iedom(a))

The language accepted by A is L(A) = {t € M(E, D) | S(q0,i) £ F}.

Note that asynchronous automata enable concurrent transitions, since write- and
read-domains of independent letters do not overlap. They can be seen as EREW
(exclusive-read-exclusive-write) devices, whereas asynchronous cellular automata,
which are defined in the following, correspond to the CROW (concurrent-read-
owner-write) type.

Definition 8.1.2 An asynchronous cellular automaton A is a tuple

A = ((Q a) a e E , (5 a) a e E , 9 0 , F)

For each letter a 6 E a set of local states Qa and a (partially defined) local transition
function 6a : (YlbeDla) Qb) —* Qa are given. Further, q0 e Ilaex: Qa denotes the
global initial state and F C Hags Qa denotes the set of final global states. The
(partially defined) global transition function 6 : Y\aPY: Qa x E —> f T _ s Qa is defined
by

q' = S(q,a) <S> q'a = Sa((qb)beD{a)) and
1c = Qc for all c ^ a

 T
he

 B
oo

k
of

 T
ra

ce
s

D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 L
A

 T
R

O
B

E
 U

N
IV

E
R

SI
T

Y
 o

n
03

/0
2/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.

252 C H A P T E R 8. CONSTRUCTION OF ASYNCHRONOUS AUTOMATA

Thus, an a-transition q' = 6(q,a) is defined if and only if fia((qb)beD(a)) is defined;
and in this case, the change affects only the local a-state. The accepted language is
defined as above.

8.2 Metivier 's Construction for Triangulated De
pendence Graphs

Before giving the proof of Zielonka's theorem, which turns out to be rather technical,
we consider here the much easier case of triangulated dependence graphs. We show
that Metivier's construction can be extended from acyclic graphs to this case and
that triangulated graphs represent the maximal graph class where this construction
may be applied to.

The aim of this section is to give a flavour of the behaviour of asynchronous
automata and of the problems the general solution has to deal with, without the
necessity of using the bounded time-stamping.

We also think that this section may serve as the basis for a course on distributed
automata, where the important aspect of asynchronous automata can be presented
without having the time to present the general solution.

Let us start with the paradigm behind Metivier's construction. The idea is that
each component of the state set is associated with a single letter of the alphabet.
Thus, we consider Q = Iloei: Q°- a s se* °^ sl°b a l states. The communication be
tween different components is realized as usual by defining for each a £ £ a set
dom(o) C £ such that (a, b) £ I implies dom(o) fl dom(6) = 0. The main idea
is to use a suitable linear ordering on the alphabet, i.e. we have £ = { a i , . . . , an}
and ai < . . . < an. We now transmit the information between components in a
fixed, directed way, by letting dom(a) = {6 € D(a) \ a < b}. The natural ques
tion is to determine the class of dependence graphs where this approach yields an
asynchronous automaton.

8.2.1 Triangulated Graphs
An undirected graph G = (V, E) with vertex set V and edge set E is triangulated
if all its chord-less cycles are of length three. Trivial examples are complete graphs

(i.e. graphs where E = I „ I), or acyclic graphs.

For u € V let E(u) denote the set of vertices adjacent to u, i.e. E(u) = {v €
V | uv G E}. A perfect vertex elimination scheme is a linear ordering < of the
vertices such that for all u e V the set {v e E(u) \ u < v} forms a clique (i.e. a
complete subgraph). We may represent a perfect vertex elimination scheme by a
list [vi,..., vn] such that «$ < Vj if and only if i < j .

By induction on n it is easy to see that a graph having a perfect vertex elimi
nation scheme is triangulated. The converse is also true. This characterization of
triangulated graphs is due to G. A. Dirac [67]. The result can be found e.g. in the
textbook of M. C. Golumbic [125] [Thm. 4.1]. For convenience we sketch the proof:

 T
he

 B
oo

k
of

 T
ra

ce
s

D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 L
A

 T
R

O
B

E
 U

N
IV

E
R

SI
T

Y
 o

n
03

/0
2/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.

8.2. M E T I V I E R ' S CONSTRUCTION 253

let G = (V, E) be a triangulated graph. If G is a complete graph, then any ordering
of the vertex set is a perfect vertex elimination scheme. Otherwise, let us prove by
induction that there are at least two vertices c,d £ V such that cd £ E and E(c)
as well as E(d) are cliques.

Start with two vertices a,b £ V with ab £ E. Let S be some minimal separator
of a, 6. This is any subset S C V of minimal cardinality with the property that
removing 5 from G puts a and b in two different connected components Ca and Cb
respectively. Since G is triangulated, an easy reflection shows that S is a (possibly
empty) clique.

Let Ga {Gb respectively) be the induced subgraph of G by Ca U S (Cb U 5*
respectively). Either Ga (Gb respectively) is a complete graph or we apply the
induction hypothesis in order to obtain a vertex c of Ga (d of Gb respectively),
which does not belong to S and such that the set of vertices adjacent to c (d
respectively) is a clique in Ga (Gb respectively). Note that all neighbors of c (d
respectively) are contained in Ga (Gb respectively). Hence, E(c) and E(d) are both
cliques of G. Since c, d £ S we also have cd £ E and the induction step follows.
This completes the proof of Dirac's result.

If G = (V, E) is acyclic, then any ordering which represents a topological sorting
yields a perfect vertex elimination scheme. For a complete graph every order is a
perfect vertex elimination scheme. Hence, the construction given below will apply
to acyclic graphs and complete graphs as well.

8.2.2 Metivier's Construction

In [196] Y. Metivier gave an elegant and amazingly simple construction for asyn
chronous automata in the case of acyclic dependence alphabets (E, D) (see also the
survey of D. Perrin [223]). The basic idea is to choose a tree (forest) structure and
to move the distributed information to the top of the tree(s) as soon as available.
We will show here that the construction applies to triangulated graphs, too. All we
need is a perfect vertex elimination scheme, as defined in the previous subsection.

Let (£,.D) be any triangulated dependence alphabet and let < be a linear or
dering of E such that for all a, b, c € E, a < b < c, (a, c) G D and (6, c) £ D, we have
(a, b) € D, too. Thus, if E = { a 1 ; . . . , an} (n = |E|) is written in increasing order
a\ < • • • < an, then [an,..., ai] is a perfect vertex elimination scheme of (E, D).

Let r] : M(E, D) —> S be a homomorphism to a finite monoid S and L = 77_1(i?)
for some subset R C S. We are going to construct an asynchronous automaton A
recognizing L.

The state set of A will be an n-fold direct product of S, n = |E|. First we
define ordered products in S. Let V C E and sc 6 S, for all c 6 T. Define the
ordered product I lcer *<= by ELer sc = sCl • • • sCm, if F = { c i , . . . , c m } , m > 0, with
ci < • • • < cm . All products of elements of S used in the following will be ordered
ones.

 T
he

 B
oo

k
of

 T
ra

ce
s

D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 L
A

 T
R

O
B

E
 U

N
IV

E
R

SI
T

Y
 o

n
03

/0
2/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.

254 C H A P T E R 8. CONSTRUCTION OF ASYNCHRONOUS AUTOMATA

Let now A = (YlaeS Qa, 6, qo, F) be defined by

S : J] Qa x £ - Y[Qa,
aeS agS

where for every a £ E:

Qa = S

6(q, a) = q • a = q1 with qb — <

(I I 9c) • v{a) if 6 = a

(a,c)6£)

1 if a < b, (a, b) e D
qb otherwise

Furthermore, let qQ = (l) a £ E and F = {(ga)agE 6 Ha€xQa. \ U qa € r){L)}.
agE

P r o p o s i t i o n 8.2.1 Let L G Rec(M) be recognized by the homomorphism r\ :
M(E, D) —> S to the finite monoid S. Let A be the automaton defined above.
Then A is asynchronous and we have L(A) = L.

Proof: First we show that A is asynchronous. The write- and read-domain of a
letter a G E is given by the index set {c G E | a < c and (a,c) G D}. Assume
that for some a, b, c G E, a < b < c we have (a, c) G D and (6, c) e D. Then
(a, b) G D follows, due to the ordering. Hence, if (a, 6) G / , then a and 6 have
disjoint write- and read-domains. Thus, A is asynchronous. In particular, for any
trace w G M(E, D), the global state q0 • w = <5((l)oei;, w) is well-defined.

For (ga)aeE = 9o • w we show the following two invariants:

1. a < b and (a, 6) G I imply qbri{a) = v(a) lb-

2. a < b < c, (a, b) G 7, and (a, c) e B imply (ft, gc = qc qi,.

In order to verify these invariants we need some alphabetic information. We observe
that for each local state qa, a G E, there exists some subset r a C E with the
following properties: qa is an element of the submonoid generated by 77(c), with
c G T a , and for each c G r a there exists a chain a = ao < • • • < a^ = c, k > 0, such
that (a;_i ,ai) G D for 1 < i < k. This crucial observation can be easily derived
from the inductive definition of the transition function 5.

Consider now a < b < c with (a, b) € I and Tb, Fc C £ as introduced above.
Invariant (1) follows by showing that {a} x Vb C I. Invariant (2) follows by showing
that Tb x r c C J, whenever (a, c) G D.

For invariant (1) let b^ G Tb and b = bQ < • • • < bk, k > 0, such that (6j_i, h) G
£> for 1 < i < k. Assume that we would have (a,bk) G D. Then k > 1 and
(6fc_i,bfc) G -D implies (a, 6fc_i) G .D. We can continue this way and we arrive
to (a,b0) G D (see also Figure 8.1). This is a contradiction to (a,b) G I. Thus,
(o, bi) G I for all 1 < i < k; this fact will be used below, too.

 T
he

 B
oo

k
of

 T
ra

ce
s

D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 L
A

 T
R

O
B

E
 U

N
IV

E
R

SI
T

Y
 o

n
03

/0
2/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.

8.2. M E T I V I E R ' S CONSTRUCTION 255

Figure 8.1: Consequence of (a, bk) G D.

For invariant (2) let (a, c) G D, bk G T^, cm G r c with b = b0 < • • • < bk

and c = Co < ••• < c m , fc,m > 0, such that (&;_i,6j) G D and (cj_i,Cj) G D
for 1 < i < k, 1 < j < m. We show by induction that (bi,Cj) G I for all i,j.
Assume first that cm < bk. Then we have k > 1 (since 6 < c) and (cm,&fc) G D,
(6fc_i, bk) G Z? imply (cm , bk-i) G £>. Hence we may assume bk < cm. Suppose next
that m > 1. Then (6fc,cm) G D, (c m _ 1 ; c m) G D imply (6fc,cTO_!) G D. Hence, we
may assume m = 0 and we obtain the following situation:

a < b = &0 < • • • < 6fc < c, fc > 0.

Finally, suppose that we would have (fcj, c) G D for some 1 < i < k. Since (a, c) £ D
this implies (a, &i) G Z?, contradicting the fact mentioned in the proof of (1) above.
Thus, both invariants (1) and (2) are valid.

The proposition follows from the following claim:

For (qa)aes = 1o • w we have J J qa = r)(w).

The claim is satisfied for \w\ = 0 since q0 = (l)a6E- By induction assume that the
claim holds for q = qo • w and let q' = q • a for some letter a G E. It is enough to
show:

(i r ^ (a) = (n 9c)v(a)(n *)•
a<c a<c, a<6,

(a,c)ED (a,b)£I

However, this last formula is immediate from the two invariants shown above. This
completes the proof of the proposition. •

The example below illustrates the construction for a dependence alphabet on
four letters E = {a, b, c, d} with the following dependence relation D:

 T
he

 B
oo

k
of

 T
ra

ce
s

D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 L
A

 T
R

O
B

E
 U

N
IV

E
R

SI
T

Y
 o

n
03

/0
2/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.

256 C H A P T E R 8. CONSTRUCTION OF ASYNCHRONOUS AUTOMATA

The alphabet E can be ordered as a < b < c < d (note that [d, c, b, a] is a perfect
vertex elimination scheme). Let 77 : M(E, D) —> 2 / n Z be a homomorphism comput
ing the length of a trace modulo n, n > 1. Then the construction for asynchronous
automata given above yields e.g. the following transition mappings, together with
some concrete computations in Z/roZ:

= xa + Xb + xc + 1 mod n

x\, + xc + 1 mod n

xc + Xd + 1 mod n

aiv) = xa + 1 mod n

 T
he

 B
oo

k
of

 T
ra

ce
s

D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 L
A

 T
R

O
B

E
 U

N
IV

E
R

SI
T

Y
 o

n
03

/0
2/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.

8.2. ASYNCHRONOUS CELLULAR AUTOMATA 257

% o ,
/ c
V

) =

6(q0,a-

1
0

V 1 /
/ i \

I -d) =
I

V 1 /

6(qo, d — c —b —a)

/ 4 \
0
0

R e m a r k 8.2.2 Note that as soon as the dependence graph contains a chordless
cycle of length greater than three, the automaton constructed above is not asyn
chronous anymore. More precisely, for any ordering < of the alphabet E there exist
letters a < b < c (on the cycle) satisfying (a, c) € D, (6, c) G D, but (a, 6) e / . In
this case however, c belongs to both write- and read-domains of a and b.

8.3 Asynchronous Cellular Automata for Recog
nizable Trace Languages

In this section we give the general solution of constructing asynchronous automata
for arbitrary (symmetric and reflexive) dependence alphabets. The presentation
follows ideas from [277, 278, 45, 53, 46]. The main piece of work is to construct
a suitable asynchronous mapping, as proposed in [45] (see also [53] for a corrected
version). From an asynchronous mapping one can easily obtain a deterministic
asynchronous cellular automaton, which furthermore can be easily transformed in a
deterministic asynchronous equivalent automaton. This last step is not done here,
since it has been already discussed in Chapter 7.

8.3.1 Prefix Order for Traces
Let us recall in this section some basic notions concerning prefixes of traces and
ordering between them. We denote by < the partial (prefix) order given by u < v
if v = ut for some t G M(E, D). As usual, for u, v € M(E, D), u < v if both u < v
and v ^ u; we denote by u n v the greatest lower bound of u, v with respect to the
prefix order. Whenever it exists, the least upper bound of u, v is denoted by u U v.
Clearly, u U t exists if and only if u < w and v < w for some w G M(E, D).

Another notation used frequently is max(t) for t G M(E,Z>), denoting the la-
bellings of the maximal elements of the partial order represented by t, i.e. max(t) =
{a G E | 3x G E* : xa G <£-1(£)}, for the canonical surjective homomorphism
<p : E* —• M(E,.D). Since the elements of max(i) are pairwise independent and
therefore commute, max(t) can also be viewed as a trace.

The following definition introduces a basic notation for studying properties of
the prefix order.

 T
he

 B
oo

k
of

 T
ra

ce
s

D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 L
A

 T
R

O
B

E
 U

N
IV

E
R

SI
T

Y
 o

n
03

/0
2/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.

258 C H A P T E R 8. CONSTRUCTION OF ASYNCHRONOUS AUTOMATA

Definition 8.3.1 Let t € M(T,D), A C S . We define the least prefix oft which
contains all letters from A by

dA{t) = H{u < t | Va € A : |u|„ = | i |0}

For i , B C E we write <9A,B(£) instead of dA(dB(t)). Additionally, whenever A =
{a} we write directly da(t) (resp. da,B{i) etc.).

The following lemma gives an equivalent characterization of dA(t).

L e m m a 8.3.2 Lett e M (E , D) and ACT. Then

dA(t) = U{u < t | max(u) C A}.

Proof: Clearly m.a,x(dA(t)) C A, hence dA(t) < u{u < t | max(u) C A}. For the
other direction, consider u, v < t such that max(u) C A and |u|„ = \t\a, for every
a £ A. Let x, y € M(£, .D) be such that t = ux = vy and let us apply Levi's lemma
to this equation. We obtain traces p,r,s 6 M(E, D) with alph(r) x alph(s) C I and
u = pr, v = ps.

Finally, max(u) C A implies max(r) C A, hence r / l would contradict the
definition of v. C]

R e m a r k 8.3.3 Note that for every ACT,, the prefix dA(t) is equal to UaeAda(t).
Furthermore, for every t € M(T,D) we have t = ds(t) = 9max(t)(^)-

The following proposition summarizes some basic properties of dA(t) prefixes.
The easy proof is omitted and left to the reader.

Proposit ion 8.3.4 Let t,u,v £ M(E,D), A, B C T and aCT. We have

1. t <u implies dA(t) < dA{u).

2. dA,A(t) = dA{t).

3.ACB implies both dA(t) < dB{t) and dA(t) = dA>B{t) = dBA{t).

4- dA(tu) = dAur>(B){t)dA{u), where B = &\ph{dA{u)). Especially we have
da(ta) = dD{a)(t)a.

5. IfuUv exists, then dA(u) UdA(v) exists, too, and dA(u) U dA(v) = dA(u\Jv).

6- daiA(t) = Ub£Adatb(t). Hence, for A ^ $ we have da,A(t) — da,b(t) for some
be A.

7. For A + %, da(t) < dA(t) implies da(t) = daib(t) for some b e A.

In the remaining part of this section we consider a typical situation which will
be encountered in the context of asynchronous mappings. Briefly speaking, we
are interested in the interconnection between two prefixes dA(t),dB(t) of a trace
t = dAuB{t).

 T
he

 B
oo

k
of

 T
ra

ce
s

D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 L
A

 T
R

O
B

E
 U

N
IV

E
R

SI
T

Y
 o

n
03

/0
2/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.

8.3. DETERMINISTIC ASYNCHRONOUS CELLULAR AUTOMATA 259

Proposit ion 8.3.5 Let A, B C E and t G M(£,£>) such that t = dAuB(t). We
denote in the following tA = dA(t), tB = dB(t). Consider traces r,u,v as given by
Levi's lemma such that r = tA n tB, tA = ru, tB = rv with alph(u) x alph(«) C I.
Then with C = {c 6 E | dc(tA) = 9c(tB)} *^e following assertions hold:

1. For every a G E we have da(tA) < da(tB) if and only if a G alph('u). Moreover,
a G alph(u) implies da(tA) = da(r).

2. r = dc(t) = dc(tA) = dc{tB). In particular, max(r) C C.

3. £ \ C = alph(m;).

Proof:

1. Use Proposition 8.3.4(4) and alph(it) x alph(v) C I.

2. With the definition of C and Proposition 8.3.4(5) it is easily seen that we have
both dc{t) = dc{tA) = dc{tB) and dc(t) < r.

If r / 1 consider a G max(r) and let us assume da(tA) < da(tB). With (l) we
obtain a G alph(u). Furthermore, D(a) PI alph(w) / 0, since with Proposition
8.3.4(4)

ru = dA(ru) = dALsD(B){r)dA{u), where B - alph(9 / t(w)).

hence r = dAuD^B-)(r) and u = dA{u), and thus max(r) C i U D(alph(u)).
Now, with a G A one obtains by Proposition 8.3.4(3) da(tA) = da(t), thus
contradicting the assumption da(tA) < da(tB).

Hence, we obtained a contradiction to alph(w) x alph(v) C I. By symmetry,
dai^A) = da(tB), which yields a G C and finally r = 9m a x(r)(r) < dc(r) <

dc(t).

3. Follows directly with the definition of C together with (1).

•

Corollary 8.3.6 Let t G M(E,D) and 0 / A , B C E, and suppose that the sets
Ca,b = {c G E | dc,a(t) = 9Ci(,(i)} are known for all a,b € AL> B. Then we are able
to determine for every c G E which of the following situations occurs:

• dc<A(t) = dc,B(t)

• dCtA(t) < dCtB(t)

• dc>B{t) < dCtA(t)

 T
he

 B
oo

k
of

 T
ra

ce
s

D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 L
A

 T
R

O
B

E
 U

N
IV

E
R

SI
T

Y
 o

n
03

/0
2/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.

260 C H A P T E R 8. CONSTRUCTION OF ASYNCHRONOUS AUTOMATA

Proof: Assume a,b £ Al) B and let r, u, v £ M(E,D) such that da(t) = ru,
db(t) = rv with alph(w) x alph(w) C I. Applying Proposition 8.3.5(1) we obtain
dc,a(t) < dc^{t) if and only if c £ alph(v). By Proposition 8.3.5(3) we obtain
that c £ alph(w) implies that c, b belong to the same connected component of
£ \ Cati,- Furthermore, c and a can not be connected by a path in E \ C0](,, since
alph(u) x arph(ij) C / .

Applying this argument to all pairs (a, a') £ A x A we determine a £ A such
that dCiA(t) = 9c,a(i)- An analogous calculation yields 6 with 9Cls(i) = dc^(t) and
finally we have to compare 9c,a(*) a n d dc,b(t)- •

8.3.2 Asynchronous Mappings

The aim of this section is to introduce the notion of asynchronous mapping due to
Cori and Metivier and to show the close connection to asynchronous cellular au
tomata. Briefly speaking, asynchronous mappings are mappings which can be com
puted stepwise in a distributed way, thus being easily transformed into an equivalent
asynchronous cellular automaton (with respect to recognition).

Definition 8.3.7 A mapping fi : M(E,Z)) —> S is called asynchronous if for any
t £ M(E, D), a £ E and A, B C E the following conditions are satisfied.

• [i{dr)(a)(t)) and the letter a uniquely determine the value n(da(ta)).

• £t((9,t(t)) and (j,(dg(t)) uniquely determine the value n(dAuB(t))-

The relevance of asynchronous mappings is given by the following proposition,
which establishes the connection to asynchronous cellular automata. Note that in
general, an asynchronous mapping fi : M(E, D) —> S does not give any natural
monoid automaton structure. This is due to the fact that for t / dD(a){t) the value
of ii{t) does not suffice for computing n(ta), where a £ E.

However, given (/x(dt,(£)))6gmax(t): °ne can compute fi(ta), since for A = max(t)n
7(a) we have ta = <9A(£) U da(ta). Furthermore, /X(9A(£)) is computable from
(fi(db(t)))beA (by the 2nd condition in Definition 8.3.7), whereas fi(da(ta)) is deter
mined analogously using both conditions by a and (/4<M*)))&er>(a)' Finally, fi(ta)
can be computed using again the 2nd condition (note that 3^(4) = ^ (i a)) .

Proposit ion 8.3.8 Let fi : M(E, D) —> S be an asynchronous mapping and R C S
a subset of S. Then there exists an asynchronous cellular automaton A^ such that
L(Al,) = n-1(R).

Proof: Let us define A^ — ((Qa)ae£> (*a)aes, 1o,F) by

Qa = {li{da(t))\teM{-£,D)}, a e E

*((/i(0a(t)))«6E,&) = (^(Sa(*6)))a€E

 T
he

 B
oo

k
of

 T
ra

ce
s

D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 L
A

 T
R

O
B

E
 U

N
IV

E
R

SI
T

Y
 o

n
03

/0
2/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.

8.3. DETERMINISTIC ASYNCHRONOUS CELLULAR AUTOMATA 261

With da(tb) = da(t) for a ^ 6 it is easily seen that a 6-transition merely changes the
local 6-state. Moreover, with db(tb) = 9D(&)(<)& a n d due to the ability of computing
n(db(tb)) from (n(da{t)))aeD(b) a n d b we obtain that the change of the local b-
state depends only on the local states corresponding to the subset D(b). Hence,
S is well-defined and the automaton is asynchronous cellular. We accomplish the
construction by letting q0 = (/ i (l)) a € S and F = {(v(da(t)))aei: \ t 6 /x_1(i?)}.

In order to show £(-4M) = n~1(R) note that t € I<(-4.M) if and only if for some
u G M-1(-R),

fx{da(t)) = n(da(u)), for all a G £ .

Finally, with t = d^ (t) we note that /i(t) (and fi(u) as well) is determined by
(/u(9a(t)))a6s! hence it follows that /i(t) = n{u). •

8.3.3 Asynchronous Mappings for Recognizable Trace Lan
guages

The first aim in this section is to exhibit an asynchronous mapping v indepen
dent from the given recognizable trace language, which corresponds to a bounded
time-stamping. This mapping contains crucial information about the prefix order
between prefixes da(t), a € E, needed in order to be able to establish actuality of
information. Concretely, the value v{t) contains enough information in order to
compute the set C = {c G E | dc,A{t) = dc>B{t)} for any t G M(E, D), A , B C S .

The main idea for the construction consists in labelling trace prefixes of the form
dx(t), x G E, in such a way that for a, b, c G E the equality dc>a(t) = dc^{t) holds if
and only if the labellings of these two traces coincide.

Definition 8.3.9 Let v : M(E,D) —> N E x E be defined inductively as follows:

• u(l)(a,b) = 0.

• Ift j= da,b(t) then v(t)(a,b) = i/(datb(t))(a,a).

• If t = da(t) and t ^ 1 then

i/(t)(a, a) = min{n > 0 | n f̂ v(t)(a, c) for all c ^ a}

Lemma 8.3.10 The mapping v : M(E,D) —» N S x E is well-defined and satisfies
for every t € M(E, D), a, b, c G E, and A , J ? C S the following properties:

1. 0 < u{t)(a,b) < |E|.

2. v(t)(a,b) = v(db(t)){a,a) = v(da>b(t))(a,a).

3. v(t)(a,b) = 0 is equivalent to dab(t) = 1.

4- dc,a{t) = dc,b{t) is equivalent to v(t){c,a) = v(t)(c,b).

5- dc^A{t) — 9C ,B(*) *S equivalent to ^(9^(t))(c, c) = i/(ds(i))(c, c).

 T
he

 B
oo

k
of

 T
ra

ce
s

D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 L
A

 T
R

O
B

E
 U

N
IV

E
R

SI
T

Y
 o

n
03

/0
2/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.

262 C H A P T E R 8. CONSTRUCTION OF ASYNCHRONOUS AUTOMATA

Proof:

1. Follows directly from \{n > 0 | n ^ i/(t)(a,c) for every c ^ a}\ < |E| — 1.

2. Obvious.

3. Follows directly from v(t)(a, b) = v(datb(t)){a, a) using the definition of v.

4. The implication from left to right is clear due to (2). Conversely, assume
w.l.o.g. that dCta(t) < dc,b{t)- By Proposition 8.3.5 we have with r = da(t) n
dCtb(t) the equality dc<a(t) = dc(r). Hence, for some d e max(r) (for r / 1) we
obtain dc,a{t) = dCid(r) = dc,d(dc,b{t)) (= dCtd(da(t))). Note also that d ^ c,
since otherwise 9C;a(t) = 9Cjb(t).

Finally, the definition of v yields:

v(t)(c,b) = i/(8c,6(i))(c,c) V i/(ac,6(t))(c,d) = ^(9c,d(9c,6(i)))(c,c),

thus contradicting the hypothesis i/(t)(c,a) = v(t)(c,b).

5. Assume that 7l ,B / I (otherwise we use (3) and the definition of v). For
suitable a £ A, b e B we have 5C IA(£) = dc,a{t) and 9C)B(^) = 9c^{t). Together
with

u(dA(t))(c,c) (=} i / (0M(t))(C ,C) = i/(0c,o(t))(C)c) ® i/(t)(c,a),

(i/(i)(c, 6) = i/(<9g(t))(c, c) analogously) and (4) the result follows immediately.

•

Remark 8.3.11 Note that the value of v(t) allows to determine whether da(t) <
db(t) holds, with a, b 6 E. To see this note that da(t) < db(t) is equivalent to
da(t) = 9a}b(t), hence to i>(t)(a,a) = v{t){a,b) by Lemma 8.3.10.

For the asynchronous cellular automaton Av defined at the beginning of the
section this implies the following: given a trace t and the local states qx := S(qo, t)x,
x 6 {a, 6}, one can determine if da(t) < db(t) or db(t) < da(t) holds, or da(t) and
db(t) are incomparable, since:

8a{t) < db(t) <=^

v{da{t)){a, a) 8 3 = (2) u(t){a, a) = u(t)(a, b) 8 ' 3 = (2) v(db(t))(a, a) <=>
qa(a,a) = qb(a,a)

Proposit ion 8.3.12 The mapping v is asynchronous.

 T
he

 B
oo

k
of

 T
ra

ce
s

D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 L
A

 T
R

O
B

E
 U

N
IV

E
R

SI
T

Y
 o

n
03

/0
2/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.

8.3. DETERMINISTIC ASYNCHRONOUS CELLULAR AUTOMATA 263

Proof: Let us first show that for any t € M(E, D), a € E the value i/(c*£>(a)(f)) and
the letter a suffice for determining v(da(ta)). With Lemma 8.3.10(2) we directly
obtain for b, c g E with c ^ a resp. c = a / 6,

i/(9a(to))(6,c) = i/(0D(a)(t))(6,c),

since db^a(ta) = db,c(dD(a)(t)a) = 9&)C(0D(a)(*)), r e s P- db,a,a{ta) = db{dD(a)(t)
a) =

db,D(a){t) = dbia{dD(a)(t)).
Finally, z/(da(ta))(a, a) = min{n > 0 | n / v(da(ta))(a, d),d ^ a} , which

is computable using v(da(ta))(a,d) = v(dD^{t))(a,d) (note that a ^ d implies

da,d,D(a) (*) = 9a,d,a(to))-
Now assume that i/(9^(t)) and v{dg(t)) are given, with A,-B C E. Due to

Lemma 8.3.10(2) it suffices to show that using v(dA{t)), f (9s(t)) we are able to
determine whether for a given c 6 E,

dc,B(t) < dc,A{t)(= dc,AuB(t)) or dCfA(t) < 9 C ,B(*) (= dc.AusW)

holds. By Corollary 8.3.6 it suffices to know the sets Caib = {c 6 E | dCta(t) =
&c,b(t)} f ° r a,b £ AU B. This can be achieved using the information provided by

Q q -i f)(')\

^ (9 A (£)) and i/(dB(t)), since v{t)(c, a) = i/(9/i(t))(c, a) for a 6 A (analogously
for B) and

9e,a(t) = ac,6(*) 8 ' < ^ 4) l /(*)(c,a) = I/(t)(c,6)

D

The information provided by Zielonka's time-stamping is sufficient in order to
obtain a more complex structural information about a trace. More precisely, with
the knowledge of v(t) we are able to compute the second approximation introduced
by Cori and Metivier in [45] and used in the construction of asynchronous cellular
automata. The second approximation Aa(t) of a trace t is the directed graph with
vertex set E x E and edge set {((a, c), (6, d)) | da<c{t) < db^{t)}. However, Cori,
Metivier and Zielonka showed that the computation of the mapping v provides suffi
cient information about trace prefixes in order to obtain an asynchronous mapping
[46]. Since the second approximation is an interesting information for itself, we
show in the following how to compute it.

First, let us show the following property for A2(i), which is a stronger variant
of the first property required for asynchronous mappings.

L e m m a 8.3.13 Let t 6 M(E,Z)) and a e E. Then the second approximation
A2(ta) is computable using A2(i) and the letter a.

Proof: Let 6, c e E. Then we have

{ db,c(t) if c ^ a

db,D{a)(t) i f 6 / c = a
dD(a)(t)a = da(ta) if 6 = c = a

 T
he

 B
oo

k
of

 T
ra

ce
s

D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 L
A

 T
R

O
B

E
 U

N
IV

E
R

SI
T

Y
 o

n
03

/0
2/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.

264 C H A P T E R 8. CONSTRUCTION OF ASYNCHRONOUS AUTOMATA

Note that if b ^ c = a holds, then we can use A2(t) for computing a letter c' G D{a)
with #(,,£>(«)(*) = db:c'(t).

Finally, we note that dD^ {t)a is not a prefix of t; conversely, a prefix of t is
a prefix of dD(a)(t)

a if and only if it is a prefix of dD^{t). To conclude, we have
dD(x){t)x < dD(y)(t)y if and only if x = y. U

Proposit ion 8.3.14 Let t G M(E,Z>) and 4 , B C E be given and denote t± =
<9A(*)> *2 = 9g(t), r = ti Ht2, ti = ru and t2 = rv with u, v G M(E,D) , alph(u) x
alph(«) C / .

Let n(ti) = (i>(ti), A2(ti)), i = 1,2. Then we can compute the second approxi
mation A2(£) from fi(ti), ufa).

Proof: Let C = {c G E | d ^) = de(t2)}
 8 = 1 0 {c G E | i/(«i)(c,c) = i/(t2)(c,c)}.

For convenience we use the following notations: for x, y G E we denote (a;, y) a
u-point if c ^ c ^ i) is a strict prefix of dXtV{t\), i.e. ft^c^i) < ^x,i/(ii); (x>y) is a

u-point if dx^c{t2) < 9Xty(t2). Otherwise, (x,y) is r-point. The above notations
illustrate the graphical meaning, i.e. the position of the maximal vertex oidXtV{t) in
the subgraph of the dependence graph which corresponds to u, v, or r respectively.

Note that if C = 0 then (x, y) is a it-point if and only if dx,y(ti) ^ 1, hence if
u(ti)(x, y) ^ 0; analogously, (x, y) is a v-point if and only if v{t2){x,y) ^ 0 and
finally, (x, y) is a r-point if and only if v(ti)(x, y) = v{t2){x, y) = 0.

If C 7̂ 0, then with Corollary 8.3.6 we may use v(t{) in order to determine
whether (x,y) is a tt-point (resp. ^(i2) for a v-point). We assume in the following
C ^ 0. Observe that for a, c G E,

datC(ti) if (a,c) is a M-point
Jt) = { aa,c(*2) if (a, c) is a u-point

U da,c(U) < da(r) if (o, c) is a r-point
i= l , 2

Furthermore, if (a, c) is a r-point, then we have to distinguish if (c, c) is a u-, v-
or r-point. Note that we have da>c(t) = 50iC(ti), if (c, c) is a w-point, respectively
daA*) = aa,c(*2), if (c, c) is a w-point and finally, da<c(t) = <9a,c(*i) (* = 1, 2), if (c, c)
is a r-point (hence, c G C).

Consider now for a,b,c,d G E the question, whether or not 9a,c(i) < &b,d(t)
holds and suppose (a, c) is a a-point and (6, d) is a /3-point, where a, /3 G {w, v, r } .

First, observe that if {a,/3} = {u, v} or (/? = r and a 7̂ r) , then the answer
is negative. Else, if a = /3, then we can provide an answer using either A 2 (t i) or
A 2 (i 2) .

We now consider the situation a = r, f3 = u (the case (3 = v can be handled
analogously). Now, if (c, c) is either a u- or a r-point, then we can use again A2(<i)
(see remark above) and check da^c{t\) < df,td(ti).

Finally, we consider the case where a = r, (3 = u and (c, c) is a v-point, hence
da,c{t) = 9a,c(*2)- It suffices to show that a letter / G E exists effectively such that
da,c(t2) = 9o,/(*i) holds.

 T
he

 B
oo

k
of

 T
ra

ce
s

D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 L
A

 T
R

O
B

E
 U

N
IV

E
R

SI
T

Y
 o

n
03

/0
2/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.

8.3. DETERMINISTIC ASYNCHRONOUS CELLULAR AUTOMATA 265

Assume 9a,c(t2) ^ 1 (otherwise, da,c(ti) = 1) too, and we choose / = c). Recall
f = 9c(t) = dc{t\) = dc(t2) and consider the trace r ' = r n 9c(t2), with r = r'x,
dcfo) = r'y and alph(a;) x alph(y) C I (see also Figure 8.2).

Figure 8.2: a = r, (5 = u and (c, c) is a u-point.

With 9a,c(t2) = da,c{t) < 9a{r) we immediately obtain 9aiC(t2) = <9a(r'), in
particular r' ^ 1. Let C = {e 6 E | 9e{9c(t2)) = 9 e (r)} , hence with Proposition
8.3.5 we obtain C" 3 max(r') =̂ 0. Furthermore, with Proposition 8.3.4 we have
9a,c{t2) — da(r') = daj(r') = daj(r) for some / e max(r'), hence / e C. We
show df(r) = df(ti). For this, note that by definition of r', we have / ^ alph(a;).
Moreover, due to y ^ 1 (otherwise we contradict (c,c) being a w-point), together
with / € max(r ') , we obtain / € Z)(alph(y)), hence / £ _D(alph(v)). Thus, since
alph(w) x alph(u) C I, we deduce / ^ alph(u). Finally, since i i = r'xu we immedi
ately conclude 9/ (t i) = df(r') = df(r).

A letter / with 9aiC(t2) = 9aj{t{) can now be computed effectively as follows:
using v(ti), v(t2) we first determine the sets C and alph(v) (see Corollary 8.3.6).
Using again v{t2) we compute C". Finally, using v{t\) we choose / € Cn£)(alph(t;))
such that da<c(ti) < 9aj(ti). We obtain finally

0a,/(ti) /eD(lLph(, ,))
 S o i /(r) 'IF' a„i/iC(t2) < 9a>c(t2) < a„iC(t2) = a ^) < ^ (t o

a

In the remaining of this section we accomplish the construction of an asyn
chronous mapping \i : M(£,.D) —> S for a given trace language L € Rec(M), such
that L = fi~xn(L). The mapping /x is obtained by augmenting the basic mapping v
by a component depending on a homomorphism to a finite monoid recognizing L.
For this new component we use Zielonka's V notation.

 T
he

 B
oo

k
of

 T
ra

ce
s

D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 L
A

 T
R

O
B

E
 U

N
IV

E
R

SI
T

Y
 o

n
03

/0
2/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.

266 C H A P T E R 8. CONSTRUCTION OF ASYNCHRONOUS AUTOMATA

Definition 8.3.15 Let t G M(E,£»), A C E . By VA{t) we denote the maximal
suffix oft containing letters from A, only, i.e. the unique suffix s oft witht = dA(t)s,
where A = E\A.

Remark 8.3.16 It follows easily that T7AVB(t) = VAnB(t), for every t G M(E,Z>),
A,BC E.

The next proposition shows that the mapping associating with each trace t the
tuple C^A{t))Acs is asynchronous.

Proposit ion 8.3.17 We have

1. Let t1:t2 G M(E,£>), ACT,. Then

VA(t1t2) = VAnI{B)(t1)VA(i2),

where B = alph(0^(i2))-

2. Let t e M(E, D), a € E. Then

yA{da{ta)) = { ZA{dD{4t))a
(^

 f°,raeA
AK aV " \ VAn/(o)(9i5(a)(<)) else

3. Let t e M(E,I>), A,B C £ such that t = dAuB(t). With the notations of
Proposition 8.3.5 we have for every £ C S

Vfi(t) = V£n/(ir)(tA)V iSn(5(<i3), where F = alph(%(w)).

Proof:

1. By Proposition 8.3.4(4) we obtain dA(tit2) = 9AuD^(ti)dA(t2). With Re
mark 8.3.16 and the cancellative property of M(£, D) the result immediately
follows.

2. Is a direct consequence of (1) for ti = dr>{a){t), ti = a.

3. First note that for E C E and G :- alph(%(uu)) D F,

V B (t) = VEnI{G)(r)VE(uv) = VEnI{a)(r)VE(u)VE(v),

where the last equality is due to alph(w) x alph('u) C / . Let us now consider
the right side of the claimed identity, noting that dEuD/FJu) = dE(u) (since
F C alph(v)):

• VB n j (F)(tA) = VB n / (G)(r-)VB(u)
• Let H = alph(9jr;uC(u)). Then,

V £ n c (f s) = VEncnI(H)(r)VEnc(v) = V B (u) ,

due to max(r) C C and VQ{V) = v by Proposition 8.3.5, together with
Remark 8.3.16.

 T
he

 B
oo

k
of

 T
ra

ce
s

D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 L
A

 T
R

O
B

E
 U

N
IV

E
R

SI
T

Y
 o

n
03

/0
2/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.

8.4. CONCLUDING REMARKS 267

Corollary 8.3.18 Let N be a finite monoid and rj : M(E,D) —> N a homomor-
phism. Let S be the finite set

S = {(>(*)> MVA(*)))ACS) I * e M(E, D)}

Then the mapping \x : M(E, D) —> S, //(*) = {v{t), (»7(Vi(t)))/iCE) ** asynchronous
and the homomorphism n factorizes through \x.

Proof: The mapping /x is asynchronous by Propositions 8.3.12, 8.3.17. Since t =
Vs(i) for any t € M(E,D) , fi(t) = n{t') implies n(t) = r](t'), hence the assertion.

D

Main Theorem 8.3.19 Let D C E x E be a symmetric and reflexive dependence
relation and L C M(E, D) a recognizable trace language. Then there exists a deter
ministic finite asynchronous cellular automaton recognizing L.

Proof: Corollary 8.3.18 provides an asynchronous mapping with finite image such
that L = / i _ 1 p(L) . The asynchronous cellular automaton A^ constructed in Propo
sition 8.3.8 accepts exactly L. •

8.4 Concluding Remarks

Relating the algebraic recognizability of trace languages to recognizability by de
vices with distributed control has been a subject of considerable efforts during
the eighties. Very interesting constructions providing partial solutions have been
given, like C. Duboc's mixed products of automata [75] or Y. Metivier's solution for
acyclic dependence graphs [196], presented in a generalized form in Section 8.2. Of
course, the most important contribution is W. Zielonka's solution for the general
case [277, 278] (see also [45, 46, 53]). The construction given by Zielonka is involved
and the question, whether a simpler construction exists, is still of actuality.

The importance of constructing asynchronous automata is also underlined by
applications, where automata of small size are highly required. Considerations con
cerning efficient (and simpler) constructions are also the topic of two kinds of cur
rent contributions. The first one concerns modular constructions of asynchronous
automata, based on concurrent rational representations of recognizable trace lan
guages, and yields non-deterministic asynchronous automata [228]. The second one
deals also with a classical approach and can be regarded as a completion of the
first one: determinization of asynchronous automata. The inherent difficulty of the
problem of constructing deterministic asynchronous automata is also suggested by
both determinization procedures given recently by Klarlund et. al. [154] and by the
second author [198].

 T
he

 B
oo

k
of

 T
ra

ce
s

D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 L
A

 T
R

O
B

E
 U

N
IV

E
R

SI
T

Y
 o

n
03

/0
2/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.

