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Abstract 

The main result shows the undecidability of (strong) bisimilarity for labelled (place/transition) 
Petri nets. The technique of the proof applies to the language (or trace) equivalence and the 
reachability set equality as well, which yields stronger versions with simpler proofs of already 
known results. The paper also contains two decidability results. One concerns the Petri nets which 

are deterministic up to bisimilarity, the other concerns semilinear bisimulations and extends the 
result of Christensen et al. (1993) for basic parallel processes. 

1. Introduction 

The topic of the paper belongs to an interesting area in the theory of parallelism and 

concurrency, namely to the area of decidability questions for behavioural equivalences 

in various classes of (models of) processes. These questions are among the first ones 

to ask when developing automated verification methods, for example. 

There is a large amount of equivalences in the literature (cf. e.g. [28]), nevertheless 

some of them are felt to be more important than others. Here we are mainly interested 

in the equivalence called (strong) bisimilarity (or (strong) bisimulation equivalence) 
whose central role was recognized during the 1980s (cf. [20]). 

As examples of recent contributions to the decidability-of-bisimilarity area, we could 

mention the results for basic process algebra (BPA) in [5] and for basic parallel pro- 

cesses (BPP) in [4]. It is natural to ask the relevant question also for Petri nets, one 

of the central models for parallelism and concurrency (cf. e.g. [23,24] or [29]). The 

question had remained open for some time (mentioned explicitly e.g. in [l]), and also 

the decidability result for BPP, which can be viewed as a subclass of Petri nets, left 

the question unsolved. 

Here we answer the question negatively, which yields the main result of the paper. 

More precisely, we show that it is undecidable whether two given labelled 
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(place/transition) Petri nets are bisimilar or not. Bisimilarity is meant in the “classical” 

(interleaving) sense; some other concepts are mentioned in Section 5. 

Besides the result, the technique of its proof and some consequences seem to be 

interesting; we discuss it in next paragraphs. 

The proof is based on a well-known universal computing device, namely the register 

machines of Shepardson and Sturgis [25] or, equivalently, the counter machines of 

Minsky [2 11. The universality implies the undecidability of the relevant halting problem, 

which is of particular interest here. 

Since nonnegative counters (registers) can be regarded as places with tokens, one is 

naturally tempted to try to simulate a counter machine by a Petri net. But it was early 

recognized (cf. e.g. [23] for discussion and references) that the substantial weakness 

of such a “simulation” is the incapability of Petri nets to test a place (counter) for 

zero. A correct simulation can only be achieved by extending the power of Petri nets, 

e.g. by adding inhibitor arcs. In this way, we get the undecidability of the “halting 

problem” for such extended Petri nets unlike our “ordinary” Petri nets. In fact, Mayr 

[ 191 showed that the “halting problem” (the reachability problem, to be precise) for 

(ordinary) Petri nets is decidable. 

Despite of the impossibility of the direct simulation, the halting problem for the 

counter machines can be used very naturally to show the undecidability of some other 

problems concerning Petri nets. In fact, we demonstrate it here on some behavioural 

equivalences - besides bisimilarity, we consider the language (trace) equivalence and 

the reachability set equality. Loosely speaking, the general strategy is the following: for 

a given counter machine C with given input counter values, construct two Petri nets 

Ni,Nz - modifications of the “basic” net Zc “weakly simulating” C; the construction 

of Ni and N2 ensures that the only way to exhibit the non-equivalence is to simulate 

C correctly (in one of the nets) finishing in the halting state - which, of course, is 

possible if and only if C halts for the given input values. 

Since the halting problem is undecidable even for a fixed counter machine C with 2 

counters (only the input values varying; cf. [21]), we can fix the net CC; in addition, 

its structure only allows 2 places (corresponding to the counters) to be unbounded. 

In case of bisimilarity, the relevant modifications (yielding Ni, N2) do not add un- 

bounded places; thus we get the undecidability of the bisimilarity problem even if re- 

stricted to the labelled Petri nets with a fixed underlying (static) net and 2 unbounded 

places. 

The same construction also yields the undecidability of the language equivalence (or 

trace equivalence) for labelled Petri nets with 2 unbounded places (and a fixed struc- 

ture). The undecidability of the language equivalence problem is known due to Hack 

[9]; nevertheless his proof puts no bounds on the number of unbounded places. Later 

Valk and Vidal-Naquet [27] showed that labelled Petri nets with 4 and 5 unbounded 

places are sufficient for the undecidability. 

In case of the reachability set equality, the modifications add 3 additional unbounded 

places; we attach a “coding subnet” to Cc (the subnet happens to correspond to 

the smallest nonsemilinear vector addition system with states [12]). Thus we get the 
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undecidability of the reachability set equality problem even if restricted to Petri nets 

with 5 unbounded places. The known proofs by Rabin and Hack ([3, lo]; cf. also [23]) 

use Hilbert’s 10th problem and Peti nets weakly computing polynomials; they do not 

put any bound on the number of unbounded places. 

The above discussion shows that the technique of the proof for bisimilarity also 

provides new, technically simpler, proofs for stronger versions of some known results. 

The results of this paper first appeared in the report [16]. Later Hirshfeld [l l] fol- 

lowed the general strategy - having to invent the appropriate modifications - to show 

the undecidability of the language equivalence problem even for the subclass of Petri 

nets where each transition has one input place only; i.e., in fact, for the above men- 

tioned BPP. Hiittel [14] then followed the approach to extend the undecidability result 

to some other equivalences on BPP. 

The paper is completed with two decidability results concerning bisimilarity, outlined 

in the next paragraphs. 

It is easy to see that in case of one-to-one labelled (or “unlabelled”) Petri nets, 

bisimilarity coincides with language equivalence. Hence its decidability is clear due to 

reducibility of the language equivalence of these nets to the reachability problem (cf. 

[9, 191). Here we show another reduction based on a “bisimulation game”. To think 

in terms of games is often useful for understanding bisimilarity (cf. e.g. [26]); in fact, 

we use the game in the undecidability proof as well. Our “game” reduction (to the 

reachability problem) allows an easy generalization for the nets which are “deterministic 

up to bisimilarity”. In fact, these nets correspond to p-deterministic nets of [29]. Our 

“game” technique leads to a decidability proof which is short and differs substantially 

from the corresponding proof in [29]; it should justify including the result (Theorem 

4.1) here. 

Another subclass of labelled Petri nets for which the decidability of bisimilarity has 

been known is the above mentioned class equivalent to BPP of [4]. The proof in [4] 

employs a technique (suggested by Y. Hirshfeld) which is, in fact, more general - it 

implies decidability for the subclass where the bisimulation equivalence is a congru- 

ence w.r.t. (nonnegative vector) addition. Here the result is further extended: we show 

that the existence of a semilinear bisimulation is sufficient for the decidability. It is 

completed by the fact, known from [7], that any congruence is semilinear. 

Section 2 contains basic definitions, Section 3 the undecidability results, Section 4 

the decidability results. Section 5 contains some additional remarks, including e.g. the 

relation to the vector addition systems (with states). Some remarks also concern the 

notion of weak bisimilarity, which is touched throughout the paper as well. 

2. Definitions 

We begin with standard definitions and notations concerning Petri nets. 

JV denotes the set of nonnegative integers, A* the set of finite sequences of elements 

of A. 
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A net is a tuple C = (P, T, F) and a labelled net is a tuple C = (P, T, F, L) where P 

and T are finite disjoint sets ofplaces and transitions respectively, F: (Px T)U(T x P)-+ 
JV is a flow function (for F(x, y) > 0, there is an arc from x to y with multiplicity 
F(x, y)) and L : T -+ A is a labelling. We suppose a fixed (countable) set A of 

actions or action names; hence a labelling attaches an action name to each transition. 

L will also be understood in a broader sense, denoting the homomorphic extension 

L:T* + A*. 
A (labelled) Petri net is a tuple N = (,X,440), where C is a (labelled) net and 

MO is an initial marking, a marking M being a function M: P --f M. (A marking 

gives the number of tokens for each place). A transition t is enabled at a marking 

M, denoted by MA,, if M(p)>F(p, t) for every p E P. A transition t enabled at a 

marking M may fire yielding the marking M’, denoted by M AzM', where M’(p) = 

M(p) - F( p, t) + F(t, p) for all p E P. For any a E A, by M 5~ (M Z_Y M’) we mean 

that M&z (ML-t, M’) for some t with L(t) = a. In the natural way, the definitions 

can be extended for finite sequences of transitions o E T* and finite sequences of 

actions w E A*. 
The reachability set of a Petri net N = (C,Mo) is defined as W(N) = {MIMo~x M 

for some a~ T*}. A place p E P is unbounded if for any k E JV there is M E W(N) 

s.t. M(p) > k. 
The language, or the set of traces, of a labelled Petri net N is defined as Z(N) = 

{WEA* 1 MO%,}. Two labelled Petri nets Ni, N2 are language equiualent if LZ(Ni) = 

=9’@‘2). 

Now we give a standard definition of (strong) bisimulation and bisimilarity. 

Given two labelled nets Ci = (PI, Tl,F,,L,), C:! = (P2, Tz,Fz,Lz), a binary relation 

R C Jlrpl x Jlrpz is a bisimulation if for all (Ml,M2) E R : 

(1) for each aEA and MI s.t. MI %z, MI there is Mi s.t. M25z2 M,’ and (M{,Mi) E 
R, and conversely 

(2) for each aEA and M2/ s.t. M25sz2 M2/ there is MI s.t. Ml so, M[ and (M,‘,M,‘) E 

R. 
Two labelled Petri nets Ni, N2 are bisimilar if there is a bisimulation relating their 

initial markings. 

As mentioned in the Introduction, it is often useful to think in terms of a game 

(Stirling illustrates it e.g. in [26]). We recall a definition which will help us in informal 

arguing (for brevity, we use “he” referring to a player, instead of “he or she”). 

Bisimulation game 
1. Prerequisities 

There are two players, Player 1 and Player 2, and a pair of labelled Petri nets 

Ni, N2 (as the “playboard”). 

2. Rules 
Player 1 chooses one of the nets and fires an enabled transition (changing the 

marking appropriately); let us denote its label by a. Then Player 2 responds by 

firing a transition with the same label a in the other net (if it is possible). Again, 

Player 1 chooses one of the nets . . . , Player 2 responds etc. 
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3. Result 
The player who has no possible move (being his turn) loses; the other player 

wins. The case of an infinite run of the game is considered to be successful for 

Player 2 (he defends successfully). 

The relation of the definition and the game is expressed in the next proposition, which 

is almost trivial. 

Proposition 2.1. Player 1 has a winning strategy in the bisimulation game ifs NI,NI 
are not bisimilar; in other words, Player 2 has a defending strategy ifs N1, N2 are 
bisimilar. 

Proof. If there is a relevant bisimulation R, Player 2 is always able to respond in such 

a way that the current markings are related by R; hence he has a defending strategy. 

If Player 2 (has and) uses a defending strategy then all pairs of markings which can 

appear during the game after a move of Player 2 yield, in fact, a bisimulation. il 

Thinking in terms of the game, the following useful proposition is immediately clear. 

Proposition 2.2. If two labelled Petri nets N,, N2 are bisimilar then they are language 

equivalent, i.e. T’(N,) = I. 

Since the notion of weak bisimilarity is also touched in the paper, we outline the 

respective definitions briefly. In this case, it is assumed that the set A of actions contains 

a special - unobservable - action r. Now, for any a EA, M&z M’ means that Msz 

M’ for some sequence o of transitions, one of them being labelled by a, the others by z; 

in case a=z, the sequence can be empty (i.e. M&r M for all markings M). A weak 
bisimulation is defined in the same way as the (strong) bisimulation but the relation 

$1 is replaced with 4~. Two labelled Petri nets Ni, N2 are weakly bisimilar if there 

is a weak bisimulation relating their initial markings. The corresponding adjustments 

of the bisimulation game and Proposition 2.1. are straightforward. 

3. Undecidability results 

As follows from the Introduction, we use reductions of the halting problem for the 

counter machines to our problems considered. Let us recall a standard definition. 

Definition 3.1. A counter machine C with nonnegative counters cl, ~2,. . . ,c, is a pro- 

gram 

I : COMMi ; 2 : COMM2; . . ; n : COMM,, 

where COMM, is a HALT-command and COMMi (i = 1,2,. . . , n - 1) are commands 

of the following two types (assuming 1 <k, kl , k2 <n, 1 <j < m) 

(l) ‘J :=cj+l; goto k 
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(2) ifcj = 0 then goto kl else (cj I= cj - 1; goto k2) 
The set BS of branching states is defined as BS = {i(COMMi is of the type 2). 

In the next definition we describe a construction, which could be considered as a 
“first attempt” to simulate a counter machine by a Petri net. We also define an auxiliary 
notion of a “definitely cheating” transition. In the construction, as well as in the further 
ones, we describe a successive adding of new places, transitions and arcs. By adding 
an arc (x, y) we mean putting F(x, y) = 1 unless otherwise stated; at the pairs (x, y) 

for which the arc is not added we (implicitly) put F(x, v) = 0. 

Definition 3.2. Let C be a counter machine in the above notation. By the basic net 
zc we mean the net constructed as follows. 

Construction of CC 
1. Let ci,cz,. . . , c, (the counter part) and si, s2 , . . . , s, (the state part) be places of 

& . 
2. For i = 1,2,... ,n - 1 add new transitions and arcs depending on the type of 

COMMi : 
Case 1: COMMi is cj := cj + 1; goto k : 

Add ti with (si, ti), (ti,cj), (ti,sk) (cf. Fig. l(a)) 
Case 2: COMMi is if cj = 0 then goto kl else (cj := cj - 1; goto k2) : 

add tf (Z for zero) with (Si, tf), (f,sk, ), and 
tpz (NZ for nonzero) with (Si, ty’), (Cj,ty’), (trz,sk2) (cf. Fig. l(b)). 

Adding a dc-transition (dc for “definitely cheating”) to Cc for some i E BS means 
adding a new transition t with (Sip t), (Cj, t), (t, Cj), (t,sk, ), j, kl taken from COMMi (cf. 
Fig. l(c)). 

Notice that, for any input counter values xi ,x2,. . . ,x,,, if we put 1 token in the place 

Sl of cc, x1,x2,..., x,,, tokens in the places cl, ~2,. . . ,c, respectively and 0 tokens 

Sk 

(8) 

Si 5 

% 

04 
Fig. 1. Construction of ZC and dc-transitions. 

Si 

(4 
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elsewhere then the arising Petri net can “simulate” C in a natural way but (“only”) 

the transitions tf can cheat, i.e. fire although the relevant Cj is not 0. Also notice 

that a dc-transition t has the same effect as the relevant f but firing it always means 

cheating. 

The construction of Cc applies to any counter machine. Nevertheless it will suffice 

to consider a fixed counter machine C with two counters cl,cz for which the halting 

problem is undecidable (it is undecidable for given input values x1,x2 of ~1, c2 whether 

C halts or not); the existence of such a (“universal”) C is well-known (cf. [2 11). We 

refer to such a (fixed) machine C in the proofs of the next theorems. 

Theorem 3.3. Bisimilarity as well as language equivalence are undecidable for la- 
belled Petri nets, even if restricted to the subclass with a fixed underlying net and 
2 unbounded places. 

Proof. We follow the general strategy mentioned in the Introduction. For the fixed 

(universal) counter machine C and two input values x1,x2, we will construct two 

labelled Petri nets NI, N2 (modifications of Cc) such that the following conditions are 

equivalent 

(a) C does not halt for the given inputs xi ,x2, 

(b) Ni, N2 are bisimilar, 

(c) Y(NI ) = Wf2), 

(4 ~(NI ) C =9’W2). 

It will immediately imply the theorem. Condition (d) (directly implying the undecid- 

ability of the language containment problem) could be omitted; nevertheless including 

it does not add any work and can be useful for understanding. 

Before describing the construction, notice that (b) implies (c) (cf. Proposition 2.2.) 

and (c) implies (d). Therefore it will suffice to show that (a) implies (b) and that (d) 

implies (a) (i.e. non-(a) implies non-(d)). 

Construction of N,, N2 
1. As a basis, take CC, put 1 token in st,xi tokens in cl ,x2 tokens in c2 and 0 

elsewhere (as sketched in Fig. 2(a)). 

2. Add new places p, p’ and take any one-to-one labelling L of transitions. 

3. For each i E BS, add two dc-transitions t!, t:’ (with the relevant arcs), the addi- 

tional arcs (p,ti), (ti,p’), (p’,t[l), (ti’, p), and put L(t!) = L(t:‘) = L(tF) (Fig. 

2(b) sketches it for one i E BS). 
4. Add a new transition tF with a new label (extending the labelling L) and the arcs 

(s,,+), (P,b). 

5. Now take two copies of the arising net, as indicated in Fig. 3. 

In one copy put 1 token in p and 0 in p’, which yields Ni. 

In the other copy put 1 token in p’ and 0 in p, which yields N2. 

It is clear that only ci,cz are (possibly) unbounded. Also notice that, in any reachable 

marking, p and p’ together hold at most one token. 
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0 Xl 

0 l 

0 Sl 
52 

c2 

Fig. 2. Auxiliary constructions for bisimilarity problem. 

0 Xl 

0 l 

0 Sl 
$2 

c2 
c 

(4 

04 

Cl 

3 Xl 

0 0 
3 52 $1 1 

c2 tF 
A 

(b) 
Fig. 3. N, and Nz for bisimilarity problem. 

Now we show the promised implications “non-(a) implies non-(d)” and “(a) implies 

(b)“. In doing this we refer to the bisimulation game described in Section 2. 

Zf C halts (for inputs x1,x2): Then there is a simple winning strategy for Player 1 
- to fire, step-by-step, a fixed sequence o in Ni (independent of Player 2’s responses); 

it implies not only nonbisimilarity of Ni and N2 but also 9(Ni) $ 9(N2) (because 

L(O) belongs to _Y(Ni) and not to Y(N2)). The mentioned 0 is the transition sequence 

which simulates C correctly (there is no cheating) and is finished by tF. In each move, 

Player 2 has to answer in N2 by firing a transition with the same label. Since Player 1 
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does not fire any dc-transition and any firing of t,” is correct (the relevant counter-place 

is empty), Player 2 has, in fact, no choice and has to follow Player 1 by firing the 

same transition sequence in Nz. But it is clear that he can not finish by tc: (not having 

a token in p). 

If C does not halt (for inputs x1,x2): We show the bisimilarity of NI, N2 by 

describing a defending strategy for Player 2: 

(1) if Player 1 makes a correct move in one net then fire the same transition in the 

other net ~anyway, there is no choice), 

(2) if Player 1 makes a cheating move in one net, i.e. fires (for some i E BS) a dc- 

transition t( or ty, or t% when the relevant cj is not empty, then fire rhe transition out 

of the set {tf, ti, tr} in the other net which ensures the same markings on places p, p’ 

(and hence on all places !) in both nets; in other words, fire the enabled dc-transition 

out of (t~,t~} if the current markings differ w.r.t. p, p’, and fire $ otherwise. 

It is clear that Player 1 cannot win by firing correct moves only (since C does not 

halt, he cannot use tF); but after a first cheating move, Player 2 reaches the same 

markings in both nets - a clearly bisimilar situation! 

Of course, we could proceed more formally and extract a concrete bisimulation from 

the above considerations. An example of a bisimulation (relating the initial markings) 

is the union 9 u A where 9 is the diagonal (the set of all pairs (~,~)) and .& is 

the set of all pairs (M’,M”) where M’ and M” are reachable by correct sequences of 

the same lenghts in Nr and N2 respectively (it also means M’(p) = 1, M’( p’) = 0 and 

M’(p) = 0, M”( p’) = 1). q 

Remark 3.4. Considering language equivalence only, we could use a simpler, “non- 

symmetric”, construction: Nt without pf and dc-transitions, N2 with only one set of 

dc-transitions moving the token from p’ to p. 

Now we show an auxiliary Petri net (a modification of CC enriched by a “coding 

subnet”) which serves as a basis for the proof of Theorem 3.7. 

Definition 3.5. Let C be the fixed counter machine and x1, x2 some input values. By 

N X,rX2 we mean the Petri net constructed as follows (cf. Fig. 4). 

Construction of N,,,, 
1. Take the basic net CC, put 1 token in st ,x1 tokens in et ,x2 tokens in cz and 0 

elsewhere. 

2. Add a dc-transition t,! (with the relevant arcs) for each i E BS. 

3. Add places COD, HELP, SC (step counter) and rl, r2; put 1 token in rl, 0 in the 

others. 

4. Add arcs (rt,t), (t,&J,(t,SC) for each (so far ~onst~cted) transition t and (t;‘, 

CUD> for each ty’; we call the so far constructed transitions counted (in SC). 

5. Add transitions ~1, ~2, ~3 and arcs (COD,ut), (~,a,), (ur,~), (ut,HELP) with 

F(ul,HELP) = 2, (YZ,UZ), (~2~~1)~ (HELP,us), (rl,~), (us,rt), (us,COD). 
6. Thus the construction of N,,,,, is completed. 
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Fig. 4. Construction of AL, .xz. 

The “computation” of N,,,,, runs in certain cycles; each cycle consists of firing a 

(non-Ui) transition t counted in SC and of firing a sequence crU = ui ui . . . u1 u2u3u3 . . .u3 

(for some finite numbers of ui and us). Firing t moves the token from ri to ~2, adds 

a token to SC; if t = t,yz for some i, a token is also added to COD. The sequence TV,, 

moves the token from r2 back to rl, (possibly) changing (the number of tokens in) 

COD. Notice that, supposing HELP empty, the maximal possible increasing of COD 
in one cycle can be expressed as COD := 2. COD or COD := 2(COD + 1) (for ty”). 

We will need the following fact. 

Lemma 3.6. Suppose that the computation of C on x1, x2 takes k steps at least. 
Then the following sequence o is enabled in N,,,, : CT = t10$2ai.. . tkai where jiring 
each (counted) t’ is correct (non-cheating) and each 0; (i = 1,2,. ..,k) causes the 
maximal possible increasing of COD; let M denote the marking reached by jring 
o. In addition, for any other enabled sequence U’ with k (occurrences of) counted 
transitions and the respective marking M’, we have M’(COD) <M(COD). 

Proof. It is clear that a is enabled, the maximality of COD in that case is the point. 

First note the easy fact that it suffices only to consider the sequences a’ = z16,!z26t 

. ..zkdk where z1 ” 7 z2 , . . . ,zk are the (only) counted transitions in a’ and each @‘, (i = 
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1,2,. . . , k) causes the maximal possible increasing of COD; if some 8; did not mean 

the maximal increasing then the reached marking would be smaller on COD (later SC, 

j > i, could not restore it). 

Having such a (T’, and the reached marking M’, it can be easily verified by induction 

on k, that M’(COD) = bl b2 . . bkbk+l in binary where bk+l = 0 and, for j = 1,2,.. .,k, 

b,i = 1 if zj = tyZ for some i and bj = 0 otherwise. 

If 0’ # cr (and cr’ is enabled in N,,,,,) then there is j (1 <j<k) s.t. t’ = z’, 

t= = z= . , .., tJ-’ = zj-’ and tj is an “NZ-transition” (i.e. tj is tpZ for some i) and zl 

is a “non-NZ-transition” (i.e. zj = t,” or zj = t!). Then the inequality M’(COD) < 

M(COD) is clear from the binary expressions. 0 

In the next theorem, we mention the containment problem for reachability sets explic- 

itly although its undecidability follows from the undecidability of the equality problem. 

The reason is similar to the language containment problem mentioned in the proof of 

Theorem 3.3; in addition, recall that the proof for the containment problem [3] preceded 

the proof for the equality problem (cf. [lo]). 

Theorem 3.1, The containment and the equality problems for reachability sets of 

Petri nets are undecidable, even if restricted to the subclass of Petri nets with 5 

unbounded places (and with one of tM!o jixed underlying nets). 

Proof. For the fixed (universal) counter machine C and two input values x1,x2, we 

will construct two Petri nets N1, N2 (modifications of N,,., ) such that the following 

conditions are equivalent 

(a) C does not halt (for the given inputs XI ,x2) 

(b) 9(N,) = .%?(A$) 

(c) ~@(NI ) C 9W2 > 

Since (b) implies (c), it will suffice to show that non-(a) implies non-(c) and that (a) 

implies (b). 

Construction of Ni, N2 

1. Take N,,,,, as a basis and add a place p with 1 token and a place p’ with 0 

tokens. Then add the arcs (p, t;), (tl, p’) for each dc-transition (i E SS); Fig. 5 

illustrates it for one of these transitions. 

2. Add a transition ta with the arc (s,, ta). The arising net is the desired N2. 

3. Ni arises from N2 by adding an additional transition tb with the arcs (s,, lb), 

(p, tb), (tb, p’). Fig. 6 shows N1 ; removing the transition tb (in the dashed box) 

with the adjacent arcs, we get N2. 

Trivially 9?(Nz) c B(Nl ). Notice that at most one dc-transition can fire (in any of Ni , 
N2), moving the token from p to p’. Also notice that only places cl, ~2, COD, HELP, SC 

are (possibly) unbounded. 

Now we show the promised implications “non-(a) implies non-(c)” and “(a) implies 

(b)“. 
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Fig. 5. Auxiliary cons~ction for equality problem. 

Fig. 6. N1 and Nz for equality problem. 

Zf C halts (far inputs x1,x2): Consider firing the correct (noncheating) IS = 
t’a’ t202 ” 1( . . . t’&, in N1 which finishes by tb and all the intermediate changes of COD 
are maximal; M will denote the reached marking. 

Let us ask if there is a sequence TV’ fireable in N2 which would also reach the 
marking M. Since M(SC) = k, f~’ has to contain exactly k counted tmnsitions. As 6’ 
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should reach M on COD as well, its prefix has to be t’ aLt2ai . . . tkci due to Lemma 

3.6. Then only t, can follow (in fact, ta can be inserted anywhere into 0:) and the 

token is left in p (M’(p) = 1 for the reached marking M’) - whereas M(p) = 0. 
Hence there is no such o’ and it means !?X(N,) P, &Y(Nz). 

Zf C does not halt (for inputs xl,q): NI and N2 only differ in the transition tb. 

This transition can fire (in Ni) once at most and no counted transition can fire after 

it (only ui-transitions might follow). Consider any fireable sequence (r in Ni which 

contains tb. It is clear that r~ contains no dc-transition ti (it would disable tb removing 

the token from p) and that a token has been put in the HALT place s, before firing tb 
- therefore at least one firing of t,” was cheating. The same marking is reached in N2 

by firing a sequence CJ’ which arises from (T by replacing an occurrence of a (cheating) 

tf with tl and the occurrence of tb with t,. Hence %‘(Ni) = g(N2). q 

Remark 3.8. In Section 5 we also mention similar problems for the vector addition 

systems with states (VASSs). Having VASSs in mind, the restrictions of reachability 

sets to unbounded places are important rather than the reachability sets themselves. In 

the above construction these restrictions (of .@(Nl ), ?+?!(N2) to the domain {cl ,c2, COD, 
HELP,SC}) are equal also in the case that C halts; hence the proof does not show 

directly that the equality problem for 5dim VASS is undecidable. Nevertheless, the 

proof can be easily modified to show it. E.g. we can cancel p’, directing its input arcs 

to COD, and increase the multiplicity of the arc (~1, HELP) to 3 and the multiplicity 

of all arcs (ti , NZ COD) to 2 - to maintain the superiority of tlyz over t:. 

4. Decidability results 

This section shows two subclasses of the class of labelled Petri nets for which 

bisimilarity is decidable. 

The first subsection shows a natural possibility to use the bisimulation game for 

obtaining a decidability result. The relevant subclass - Petri nets which are deterministic 

up to bisimilarity - corresponds to F-deterministic nets of [29] (cf. Section 5) and 

therefore the result is not new, in fact. It is its proof technique which should justify 

(as the author hopes) its including here. 

As already mentioned, the result in [4] for BPP yields another subclass of Petri nets 

for which bisimilarity is decidable. We show in the second subsection that the result 

(and the corresponding subclass) can be extended. 

4. I. Deterministic nets 

Let us begin with considering one-to-one labelled (or “unlabelled”) Petri nets. Such 

Petri nets N,, N2 are bisimilar iff T(Ni) = Z(N2); it can be easily verified when 

thinking in terms of the bisimulation game (described in Section 2). The language 

equivalence problem in this case is known to be reducible to the reachability problem 
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Fig. 7. Game net N. 

(cf. [9]), which is known to be decidable (cf. [19]). (The reachability problem is to 

decide for a given Petri net N and a marking M whether M E 92(N).) 
Now we use our bisimulation game to show another reduction, which allows a 

straightforward generalization. It is convenient to model the game within one Petri net 
_ the game net N. 

Construction of the game net N (cf. Fig. 7) 

1. Suppose that two labelled Petri nets NI = (PI, TI,FI,LI,& ), N2 = (P2, T2, F2, 

&,Mo~) are given. 

For each transition t E T,, add a duplicate transition t’; the arising net will 

be denoted by N,’ = (P1,T,‘,F,‘,Li,M~l); i.e. F[(p, t’) = Fl(p,t), F[(t’,p) = 
Fl(t,p),L’,(t’) = L*(t) for all t E TI, p E PI. 
Similarly add duplicate transitions to N2 yielding the net N2/. 

2. Take the union of N[, N,’ (simply put N,‘, N2/ beside each other; we suppose PI 17 
P2=0andT{nT,‘=B). 
To the arising net, add a new place s with 1 token and for any aEA add places 

p:, pz with 0 tokens. 

3. For any tl E TI: add (s,tl), (tl,pf). (pA,ti), (t{,s) where a = LI(~I) (ti being 

the duplicate of tl). 

For any t2 E T2: add (s, tz), (t2, p:), (~2, ti), (t&s), where a = Lz(t2). 
Thus the construction of N is completed. 

The game in the net N, equivalent to the bisimulation game, can be given simpler 

rules: Player 1 fires an enabled transition (of N), then Player 2 fires an enabled 
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transition (of N), Player 1 fires,. . ., etc. Player l’s winning corresponds to any situation 

(marking) where a token is in some pi and no transition is enabled. 

Reachability of such a marking is decidable - it is a technical routine to show a 

reduction to the reachability problem; we give the relevant lemma at the end of this 

subsection. 

In general, reachability of a winning situation does not mean that Player 1 has a 

winning strategy; Player 2 could possibly have avoided the situtation by choosing more 

clever answers before. But if the labelling is one-to-one, he could not have answered in 

a different way; hence the reachability of a winning situation really means the existence 

of a winning strategy. 

It is clear that the same argument applies if the nets are deterministic, i.e. no reach- 

able marking enables two different transitions with the same label. We can even allow 

the nets to be deterministic up to bisimilarity - in such a net, different transitions with 

the same label can be enabled but their firings lead to bisimilar results. It even suffices 

when one of the nets is deterministic up to bisimilarity; the winning strategy is then to 

follow the relevant path in the other net, giving, in fact, no choice to Player 2. Thus 

we have proved the following theorem. 

Theorem 4.1. Bisimilarity is decidable for two labelled Petri nets, supposing one 

of them is deterministic up to bisimilarity (hence if one of them is deterministic, 
hence if one of them is one-to-one labelled). 

Remark 4.2. It is not difficult to modify the construction of the game net for the case 

of weak bisimilarity; in any move, each Player fires a sequence of transitions with at 

most one non-r-label. Player l’s winning situation would correspond to a reachable 

marking where a token is in some ph, a # z, and no r-sequence of transitions could 

enable a transition labelled with a. By standard means (using e.g. the reachability 

tree, cf. [23]), it can be shown that the (finite) set of all minimal markings where a t- 

sequence could enable an a-transition is effectively constructible. Hence the reachability 

of a Player l’s winning marking is decidable (the marking can be described in the 

extended LL. defined below). Thus “bisimilarity” can be replaced with “weak bisimi- 

larity” in Theorem 4.1. In Section 5 we mention connections with the results of [29] 

concerning F-deterministic Petri nets. 

The decidability proof for the above mentioned problem(s) uses the decidability of 

the reachability problem. The next lemma completes this by showing that they are at 

least as hard as that problem. 

Lemma 4.3. The reachability problem is PTIME-reducible to the bisimilarity prob- 

lem for one-to-one labelled Petri nets. 

Proof. It is well-known (cf. e.g. [9] or [23]) that the reachability problem is recursively 

(in fact, P-TIME) equivalent to the problem SPZRP of finding out if a given (single) 

place can be empty (with 0 tokens) in some reachable marking. We will reduce this 

problem to the bisimilarity problem. 
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Consider the following construction for an instance of SPZRP, i.e. a Petri net N and 

a place p. 

Construction of NI, N2 
1. To N, add a transition t, a place r with 1 token and (r, t),(t, Y). 

2. Take any one-to-one labelling of transitions; denote the arising net by N,. 

3. Construct N2 from Nl by adding the arcs (p, t),(t, p). 

If M(p) > 1 for all M E W(N) than Nl and N2 are obviously bisimilar (t is always 

enabled in both nets). 

On the other hand, if there is A4 E B(N), M(p) = 0, then Player 1 can reach A4 in 

Nl, forcing Player 2 to do the same in N2 (the labelling is one-to-one). Then he can 

fire t in Nl and wins since t is not enabled in N2. Hence N1, N2 are not bisimilar in 

this case. 0 

The following remark mentions some related facts. 

Remark 4.4. 1. The problem, whether a given net is deterministic, can be reduced to 

the coverability problem (and is at least as hard) - we do not need “exact” reachability 

but only the reachability of a covering (componentwise greater or equal) marking. 

2. The problem, whether a given net is deterministic up to bisimilarity, can 

be reduced to the reachability problem: we can take two copies of the given net 

and construct the above described game net. Player 1 can win iff the original net was 

not deterministic up to bisimilarity. Using SPZRP (cf. the proof of the previous 

lemma), it can be shown that this problem is at least as hard as the reachability 

problem. 

3. Labelled Petri nets can be considered as a special case of finitely branching 

transition systems. For them, non-bisimilarity is semi-decidable (cf. e.g. [20] and [5]); 

hence semi-decidability of bisimilarity is sufficient to establish decidability. Therefore 

we can consider another, somewhat artificial, generalization. If, in the case of bisimilar 

nets, there is a (defending) strategy for Player 2 controlled by a finite automaton (it 

inputs the transition fired by Player 1 and outputs the transition for Player 2 to fire) 

then bisimilarity is semi-decidable: we can generate all finite automata successsively, 

incorporating each of them in the game net and checking whether Player 1 has a 

possibility to win (if not, the nets are bisimilar). 

As promised, we finish this subsection by recalling a decidable generalization of the 

reachability problem which also comprises reachability of winning situations in game 

nets. The following auxiliary definition and lemma are taken from [ 151: 

Definition 4.5. (Jan&r [15, Definition 5.11). Let C = (P, Z’,F) be a net. Language 
Lz is the set of formulas defined as follows: 

(1) there is one variable J? for elements of J@; 

(2) a term is either atomic - A!(p) or c, where p E P, c E JV - or of the form 

tl + t2, where tl, t2 are terms; 
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(3) a formula is either atomic - ti < t2 or tl 6 t2, where ti, t2 are terms - or is of 

the form f 1 &f 2, where f 1, f 2 are formulas. The semantics is natural. 

For a concrete marking M, f(M) denotes the instance of f in which M is substituted 

for A. 

Lemma 4.6 (JanEar [15, Lemma 5.21). There is an algorithm with the following 
specification: 
Input: A Petri net N = (C,Mo) and a formula f E Lz, 
Output: YES tf there is M E 9(N) s. t. f(M) is true, NO otherwise. 

It can be easily verified that we can extend Lx by formulas lf and f 1 V f 2 without 

losing the decidability. Note that formulas like M 5,~ M 5 are easily expressible in 

(the extended) Lz. 

It is easy to see that the conditions on Player l’s winning marking can be expressed 

in the extended Lz; therefore the reachability of such a winning marking is decidable. 

4.2. Semilinear bisimulations 

For our aims, we can suppose nets where each transition t has at least one input 

place p (F( p, t) 2 1); if not, we can always add such p with 1 token and arcs (p, t), 
(t, p). Then adding a net N’ with the zero initial marking to a net N (i.e. putting N 

and N’ beside each other) has no effect - the resulting net is bisimilar to N. 

Therefore we can restrict our considerations of bisimilarity to the pairs of Petri nets 

with the same underlying nets (they differ in initial markings only). 

Then a bisimulation is, in fact, a relation on Jlr” for the relevant n. An equivalence 

relation R on NH will be called a congruence if (u, v) E R implies (u + w, u + w) E R 
for any w E Jlr” (addition taken componentwise). 

As mentioned in the Introduction, the recent result of Christensen et al. [4] shows, 

in fact, that bisimilarity is decidable for the class of Petri nets where the bisimulation 

equivalence (the greatest bisimulation) is a congruence. 

We extend this result using the notion of semilinear sets (cf. e.g. [8]). 

Definition 4.7. A set B C _Vk of k-dimensional nonnegative vectors is linear if there 

are vectors b (basis), cl, 122,. . . ,c, (periods) from JITk such that B = {b+xlcl +XZCZ+ 
. . . +x,c, 1 xi E Jf, 1 <i<n}. B is a semilinear set if it is a finite union of linear sets. 

We will say that a relation on Jlr” is semilinear if it is semilinear as a subset of N2”. 

Theorem 4.8. For the class of (pairs of) labelled Petri nets where bisimilarity implies 
the existence of a semilinear bisimulation relating the initial markings, bisimilarity is 
decidable. 

Proof. As mentioned in the Remark in 4.4 (3), semidecidability is sufficient for estab- 

lishing the decidability. 
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Note that there surely is an effective enumeration Bo, BI, BZ . . . of all semilinear sets. 

Hence the scheme of the appropriate (partial) algorithm can be as follows: 

Given Nl = (C,M, ), A$ = (Z,Mz), perform the next cycle 

(which can be infinite) 

for i = 0,1,2,... do 

if 

(*) Bi is a bisimulation w.r.t. C relating the markings Ml, A42 

then 

HALT (Nl, N2 are bisimilar) 

endif 

The crucial point is to show that the condition (*) can be verified effectively. For a 

fixed Bi, we first check that Bi c A’“’ x Jlr’ where r is the number of places in Z’. 

Then (*) can be rewritten as follows: 

A v(4 Y) E Bi [VCJvX ( ( X 3~ X') * 3y’(y $,I: y’ A (X’y y’) E Bi))] 

A V(X, _v) E Bi [VuVy ( (y sz y’) * Yx’(x 3, X’ A (~‘9 y’) E Bi))] 

where Vu means for all a occurring as transition labels in C. 

Since Bi is semilinear, there is a straightforward transforni’ation of the formula into 

the Presburger arithmetic (theory of addition), which is known to be decidable (cf. e.g. 

Pm q 

Remark 4.9. The proof scheme offers an obvious generalization. In Theorem 4.8 the 

expression “a semilinear bisimulation” could be replaced by “a bisimulation from @’ 

where a is an effectively generable class of relations and where it is (semi)decidable 

for a given relation from %? whether it is a bisimulation relating the initial markings. 

Besides, it could be formulated in terms of (general) transition systems instead of 

Petri nets. Nevertheless it is not important for our aims here. 

The fact that Theorem 4.8. is an extension of the mentioned result of [4] follows 

from the next theorem proved in [7]. (In our case, the relevant monoid is the set JY” 

with (vector) addition.) 

Theorem 4.10 (Eilenberg and Schiitzenberger [7], Theorem II). Every congruence in 
a jinitely generated commutative monoid M is a rational (or semilinear) subset of 
MxM. 

It is easy to construct a net for which the bisimulation equivalence is semilinear 

and is not a congruence. E.g., we can take Z = ({p}, { t},F,L) where F(p, t) = 2 
and F(t, p) = 0; the respective bisimulation equivalence is the set {(x,x) 1 x E Jlr} 

u{(X,X+1)(X=2k,kE~}U{(x+l,x)~x=2k,kEJlr}. 
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5. Additional remarks 

Petri nets are closely related to vector addition systems, VASs (introduced in [ 181); 

n-dimensional VASs are isomorphic to (the reachability sets of) Petri nets with n places 

without self-loops (without both (p,t), (t, p) as arcs). 

Hopcroft and Pansiot in [12] introduce vector addition systems with states, VASSs; 

any n-dim VASS can be viewed as a Petri net with (at most) n unbounded places. 

They show that any 2-dim VASS (unlike 3-dim) and any 5-dim VAS (unlike 6-dim) is 

an effectively computable semilinear set; hence the equality problem is decidable for 

them. (The complexity of the problem for 2-dim VASSs is studied in [13].) Ref. [12] 

also shows how any n-dim VASS can be simulated by an (n + 3)-dim VAS; it can be 

done by a Petri net with n + 2 places (using self-loops). 

The proof of Theorem 3.7 can be easily modified (cf. Remark 3.8) to show the 

undecidability for (restricted subclasses of) 5-dim VASSs and 8-dim VASs. Thus the 

problems for dimensions 3,4 (VASSs) and 6,7 (VASs) remain open. 

For bisimilarity and language equivalence we have undecidability for (a restricted 

subclass of) Petri nets with 2 unbounded places. For the case with 1 unbounded place, 

I conjecture that the bisimulation equivalence is semilinear and that both problems are 

decidable. In this sense, the decidability “border” would be established precisely. 

But there are other kinds of the border. As mentioned, Hirshfeld in [l l] shows that 

BPP-like Petri nets are sufficient for the undecidability of language equivalence; on the 

contrary, bisimilarity is decidable for them ([4]). It is also not difficult to modify the 

proofs in this paper in order to show the undecidability results for self-loop free Petri 

nets, and for single arcs only (F(x, y) d 1). Better exploring the relation of deterministic 

nets and “semilinear bisimulations” might help to understand the decidability border, 

too. 

We considered the “classical” bisimilarity in the paper. In the literature, also other 

notions of bisimilarity, based on non-iterleaving semantics, have been defined and stud- 

ied - step bisimulation, partial-word bisimulation, pomset bisimulation etc. (cf. e.g. [2]). 

The construction from the proof of Theorem 3.3 can be used to show their undecid- 

ability, too. The situation with the decidability results is probably more complicated. 

We have mentioned the correspondence of Subsection 4.1 to some results in [29]. 

Vogler’s notion F-deterministic net [29, Definition 4.2.11 corresponds to the Petri net 

which is deterministic up to weak bisimilarity (cf. Remark 4.2). He shows that if one 

of two nets has the property then it is decidable whether they are failure equivalent 

129, Theorem 4.2.91, which is in this case the same as being (weakly) bisimilar (this 

can be derived from Theorem 4.2.4 in [29]). Decidability of @-determinism is shown 

as well (Theorem 4.2.7 in [29]). 

Having an undecidable problem, we could explore its degree of undecidability. Due 

to finitely branching underlying transition systems, when considering (strong) bisimilar- 

ity for labelled Petri nets, we easily get II:-completeness of this problem (the problem 

whether two Petri nets are non-bisimilar is X:-complete). [17] shows that the prob- 

lem for weak bisimilarity is much more complicated from this point of view - it is 
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beyond the arithmetical hierarchy. The upper bound Ct (the first level of the analytical 

hierarchy) is clear from the definition (cf. e.g. [6]). 
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