Star problems - the second series (deadline 30.01.2022)

1. Consider vector addition systems with states (VASS) as language recognisers. To this aim we assume that each transition is additionally labeled by a letter of a finite alphabet Σ, there are distinguished subsets of initial I and accepting states F, and accepting runs are those which start in $q(\overrightarrow{0})$ for some $q \in I$ and end in $p(c)$ for some $p \in F$ and $c \in \mathbb{N}^{d}$, where d is the dimension of the VASS.
Show that every two languages L_{1}, L_{2} of VASS which are complements, i.e. $L_{1} \cap L_{2}=\varnothing$ and $L_{1} \cup L_{2}=\Sigma^{*}$, are actually regular languages.

Hint: WQO.
2. Show decidability of the following problem.

Input: A VASS and two subsets I, F of its states.
Question: Is there a run starting in some state from I that visits infinitely often states from F ?
Thus the run has to start from a configuration $q(c)$, where $q \in I$ and $c \in \mathbb{N}^{d}$ are chosen arbitrarily, and d is the dimension of the VASS.
2. ${ }^{+}$The previous problem, but with an additional requirement that the run starts in $q(\overrightarrow{0})$, for some $q \in I$.
3. A language $L \subseteq \Sigma^{*}$ we call weighted-recognizable if there is a weighted automaton \mathcal{A} over the rational field with the property that $\mathcal{A}(w)=1$ for $w \in L$ and $\mathcal{A}(w)=0$ for $w \notin L$. Show that each weighted-recognizable language is actually regular.

