Star problems - the second series (deadline 30.01.2022)

1. Consider vector addition systems with states (VASS) as language recognisers. To this aim we assume that each transition is additionally labeled by a letter of a finite alphabet Σ , there are distinguished subsets of initial *I* and accepting states *F*, and accepting runs are those which start in $q(\vec{0})$ for some $q \in I$ and end in p(c) for some $p \in F$ and $c \in \mathbb{N}^d$, where *d* is the dimension of the VASS.

Show that every two languages L_1, L_2 of VASS which are complements, i.e. $L_1 \cap L_2 = \emptyset$ and $L_1 \cup L_2 = \Sigma^*$, are actually regular languages.

Hint: WQO.

2. Show decidability of the following problem.

Input:A VASS and two subsets *I*, *F* of its states.Question:Is there a run starting in some state from *I* that visits infinitely often states from *F*?

Thus the run has to start from a configuration q(c), where $q \in I$ and $c \in \mathbb{N}^d$ are chosen arbitrarily, and *d* is the dimension of the VASS.

- 2.⁺ The previous problem, but with an additional requirement that the run starts in $q(\vec{0})$, for some $q \in I$.
- 3. A language $L \subseteq \Sigma^*$ we call *weighted-recognizable* if there is a weighted automaton \mathcal{A} over the rational field with the property that $\mathcal{A}(w) = 1$ for $w \in L$ and $\mathcal{A}(w) = 0$ for $w \notin L$. Show that each weighted-recognizable language is actually regular.