
Information Processing Letters 75 (2000) 1–7

Timed automata and additive clock constraints

Béatrice Bérard∗, Catherine Dufourd1

LSV, CNRS UMR 8643, ENS de Cachan, 61 avenue du Président Wilson, 94235 Cachan Cedex, France

Received 4 February 2000; received in revised form 17 April 2000
Communicated by L. Boasson

Keywords:Real-time systems; Timed automata; Decidability of emptiness

1. Introduction

The model of timed automata, introduced in [1],
is obtained from classical finite automata by adding
a finite set of real valued variables called clocks.
Clock values increase continuously at the same rate
as time in the control locations, and they can be tested
and reset by transitions. A test consists in comparing
clock values, or the difference between two such
values, with constants. For these models, the test for
emptiness is decidable (and PSpace-complete [2]),
which explains their successful use for the verification
of timed systems.

Extensions have later been proposed in several di-
rections, with the aim to increase the expressive power,
while preserving the decidability result. For instance,
decidability of emptiness still holds for some classes
of timed transition systems (like Petri nets or context-
free grammars), where the hypothesis of finite control
is removed [4]. Replacing reset by more general up-
date operations can also preserve decidability [6]. An-
other extension, yielding so-called linear hybrid sys-
tems [8], is obtained by adding variables with different
(rational) slopes and allowing linear inequalities over

∗ Corresponding author. Email: berard@lsv.ens-cachan.fr.
1 Email: dufourd@lsv.ens-cachan.fr.

their values. When these variables are controlled by
a finite timed automaton as in [7], emptiness remains
decidable. However, in the general setting, emptiness
is undecidable [9].

In this note, we consider the subclass of linear
hybrid automata, which consists of timed automata
extended with additive clock constraints. In [2], this
model is proved to be strictly more expressive than
the basic one and the test for emptiness becomes
undecidable. We extend this result to timed automata
with only 4 clocks and a restricted form of additive
constraints.

2. Timed automata with additive constraints

The set of clock constraints over a setX of clocks
is writtenC(X) and consists of Boolean combinations
of atomic propositions of the form:x # c, x + y # c,
wherex, y are clocks,c ∈ N is a constant and # is a
binary operator in{<,=,>}.

A clock valuation is a mappingv :X 7→ R+. The
set of all clock valuations isRX+ and we writev |=
ϕ when valuationv satisfies the clock constraintϕ.
For an elementt of R+ and a subsetα of X, the
valuationsv+ t andv[α← 0] are defined respectively
by (v + t)(x) = v(x) + t , for each clockx in X and
(v[α← 0])(x)= 0 if x ∈ α, v(x) otherwise.

0020-0190/00/$ – see front matter 2000 Elsevier Science B.V. All rights reserved.
PII: S0020-0190(00)00075-2



2 B. Bérard, C. Dufourd / Information Processing Letters 75 (2000) 1–7

A timed automaton is a tupleA= (Q,X,Σ,∆,q0,

F ), whereQ is a finite set of locations,X is a finite
set of clocks,Σ is a finite alphabet,∆⊆Q×[C(X)×
Σ×P(X)]×Q is the set of transitions,q0 is the initial
state andF ⊆Q is the set of final states. A transition

(q,ϕ, a,α, q ′) in ∆, also writtenq
ϕ,a,α−−−→ q ′, contains

a clock constraintϕ, a labela and a subsetα ⊆ X of
clocks to be reset.

The semantics of a timed automatonA are de-
scribed by the transition systemTA = (S, 7→). The set
S of states isQ×RX+, with initial state the pair(q0, v0)

(initial value 0 for all clocks). An accepting state ofTA
is a pair(q, v) with q in F . The relation7→ is defined
onS by the following condition:

(q, v)
a,t−→ (q ′, v′) if

there exists a transitionq
ϕ,a,α−−−→ q ′ in ∆,

such thatv + t |= ϕ, andv′ = v[α← 0].
A timed word is a sequencew = (a1, t1) . . . (an, tn)

∈ (Σ × R+)∗, where theti ’s form a nondecreasing
sequence. The timed language accepted byA is the set
of timed wordsw which label some path inTA from
the initial to an accepting state.

In [2], the undecidability result is proved for timed
automata with atomic clock constraints of the form
x + y # x ′ + y ′, while we consider here a restricted
subset of additive constraints, of the formx + y # c.
In this framework, there is a particular case for timed
automata with only two clocks: the corresponding
class is strictly more expressive than the usual one, but
emptiness remains decidable.

Proposition 1. Let TL+2 be the class of timed lan-
guages accepted by timed automata with two clocks
and atomic constraints in{x # c, x−y # c, x+y # c}.
(1) Emptiness is decidable in TL+2 .
(2) Let L = {(an, t1 . . . tn) | n > 1 andti = 1− 1/2i ,

1 6 i 6 n}. This language belongs to TL+2 but
there is no timed automaton with constraints built
from {x # c, x − y # c} acceptingL.

Proof. Point (1) results from an easy extension of the
classical region construction. We fix a maximal value
M for the constants appearing in the clock constraints
and we have to build a finite partition ofRX+, which is

(i) consistent with the set of constraints (two equiv-
alent valuations satisfy the same atomic con-
straints with boundM),

(ii) consistent with time progression (from two equiv-
alent valuations, the same regions are reached
when time increases), and

(iii) consistent with reset operations (reset from two
equivalent valuations yield the same region).

Fig. 1 shows the partition ofR2+ obtained forM = 3.
The languageL defined in point (2) is accepted by

the automaton in Fig. 2. The formal proof that no
classical timed automaton can acceptL relies on a
method introduced in [5]. LetA be a timed automaton
and letK be the common denominator of the (finitely
many rational) constants used inA. For a path

π = q0
ϕ1,a1,α1−−−−−→ q1

ϕ2,a2,α2−−−−−→ q2 · · ·
inA, TS(π) is the set of time sequencest1 . . . tn possi-
ble through this path (i.e., for which(a1, t1) . . . (an, tn)

is accepted byA throughπ ) and

TSi (π)=
{
r ∈R+ | r = ti for somet1 . . . tn ∈ TS(π)

}
.

The occurrenceai of π is called a precise action inπ
if TSi (π) reduces to a singleton. Applying first part of
Theorem 9.1 in [5] shows that in this case, the single
valueti in TSi (π) belongs toKN.

Fig. 1. Regions for constraints{x # c, x − y # c, x + y # c}.

Fig. 2. A timed automaton using constraintx + y = 1 for L.



B. Bérard, C. Dufourd / Information Processing Letters 75 (2000) 1–7 3

Now suppose thatA acceptsL. For each pathπ
in A, TS(π) contains at most one time sequence, so
that all occurrences ofa are precise. Hence we should
have 1− 1/2i ∈KN for anyi > 1, which is of course
impossible. 2

We show in the next section that emptiness is unde-
cidable for a set of 4 clocks, with atomic constraints
of the formx # c or x + y = 1. This extends the gen-
eral result and gives an upper bound on the number of
clocks for which emptiness remains decidable.

3. Undecidability proof

Theorem 2. For the class TL+4 of timed languages
accepted by timed automata with four clocks, extended
with additive clock constraints of the formx + y = 1,
the test for emptiness is undecidable.

Proof. The proof lies in the simulation of a determin-
istic two counters machine. Recall that such a machine
M consists of a finite sequence of labeled instructions,
which handle two countersc andd , and end at a spe-
cial instruction with labelHalt. The other instructions
have one of the two forms below, wherex ∈ {c, d} rep-
resents one of the two counters:
(1) `: x := x + 1; goto`′;
(2) `: if x = 0 goto`′ elsex := x − 1; goto`′′.
Without loss of generality, we may assume that the
counters have initial value zero. The behaviour of the

machine is described by a (possibly infinite) sequence
of configurations:

〈`0,0,0〉〈`1, n1,m1〉 · · · 〈`i , ni ,mi〉 · · · ,
whereni andmi are the respective counter values and
`i is the label, after theith instruction. The problem
of termination for such a machine (“is theHalt label
reached ?”) is known to be undecidable [10].

Our aim is to obtain a reduction of this problem
to the problem of emptiness for a language inTL+4 .
We build a timed automatonAM with 4 clocks which
simulates the two counters machineM and reaches a
final location if and only ifM stops.

Alphabet. The automatonAM has alphabetΣ =
{c, d,∗}.

It has noε-transition, but uses instead the letter
∗, which is the label of an internal but observable
action. A valuen for counterx ∈ {c, d} is encoded in a
(partial) timed wordw = (xn, t1 . . . tn), where the time
sequence is of the formp − 1/2,p − 1/22, . . . , p −
1/2n, inside an interval[p − 1,p] of length 1. Such
a word can be seen as a copy (with a time shift) of a
word in the languageL from Proposition 1. The values
of countersc andd alternate when time progresses: for
eachi > 0,ni lettersc can be read within time interval
[2i,2i+ 1] andmi lettersd within [2i + 1,2(i + 1)].

Note that a timed action of the form(∗,1) occurs
at the beginning (see Fig. 4), and other timed actions
(∗, t) for some t , appear before and/or after each
partial timed word coding a counter value. They are
omitted in Fig. 3, where some configuration〈`,3,4〉

Fig. 3. Simulation of sub-sequence· · · 〈3,4〉〈3,3〉〈4,3〉 · · · .



4 B. Bérard, C. Dufourd / Information Processing Letters 75 (2000) 1–7

is represented by the word(c,20 + 1/2)(c,20 +
3/4)(c,20+ 7/8)(d,21+ 1/2)(d,21+ 3/4)(d,21+
7/8)(d,21+ 15/16).

Clocks. The set of clocks isX = {u,x0, x1, x2}. The
clocku is used to obtain the time intervals of length 1,
so that it is reset each time it reaches the value 1. Each
of the three clocksxi plays a specific role within one
interval. However, in order to reduce the total number
of clocks, thexi ’s will exchange their roles at the end
of each interval, as explained later.
• One of thexi ’s computes the dates associated with

the letter (c or d) currently treated. It is reset at the
beginning of the interval and, as in the automaton
for L in Fig. 2 above, the transition labeled by
the letter is executed if the constraintu + xi = 1
holds, after whichxi is reset. As forL but on a
given interval of length 1, the automaton accepts
an arbitrary number of letters, each one occurs
after one half of the time that remains to reach the
beginning of the next interval. Fig. 3 shows the dates
for some sub-sequence〈3,4〉〈3,3〉〈4,3〉, where the
labels have been omitted.
• Another one of thexi ’s is used to stop the current

counting of a letter, by comparison with the con-
stant 2. We call this clock thereferenceof the letter.
• The last clock is not useful within the current

interval, but plays the same role of reference for the
other letter in the next interval.

Basic modules. The set of locations ofAM is:

Q= {(`, xi) | i ∈ {0,1,2}} ∪{
loop(`, xi) | i ∈ {0,1,2}

}∪ {q0},
where the initial location isq0 and the set of final
locations is

F = {(Halt, xi) | i ∈ {0,1,2}
}
.

The transitions ofAM are described by parts of this
automaton, calledmodules.

Initialization of the machine is simulated by the
module drawn in Fig. 4. Countersc andd have both

Fig. 4. Initialization module.

initial value 0, but the first clock reference forc is x0
while the first clock reference ford is x1. Location
(`0, x0) is reached at time 1 and simulation of the
initial instruction`0 starts at time 2.

Three kinds of actions must then be performed to
count values ofc and d : increment or decrement a
counter, or keep its value unchanged, and each action
is implemented inAM by three copies of a specific
module, one for eachxi (i ∈ {0,1,2}). A module
associated with instructioǹand clockxi has for entry
location the pair(`, xi). Exit locations are defined as
follows, wherei+1 implicitly uses addition modulo 3:
• an unchange counter module(see Fig. 5) has one

exit location(`, xi+1),
• an increment module(see Fig. 6) has one exit

location(`′, xi+1),
• azero testing(or decrement) module(see Fig. 7) has

two exit locations(`′, xi+1) and(`′′, xi+1).
We now explain in details how these modules work.
Note that indices̀ and x0 associated with theloop
location are omitted in the figures.

Fig. 5 is an unchange counter module forc, with
entry location(`, x0). This indicates thatx0 is the
reference clock used to ensure that the counting ofc

is over. In fact,x0 has been reset with the last letter
of the counting ofc, two intervals ago. The current
interval starts whenu = 1, thenu and x2 are reset.
In the general case (c > 1), the loop produces the
successive delays 1/2,1/4,1/8, . . . as inL, as long
asx0 < 2. Whenx0 = 2, the exit location is reached
with the lastc. In the special case wherec = 0, the
exit location is directly reached. In both cases, clock
x2 is reset by the last transition and will be the next
reference forc, two intervals later. Clockx1, which is
not currently used, will be the reference for letterd , in
the next interval.

Fig. 6 is an increment module for counterc, with
entry location(`, x0). This module is very similar to
the unchange module except there is now one more
letter c to count than two intervals ago. The loop is
performed as long asx0 6 2 and one morec occurs
before reaching the exit point. At the same timex2 is
reset and becomes the next reference forc.

Fig. 7 is a zero testing or decrement module for
counterc, with entry location(`, x0). There are two
cases. If the value of counterc is zero then we have
simultaneouslyu = 1 andx0 = 2, leading to the exit
location (`′, x1), after reset ofx2. If counter c is



B. Bérard, C. Dufourd / Information Processing Letters 75 (2000) 1–7 5

Fig. 5.c is unchanged: reference ofc is x0, next reference ofc will be x2.

Fig. 6. Increment ofc: reference ofc is x0, next reference ofc will be x2.

Fig. 7.c is tested for zero: reference ofc is x0, next reference ofc will be x2.

greater than zero then a decrement is simulated. We
havex0< 2 and the transition going to the loop can be
fired with reset ofu andx2. Count ofc is performed
in the loop as long asx0< 2 and is over whenx0= 2,
leading to the exit location(`′′, x1). However, in this
case,x2 is not reset because onec less than two
intervals ago is needed. Clockx2 will be the next
reference forc.

Note that for increment and unchange modules, the
same clockx0 could be used for the next reference

of c. However, this is not possible with a decrement
module, in which the roles of thexi ’s must be
exchanged: whenx0 reaches value 2 then it is too late
to use it for next reference ofc. There is no other
choice than usingx2, which forces to exchange the
roles ofx0 andx2.

Simulation of the2-counter machine. To simulate
M, the automatonAM starts in locationq0 and for
each instruction, performs one count forc followed by



6 B. Bérard, C. Dufourd / Information Processing Letters 75 (2000) 1–7

Fig. 8. The three implementations of instruction`: increment ofd .

one ford . Each instruction is thus implemented with
two modules linked together. For instance, an instruc-
tion incrementingd is implemented inAM by an un-
change module forc linked with an increment mod-
ule for d . Testingc for zero is implemented by a zero
testing module forc linked with an unchange module
for d . This “link” is simply obtained in our construc-
tion by the fact that an exit location of some module is
also the entry location of another one. For instance, an
instruction` incrementingd has three possible imple-
mentations fori ∈ {0,1,2}, represented in Fig. 8.

The automatonAM is simply built according to
the sequence of instructions of the 2-counter machine,
with each possible implementation of an instruction
appearing at most once. Assume that the number of
instructions ofM is n, then the number of modules
of the associated timed automaton is at most 6n + 1
(including the initialization module), with the same
maximal number of locations (entry and loop for each
pair (`, xi) and initial location).

With the set of final locationsF = {(Halt, xi) | i ∈
{0,1,2}}, the language accepted byAM is empty if
and only ifM does not terminate, which concludes
the proof. 2

4. Discussion and conclusion

We proved that emptiness is undecidable for the
classTL+4 of languages accepted by four clocks timed
automata using constraints of the form{x # c, x+y =
1}. Remark that our construction if quite “minimal”.
Firstly, we comparex + y to constant 1 only, and
not to clocks (x + y = z). Secondly, we do not use
diagonal comparisonsof the kind x − y # c. Such
diagonal comparisons often lead to undecidability
results for some extended classes of timed automata,
while the corresponding classes remain decidable
without diagonal constraints [6].

We also proved that for the classTL+2 corresponding
to timed automata with two clocks using constraints
{x # c, x − y # c, x + y # c}, emptiness is decidable
even though this class is strictly more expressive than
the one without additive constraints.

The problem remains open forthreeclocks. As for
any subclass of linear hybrid automata, decidability
of emptiness inTL+3 would immediately result from
finding a partition ofR3+ with the consistency proper-
ties (i)–(iii) described in the proof of Proposition 1. On



B. Bérard, C. Dufourd / Information Processing Letters 75 (2000) 1–7 7

the other hand, it also seems difficult to simulate more
than one counter with 3 clocks.

An application of our undecidability result concerns
another kind of clocks, which we callcountdown
clocks: they are set at a given constant when updated
(instead of being reset), and then decrease while time
elapses, until reaching 0. Some variants have been
studied for instance in [3,7] and they can be useful
for modelization purposes (for instance the countdown
of a target). From Theorem 2, we immediately obtain
that emptiness is undecidable for timed automata
extended with countdown clocks and using constraints
in {x − y # c, x # c}, wherex, y are either classical
or countdown clocks. This relies on the the fact that
a constraintx + y = 1 is easily implemented with a
constraintx − y1= 0, wherey1 is a countdown clock
set to 1 when updated. However, note that for timed
automata with countdown clocks and constraints of
the formx # c only, emptiness is still decidable. This
is because a countdown clockyc can be implemented
by a classical clocky, replacing anyyc # c′ by y #
c′ + c. We thus give evidence of a new class for
which diagonal constraints lie at the frontier of what
is decidable or not.

References

[1] R. Alur, D.L. Dill, Automata for modeling real-time systems,
in: Proc. ICALP’90, Lecture Notes in Comput. Sci., Vol. 443,
Springer, Berlin, 1990, pp. 322–335.

[2] R. Alur, D.L. Dill, A theory of timed automata, Theoret.
Comput. Sci. 126 (1994) 183–235.

[3] R. Alur, L. Fix, T.A. Henzinger, A determinizable class of
timed automata, in: Proc. CAV’94, Lecture Notes in Comput.
Sci., Vol. 818, Springer, Berlin, 1994, pp. 1–13.

[4] B. Bérard, Untiming timed languages, Inform. Process.
Lett. 55 (1995) 129–135.

[5] B. Bérard, V. Diekert, P. Gastin, A. Petit, Characterization of
the expressive power of silent transitions in timed automata,
Fund. Inform. 36 (1998) 145–182.

[6] P. Bouyer, C. Dufourd, E. Fleury, A. Petit, Are timed automata
updatable?, in: Proc. CAV’00, to appear.

[7] F. Demichelis, W. Zielonka, Controlled timed automata, in:
Proc. CONCUR’98, Lecture Notes in Comput. Sci., Vol. 1466,
Springer, Berlin, 1998, pp. 455–469.

[8] T.A. Henzinger, The theory of hybrid automata, in: Proc.
LICS’96, 1996, pp. 278–292.

[9] T.A. Henzinger, P. Kopke, A. Puri, P. Varaiya, What’s decid-
able about hybrid automata, in: Proc. STOC’95, 1995, pp. 373–
382.

[10] M. Minski, Computation: Finite and Infinite Machines,
Prentice-Hall, Englewood Cliffs, NJ, 1967.


