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1. Introduction

The model of timed automata, introduced in [1],
is obtained from classical finite automata by adding
a finite set of real valued variables called clocks.

Clock values increase continuously at the same rate

their values. When these variables are controlled by
a finite timed automaton as in [7], emptiness remains
decidable. However, in the general setting, emptiness
is undecidable [9].

In this note, we consider the subclass of linear
hybrid automata, which consists of timed automata

as time in the control locations, and they can be tested extended with additive clock constraints. In [2], this

and reset by transitions. A test consists in comparing
clock values, or the difference between two such

values, with constants. For these models, the test for

emptiness is decidable (and PSpace-complete [2]),
which explains their successful use for the verification
of timed systems.

Extensions have later been proposed in several di-
rections, with the aim to increase the expressive power,
while preserving the decidability result. For instance,
decidability of emptiness still holds for some classes
of timed transition systems (like Petri nets or context-
free grammars), where the hypothesis of finite control
is removed [4]. Replacing reset by more general up-
date operations can also preserve decidability [6]. An-
other extension, yielding so-called linear hybrid sys-
tems [8], is obtained by adding variables with different
(rational) slopes and allowing linear inequalities over
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model is proved to be strictly more expressive than
the basic one and the test for emptiness becomes
undecidable. We extend this result to timed automata
with only 4 clocks and a restricted form of additive
constraints.

2. Timed automata with additive constraints

The set of clock constraints over a sétof clocks
is writtenC (X) and consists of Boolean combinations
of atomic propositions of the form: #c¢, x + y #c¢,
wherex, y are clocksce € N is a constant and # is a
binary operator iff<, =, >}.

A clock valuation is a mapping: X +— Ry. The
set of all clock valuations iRﬁ and we writev =
¢ when valuationwv satisfies the clock constraigt
For an element of R, and a subsetr of X, the
valuationsy + ¢ andv[a < O] are defined respectively
by (v 4+ 7)(x) = v(x) + ¢, for each clockr in X and
(v[a < 0] (x) =0if x € «, v(x) otherwise.
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Atimed automatonis a tupld = (Q, X, X, A, qo,
F), whereQ is a finite set of locationsX is a finite
set of clocks X is a finite alphabetp € O x [C(X) x
X x P(X)] x Qisthe set of transitiongy is the initial
state andrF’ C Q is the set of final states. A transition
(q.¢,a,a,q)) in A, also writteng ~2% 4, contains
a clock constraing, a labela and a subset C X of
clocks to be reset.

The semantics of a timed automatoh are de-
scribed by the transition systefy = (S, ). The set
S of states isQ x RX , with initial state the paitgo, vo)
(initial value O for all clocks). An accepting stateDf
is a pair(q, v) with ¢ in F. The relation— is defined
on S by the following condition:

(q,v) ot (q', V) if
there exists a transiti(mm q'in A,
such thaw + ¢ = ¢, andv’ = v[a < 0].

A timed word is a sequenae = (a1, 1) ... (ay, ty)
€ (¥ x Ry)*, where ther;’s form a nondecreasing
sequence. The timed language accepted ligythe set
of timed wordsw which label some path ifi 4 from
the initial to an accepting state.

In [2], the undecidability result is proved for timed
automata with atomic clock constraints of the form
x+y # x'+y’, while we consider here a restricted
subset of additive constraints, of the fonmt y #c.

In this framework, there is a particular case for timed
automata with only two clocks: the corresponding
class is strictly more expressive than the usual one, but
emptiness remains decidable.

Proposition 1. Let TL2+ be the class of timed lan-
guages accepted by timed automata with two clocks
and atomic constraintsifix #c¢, x —y #c, x+y #c}.
(1) Emptiness is decidable in JL
(2) LetL ={(a",t1...t,) |n >1andy; =1—1/2,
1 < i < n}. This language belongs to '{Lbut
there is no timed automaton with constraints built
from{x #c, x — y #c} acceptingL.

Proof. Point (1) results from an easy extension of the
classical region construction. We fix a maximal value
M for the constants appearing in the clock constraints
and we have to build a finite partition & , which is
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(i) consistent with the set of constraints (two equiv-
alent valuations satisfy the same atomic con-
straints with bounad’),

(ii) consistentwith time progression (from two equiv-
alent valuations, the same regions are reached
when time increases), and

(iii) consistent with reset operations (reset from two
equivalent valuations yield the same region).

Fig. 1 shows the partition d&2 obtained forM = 3.

The languagd. defined in point (2) is accepted by
the automaton in Fig. 2. The formal proof that no
classical timed automaton can acceptrelies on a
method introduced in [5]. Led be a timed automaton
and letK be the common denominator of the (finitely
many rational) constants used.i For a path

$1,41,001 $2,d2,02

T =40

in A, TS() is the set of time sequencas. ., possi-
ble through this path (i.e., for whidlay, 1) . . . (ay, ty)
is accepted by throughs) and

TS(m) ={r eRy |r =1 forsomer...1, € TSm)}.

The occurrence; of  is called a precise action im

if TS (;r) reduces to a singleton. Applying first part of
Theorem 9.1 in [5] shows that in this case, the single
valuer; in TS (;r) belongs toK N.

0 1 2 3 4

Fig. 1. Regions for constrainfs #c¢, x — y #c, x + y #c}.

z+y=1, a,{z}

Fig. 2. A timed automaton using constraint- y = 1 for L.
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Now suppose thaid acceptsL. For each pathr

machine is described by a (possibly infinite) sequence

in A, TS() contains at most one time sequence, so of configurations:

that all occurrences af are precise. Hence we should

have 1— 1/2' € KN for anyi > 1, which is of course
impossible. O

We show in the next section that emptiness is unde-
cidable for a set of 4 clocks, with atomic constraints
of the formx # ¢ or x + y = 1. This extends the gen-
eral result and gives an upper bound on the number of

clocks for which emptiness remains decidable.

3. Undecidability proof

Theorem 2. For the class TI;r of timed languages

(£07070><Elanlaml)"'(eianiami>"'v

wheren; andm; are the respective counter values and
¢; is the label, after théth instruction. The problem
of termination for such a machine (“is thalt label
reached ?”) is known to be undecidable [10].

Our aim is to obtain a reduction of this problem
to the problem of emptiness for a Ianguageﬂlnj.
We build a timed automatad 5, with 4 clocks which
simulates the two counters maching and reaches a
final location if and only ifM stops.

Alphabet. The automatond,, has alphabety =
{c.d, *}.
It has noe-transition, but uses instead the letter

accepted by timed automata with four clocks, extended*, which is the label of an internal but observable

with additive clock constraints of the form+ y =1,
the test for emptiness is undecidable.

Proof. The prooflies in the simulation of a determin-

action. A value: for counterx € {c, d} is encoded in a
(partial) timed wordw = (x", #1...t,), where the time
sequence is of the formp — 1/2, p —1/22, ..., p —

1/2", inside an intervalp — 1, p] of length 1. Such

istic two counters machine. Recall that such a machine a word can be seen as a copy (with a time shift) of a
M consists of a finite sequence of labeled instructions, word in the languagé from Proposition 1. The values

which handle two countersandd, and end at a spe-
cial instruction with labeHalt. The other instructions
have one of the two forms below, where {c, d} rep-
resents one of the two counters:

(1) ¢: x :=x + 1; goto?’;

(2) ¢: if x =0gotol’ elsex :=x — 1; gotol”.

of counters: andd alternate when time progresses: for

eachi > 0, n; lettersc can be read within time interval

[2i,2i + 1] andm; lettersd within [2/ + 1, 2(i + 1)].
Note that a timed action of the forigx, 1) occurs

at the beginning (see Fig. 4), and other timed actions

(x,t) for somet, appear before and/or after each

Without loss of generality, we may assume that the partial timed word coding a counter value. They are
counters have initial value zero. The behaviour of the omitted in Fig. 3, where some configuratiof 3, 4)

¢ is unchanged
p = 2 t.u.

time

increment of ¢

2 t.u.

PR, .

0

2 t.u.

= Q.
-0
0
<—0
-0
=<—0
= O
-0

< ieeaat

decrement of ¢

Fig. 3. Simulation of sub-sequence (3,4)(3,3)(4,3) - - -.
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is represented by the wor¢e, 20 + 1/2)(c, 20 +
3/4)(c,20+7/8)(d, 21+ 1/2)(d, 21+ 3/4)(d, 21+
7/8)(d, 21+ 15/16).

Clocks. The set of clocks iX = {u, xq, x1, x2}. The
clocku is used to obtain the time intervals of length 1,

initial value 0, but the first clock reference foiis xg
while the first clock reference faf is x1. Location
(Lo, xo) is reached at time 1 and simulation of the
initial instructionfg starts at time 2.

Three kinds of actions must then be performed to
count values oft andd: increment or decrement a

so that it is reset each time it reaches the value 1. Eachcounter, or keep its value unchanged, and each action

of the three clocks; plays a specific role within one

interval. However, in order to reduce the total number

of clocks, thex;’s will exchange their roles at the end
of each interval, as explained later.

e One of thex;'s computes the dates associated with
the letter ¢ or d) currently treated. It is reset at the
beginning of the interval and, as in the automaton
for L in Fig. 2 above, the transition labeled by
the letter is executed if the constraimt+ x; = 1
holds, after whichx; is reset. As forL but on a
given interval of length 1, the automaton accepts
an arbitrary number of letters, each one occurs
after one half of the time that remains to reach the
beginning of the next interval. Fig. 3 shows the dates
for some sub-sequeng®, 4)(3, 3)(4, 3), where the
labels have been omitted.

e Another one of thex;’s is used to stop the current
counting of a letter, by comparison with the con-
stant 2. We call this clock theferenceof the letter.

e The last clock is not useful within the current
interval, but plays the same role of reference for the
other letter in the next interval.

Basic modules. The set of locations afl \ is:
O0={.x)]ie{0,1,2}} U

{loope, x;i) |i €10, 1, 2}} U {qo},
where the initial location igjp and the set of final
locations is
F={(Halt,x;) | i €{0,1,2}}.

The transitions of4 ,( are described by parts of this
automaton, callechodules

Initialization of the machine is simulated by the
module drawn in Fig. 4. Countersandd have both

u=1, %, {uaml}

qo0 EOa Zo

Fig. 4. Initialization module.

is implemented ind, by three copies of a specific
module, one for each; (i € {0,1,2}). A module
associated with instructiohand clocky; has for entry
location the pain¢, x;). Exit locations are defined as
follows, where + 1 implicitly uses addition modulo 3:
e anunchange counter modulgee Fig. 5) has one

exit location(¢, x; 1),

e an increment modulg(see Fig. 6) has one exit
location(¢’, x;+1),

e azero testindor decremerntmodule(see Fig. 7) has
two exit locationg¢’, x;+1) and(€”, x;+1).

We now explain in details how these modules work.

Note that indice and xg associated with théoop

location are omitted in the figures.

Fig. 5 is an unchange counter module tgrwith
entry location (¢, xp). This indicates thatv is the
reference clock used to ensure that the counting of
is over. In fact,xg has been reset with the last letter
of the counting ofc, two intervals ago. The current
interval starts whem = 1, thenu and x, are reset.
In the general casec (> 1), the loop produces the
successive delays/2,1/4,1/8,... as in L, as long
asxg < 2. Whenxg = 2, the exit location is reached
with the lastc. In the special case where= 0, the
exit location is directly reached. In both cases, clock
x2 is reset by the last transition and will be the next
reference for, two intervals later. Clock1, which is
not currently used, will be the reference for lettgin
the next interval.

Fig. 6 is an increment module for counterwith
entry location(¢, xg). This module is very similar to
the unchange module except there is now one more
letter ¢ to count than two intervals ago. The loop is
performed as long asp < 2 and one more occurs
before reaching the exit point. At the same timeis
reset and becomes the next reference for

Fig. 7 is a zero testing or decrement module for
counterc, with entry location(¢, xg). There are two
cases. If the value of counteris zero then we have
simultaneously: = 1 andxg = 2, leading to the exit
location (¢, x1), after reset ofxy. If counterc is
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u=1Azo=2,%{u,x2}

utza=1Ax0 < 2,¢,{x2}

u=1Axo <2,
*, {u, 22}

U+£E2:1/\£E0:2,

¢, {xQ}

D

loop

Fig. 5.c is unchanged: reference ofs xg, next reference of will be x5.

u+x2 =1Amo < 2,¢,{z2}

u+x2 =1Axzo > 2,

u=1, %, {u,x ¢, {z2}
£, xo (v, 22} loop v, 1

D

(

Fig. 6. Increment of: reference ot is xg, next reference of will be x5.

u=1Axo =2,
%, {u, @2}

u+x2=1Ax0=2,

 {}

u=1Az0 <2, * {u,z2}

utz2=1A2z0 <2, ¢, {z2}

Fig. 7.c is tested for zero: reference ofs xg, next reference of will be x».

greater than zero then a decrement is simulated. Weof ¢. However, this is not possible with a decrement

havexg < 2 and the transition going to the loop can be module, in which the roles of the;’s must be

fired with reset oft andx,. Count ofc is performed ~ exchanged: whemg reaches value 2 then it is too late

in the loop as long agp < 2 and is over whemg = 2, to use it for next reference af. There is no other

leading to the exit locationi¢”, x1). However, in this ~ choice than using2, which forces to exchange the

case,x2 is not reset because oneless than two roles ofxo andxz.

intervals ago is needed. Clock will be the next

reference foe. Simulation of the2-counter machine. To simulate
Note that for increment and unchange modules, the M, the automatomd », starts in locatioryo and for

same clockxg could be used for the next reference each instruction, performs one count édiollowed by
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Unchanged Increment of d

counter ¢ T T T T TTTTTTTTTTTTTTTTTTIIOA

i
I
"
I

Implementation 1 : :
|
1
1
1
1
1
1

o=

! | i
i | : :
Implementation 2 : | ! | |
I 1
: ! : :
: '

,,,,,,,,,,,,,,,,,,,,,,,,,,

___________________________

i
! | i

i | : :
1 1

Implementation 3 : | ! E i
| | |
: ' | i
! I
1

__________________________

Fig. 8. The three implementations of instructiGrincrement ofd.

one ford. Each instruction is thus implemented with 4. Discussion and conclusion
two modules linked together. For instance, an instruc-

tion incrementing? is implemented ind 54 by an un- ) ) _
change module for linked with an increment mod- We proved that emptiness is undecidable for the

ule for d. Testinge for zero is implemented by a zero  classTLy of languages accepted by four clocks timed
testing module for linked with an unchange module ~ @utomata using constraints of the fofm¥c, x +y =
for d. This “link” is simply obtained in our construc- 1}. Remark that our construction if quite “minimal”.
tion by the fact that an exit location of some module is Firstly, we comparex + y to constant 1 only, and
also the entry location of another one. For instance, an Not to clocks ¢ + y = z). Secondly, we do not use
instruction? incrementing? has three possible imple- ~ diagonal comparison®f the kind x — y #¢. Such
mentations foi € {0, 1, 2}, represented in Fig. 8. diagonal comparisons often lead to undecidability
The automatond . is simply built according to  results for some extended classes of timed automata,
the sequence of instructions of the 2-counter machine, While the corresponding classes remain decidable
with each possible implementation of an instruction Without diagonal constraints [6].
appearing at most once. Assume that the number of We also proved that for the cla®s; corresponding
instructions of M is n, then the number of modules to timed automata with two clocks using constraints
of the associated timed automaton is at most-61 {x#c, x —y#c, x+y#c}, emptiness is decidable
(including the initialization module), with the same €ven though this class is strictly more expressive than
maximal number of locations (entry and loop for each the one without additive constraints.
pair (¢, x;) and initial location). The problem remains open ftreeclocks. As for

With the set of final location& = {(Halt, x;) | i € any subclass of linear hybrid automata, decidability
{0, 1, 2}}, the language accepted by, is empty if of emptiness inTL} would immediately result from
and only if M does not terminate, which concludes finding a partition oﬁR{i with the consistency proper-
the proof. O ties (i)—(iii) described in the proof of Proposition 1. On
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the other hand, it also seems difficult to simulate more References
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