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1 Introduction

Explicit timing constraints are naturally present
in real-life systems (transmission delays, response
time, etc...). Classical models (finite automata,
Petri nets, etc...) can not express such real-time
constraints. Since their introduction by Rajeev
Alur and David Dill in [6, 7], timed automata are
one of the most studied models for real-time sys-
tems: in those systems, quantitative properties of
delays between events can easily be expressed.
Numerous works have been devoted to the “theo-
retical” comprehension of timed automata: deter-
minization [9], minimization [3], power of clocks
[5, 33], power ofε-transitions [15], extensions of
the model [27, 35, 23, 13], logical characteriza-
tions [35], etc... have in particular been investi-
gated. Practical aspects of the model have also
been considered and several model-checkers are
now available (HYTECH [31], KRONOS[25], UP-
PAAL [38]). These model-checkers have been used
to verify many industrial case studies (see the web
pages of the tools, given page 13).

One of the major properties of timed automata is
probably that reachability properties are decidable
[7], though timed automata have an infinite num-
ber of configurations. The core of this result is
the construction of the so-called region automa-
ton, which finitely abstract behaviours of timed au-
tomata in such a way that checking reachability
in a timed automaton reduces to checking reach-
ability in a (somewhat larger) finite automaton.
This construction has many other applications, as
for example the decidability of the TCTL model-
checking [2] (TCTL is the timed extension of the
logic CTL). However, many problems remain un-
decidable, as not everything can be reduced to the
untimed framework. For example, timed automata
are neither determinizable, nor complementable

[7]. Checking if a timed automaton is determiniz-
able (or complementable) is even an undecidable
problem [42]. An other important example is
the undecidability of the universality problem for
timed automata [7].

The aim of this tutorial is to give some understand-
ing of the timed automata model. We will present
the basic tools which are used in the domain of ver-
ification of timed systems. In particular, after hav-
ing presented the model, we will present in details
the region automata construction. For modeling
reasons, it is important to have expressive mod-
els, but it is also important that the models remain
decidable. We will then present several variants
or extensions of timed automata, focusing on the
decidability of reachability properties, and on the
expressiveness of the models. We will terminate
this tutorial with some implementation and algo-
rithmics issues.

We would like to point out several recent surveys
on timed automata which present current works
and results on timed automata with a point of view
somewhat different from the one adopted in this
tutorial. A recent survey by Rajeev Alur and Mad-
husudan P. gives many hints about decidability is-
sues for timed automata [10]. In [11], Eugene
Asarin presents the current challenges in timed
languages theory.

2 Timed Automata

If Z is a set, letZ∗ be the set offinitesequences of
elements inZ. We consider as time domain

�
the

set�+ of non-negative rationals or the set�+ of
non-negative reals, andΣ as a finite set ofactions.
A time sequenceover

�
is a finite non decreasing

sequenceτ = (ti)1≤i≤p ∈
�∗. A timed word

ω = (ai, ti)1≤i≤p is an element of(Σ×
�

)∗, also
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written as a pairω = (σ, τ ), whereσ = (ai)1≤i≤p

is a word inΣ∗ andτ = (ti)1≤i≤p a time sequence
in
�∗ of same length.

Clock Valuations, Operations on Clocks. We
consider a finite setX of variables, calledclocks.
A clock valuationoverX is a mappingv : X →

�
which assigns to each clock a time value. The
set of all clock valuations overX is denoted

�X .
Let t ∈

�
, the valuationv + t is defined by

(v + t)(x) = v(x) + t, ∀x ∈ X. We also use the
notation(αi)1≤i≤n for the valuationv such that
v(xi) = αi. For a subsetY of X, we denote by
[Y ← 0]v the valuation such that for eachx ∈ Y ,
([Y ← 0]v)(x) = 0 and for eachx ∈ X \ Y ,
([Y ← 0]v)(x) = v(x).

Clock Constraints. Given a finite set of clocks
X, we introduce two sets ofclock constraints over
X. The most general one, denotedC(X), is de-
fined by the grammar:

g ::= x ./ c | x− y ./ c | g ∧ g | true
wherex, y ∈ X, c ∈�and ./∈ {<,≤, =,≥, >}.

We also use the proper subset ofdiagonal-free
constraints where the comparison between two
clocks is not allowed. This set, denotedCdf (X),
is defined by the grammar:

g ::= x ./ c | g ∧ g | true,
wherex ∈ X, c ∈�and ./∈ {<,≤, =,≥, >}.

A k-bounded clock constraintis a clock constraint
which involves only constantsc between−k and
+k. The set ofk-bounded (resp. k-bounded
diagonal-free) clock constraints is denotedCk(X)
(resp.Ck

df (X)). A constraint of the formx−y ./ c

is adiagonal constraint.

If v is a clock valuation we writev |= g when
v satisfies the clock constraintg and we say that
v satisfiesx ./ c (resp. x − y ./ c) whenever
v(x) ./ c (resp.v(x) − v(y) ./ c). If g is a clock
constraint, we noteJgK the set of clock valuations
{v ∈
�X | v |= g}.

Timed Automata. A timed automatonover
�

is
a tupleA = (Σ, Q, T, I, F, X), whereΣ is a finite
alphabet of actions,Q is a finite set of states,X is
a finite set of clocks,T ⊆ Q×[C(X)×Σ×2X ]×Q

is a finite set of transitions1, I ⊆ Q is the subset of

1For more readability, a transition will often be written as

q
g,a,Y

−−−−−→ q′ or even asq
g,a,Y :=0

−−−−−−−→ q′ instead of simply
the tuple(q, g, a, Y, q′).

initial states andF ⊆ Q is the subset of final states.
If all constraints appearing inA are diagonal-free,
we say thatA is adiagonal-free timed automaton.

A path in A is a finite sequence of consecutive
transitions:

P = q0
g1,a1,Y1

−−−−−−→ q1 . . . qp−1
gp,ap,Yp

−−−−−−→ qp

whereqi−1
gi,ai,Yi
−−−−−−→ qi ∈ T for every1 ≤ i ≤ p.

The path is said to beacceptingif it starts in an
initial state (q0 ∈ I) and ends in a final state (qp ∈
F ). A run of the automaton along the pathP is a
sequence of the form:

(q0, v0)
g1,a1,Y1

−−−−−−→
t1

(q1, v1) . . .
gp,ap,Yp

−−−−−−→
tp

(qp, vp)

where τ = (ti)1≤i≤p is a time sequence and
(vi)1≤i≤p are clock valuations such that:







v0(x) = 0, ∀x ∈ X

vi−1 + (ti − ti−1) |= gi

vi = [Ci ← 0] (vi−1 + (ti − ti−1))

The label of the run is the timed wordw =
(a1, t1) . . . (ap, tp). If the pathP is accepting then
the timed wordw is said to be accepted byA. The
set of all timed words accepted byA is denoted by
Lt(A).

Remark 1 In these notes, we only consider finite
paths and words with finitely many actions, but
we could consider more general acceptance con-
ditions (B̈uchi, Muller, etc...) as well, see [7].

Example 1 An example of timed automaton is
given below.

`0 `1 `2

x ≤ 5, a, y := 0 x− y > 3, b

This timed automaton accepts the timed word
(a, 4.1)(b, 5.5). An accepting run for this word is

(`0, (0, 0))
a
−−→
4.1

(`1, (4.1, 0))
b
−−→
5.5

(`2, (5.5, 1.4))

where(4.1, 0) represents the valuationv such that
v(x) = 4.1 andv(y) = 0.

3 Reachability Analysis

For verification purposes, the most fundamental
properties that one should be able to verify are
reachability properties: safety properties can for



example be expressed as reachability properties.
Usually a class of models is saiddecidablewhen-
ever checking reachability properties in this class
is decidable. Otherwise this class is saidundecid-
able. For timed automata reachability properties
we want to check are: “Is stateq of timed automa-
tonA reachable?i.e. is there a run starting in an
initial state leading toq?” There is no requirement
as what are the values of the clocks when reaching
stateq. This problem is equivalent to theempti-
ness problem(from a language-theoretical point of
view), where the question is whether the language
accepted by a timed automaton is empty or not.

The class of finite automata is obviously decidable,
the reachability problem is even NLOGSPACE-
complete [36], and efficient methods, symbolic
techniques, data structures, etc... have been de-
veloped and implemented [24]. The problem with
timed automata is that the number of configura-
tions of a timed automaton is infinite (a config-
uration is a pair(q, v) where q is a state and
v a clock valuation). Techniques used for ver-
ifying finite automata can thus not be used for
timed automata. Specific symbolic techniques
and abstractions have to be developed, which take
into account the specific properties of timed au-
tomata, in particular the fact that clocks evolve
synchronously with global time.

In the following, we will concentrate on the ver-
ification of reachability properties in timed au-
tomata, and present the basic technics for solving
this problem. Of course, in the literature, more
general properties have been considered. For ex-
ample, the model-checking of TCTL [2], a timed
extension of CTL, is decidable in PSPACE, and
symbolic technics have been developed to effi-
ciently model-check TCTL [34]. Note however
that not everything can be reduced to the finite un-
timed case using the region automaton construc-
tion: for example, universality of timed automata
is undecidable [7], and model-checking of most
linear-time timed temporal logics are undecidable,
when equality can be used in the constraints [8].

4 The Region Abstraction

The construction we will describe below is due to
Alur and Dill first in [6]. The aim of this construc-
tion is to finitely abstract behaviours of timed au-
tomata, so that checking a reachability property in
a timed automaton reduces to checking a reacha-
bility property in a finite automaton.

4.1 The Region Automaton Construction
Region Partitioning. Let us fix a finite set of
clocksX. Let R be a finite partitioning of

�X .
Let C be a finite set of constraints overX. We de-
fine three compatibility conditions as follows:

➀ We say thatR is compatible with constraints
C if for every constraintg in C, for everyR in
R, eitherJgK ⊆ R or JgK ∩R = ∅.

➁ We say thatR is compatible with elapsing of
time if for all R andR′ in R, if there exists
somev ∈ R andt ∈

�
such thatv + t ∈ R′,

then for everyv′ ∈ R, there exists somet′ ∈�
such thatv′ + t′ ∈ R′.

➂ We say thatR is compatible with resets
whenever for allR and R′ in R, for every
subsetY ⊆ X, if [Y ← 0]R ∩ R′ 6= ∅, then
[Y ← 0]R ⊆ R′.

If R satisfies these three conditions, we will say
thatR is aset of regionsfor the set of constraints
C or simply a set of regions (ifC is clear from the
context). R defines in a natural way an equiva-
lence relation≡R over valuations (v ≡R v′ iff for
each regionR of R, v ∈ R ⇐⇒ v′ ∈ R). An
equivalence class of≡R (or equivalently an ele-
ment ofR) is called aregion. If v is a valuation
we note[v]R the region to whichv belongs.

The intuition behind these conditions is the fol-
lowing: we want to finitely abstract behaviours
of timed automata. To this aim, we finitely ab-
stract the (infinite) set of valuations: a valuationv

will be abstracted by the region[v]R. In order for
the abstraction to preserve (at least) reachability
properties, it must be the case that if two valua-
tions are equivalent, then their future behaviours
are also equivalent. The three conditions above
precisely express this property: condition➀ says
that two equivalent valuations satisfy the same
clock constraints, condition➁ says that elapsing
of time does not distinguish two equivalent val-
uations whereas condition➂ says that resetting
clocks does not distinguish two equivalent valua-
tions.

Region Graph. From a set of regionsR one can
define the so-calledregion graph, which represents
the possible timing evolutions of the system: the
region graph is a finite automaton whose set of
states isR and whose transitions are:

{

R
ε
−→ R′ if R′ is a time successor ofR

R
Y
−−→ R′ if [Y ← 0]R ⊆ R′



Intuitively, the region graph records possible timed
evolutions of the system: there is a transition
R

ε
−→ R′ if, from every valuation ofR, it is possi-

ble to let some time elapse and reachR′. There is a

transitionR
Y
−−→ R′ if, from R, R′ can be reached

by resetting clocks inY .

Example 2 Let us consider the following parti-
tioning of�{x,y}

+ .

0 1

1

x

y

R1 R2

R3

R4

R0

It is easy to verify thatR is a set of regions for
the constraints{y = 1, x = y}. The region graph
associated withR is represented onFig. 1.

R0

x ≥ 0
y = 0

R1

0 ≤ x < 1
0 ≤ y ≤ 1

x < y

R2

x > 0
0 ≤ y ≤ 1

x ≥ y

R3

x > 1
y > 1
x ≥ y

R4

x ≥ 0
y > 1
x < y

time
elapsing

resety := 0

resetx := 0

Fig. 1: A simple example of region graph

Region Automaton. Consider a timed automa-
tonA = (Σ, Q, T, I, F, X) with set of constraints
C. Let R be a finite set of regions forC (i.e. a
partitioning of

�X satisfying conditions➀, ➁ and
➂). Theregion automatonΓR(A) is the finite au-
tomaton whose set of states isQ×R, whose initial
states areI × {R0} (whereR0 is the region con-
taining the valuation assigning0 to each clock),
whose final states areF ×R and whose transitions
are defined as follows:

• there is a transition(`, R)
a
−−→ (`′, R′)

whenever there exists a transition`
g,a,Y
−−−−→ `′

in A with R ⊆ JgK andR
Y
−−→ R′ transition

of the region graph

• there is a transition(`, R)
ε
−→ (`, R′) when-

everR
ε
−→ R′ transition of the region graph

This automaton somehow simulates the original
timed automaton: the first type of transitions sim-
ulates discrete actions (or transitions) whereas the
second type of transitions simulates elapsing of
time.

The fundamental property of this construction is
the following:

Proposition 1 Let A be a timed automaton with
set of constraintsC. We assume we can construct
a set of regionsR for C. Then,

Untime(Lt(A)) = L(ΓR(A))

whereL(ΓR(A)) is the (untimed) language ac-
cepted byΓR(A), and

Untime((a1, t1) . . . (ap, tp)) = a1 . . . ap.

More precisely, whenever inA we can wait some
delay and do ana, then inΓR(A), we can take
severalε-transitions and then do ana, andvice-
versa. We will see in section 4.3 that this prop-
erty naturally expresses in terms of time-abstract
bisimulation. Checking reachability properties in
A thus reduces to checking reachability properties
in ΓR(A). AsΓR(A) is a finite automaton, we get
that for every timed automatonA for which we can
construct a set of regions (satisfying conditions➀,
➁ and ➂), we can decide reachability properties
using the region automaton construction

4.2 Region Automaton for Classical Timed
Automata

We fix for this subsection a finite set of clocksX.

Sets of regions for diagonal-free constraints.
Let M be an integer. We define the following par-
titioning of

�X . Let v andv′ be two valuations
of
�X , we say thatv ≡M

df v′ if all three following
conditions hold:

• v(x) > M iff v′(x) > M for eachx ∈ X,

• if v(x) ≤ M , then bv(x)c = bv′(x)c and
(

{v(x)} = 0 iff {v′(x)} = 0
)

for eachx ∈

X, and



• if v(x) ≤ M andv(y) ≤ M , then{v(x)} ≤
{v(y)} iff {v′(x)} ≤ {v′(y)} for all x, y ∈
X.

The relation≡M
df is an equivalence relation of finite

index. The partitioningRM
df (X) is then defined as

the set of equivalence classes of
�X

/≡M
df

. Fig. 2
explains the region construction for two clocks.

0 1 2 x

1

2

y

•
×

(a) Partition compatible with con-
straints, not with time elapsing (the two
points• and× can not be equivalent)

0 1 2 x

1

2

y

region defined by:
8

<

:

1 < x < 2
1 < y < 2
{x} < {y}

(b) Partition compatible with con-
straints, time elapsing (and resets)

Fig. 2: Diagonal-free region partitioning for two
clocks and maximal constant2

It is easy to prove (and left as an exercise) the fol-
lowing lemma:

Lemma 1 The partitioningRM
df (X) is a set of re-

gions for the constraintsCM
df (X).

Roughly counting all possible combinations
above, we can bound the number of regions in
RM

df (X) by 2|X|.|X|!.(2M + 2)|X| where|X| is
the cardinal ofX.

Sets of regions for general constraints. Recall
that the difference between diagonal-free clock
constraints and general clock constraints stands in
the fact thatdiagonal constraints(i.e. constraints
of the formx − y ./ c) can be used. An easy ex-
tension of the previous construction can be done.
We do not define it formally here, but only give a
simple example with two clocks, seeFig. 3.
This set of regions is denotedRM (X), and its
cardinal can roughly be bounded by(2M +

0 1 2 x

1

2

y

region defined by:
8

<

:

2 < x

1 < y < 2
1 < x − y < 2

Fig. 3: Set of regions for2-bounded general con-
straints with two clocks

2)(|X|+1)2 . Note that this set of regions is also cor-
rect forM -bounded diagonal-free constraints.

Region automata for classical timed automata.
LetA be a timed automaton with set of clocksX.
Let M be the maximal constant involved in one
of the constraints ofA, the setRM (X) is a set
of regions forA. From the results of the previous
subsections, we get the following theorem, due to
Alur and Dill [6, 7], which is the core of the veri-
fication of timed systems.

Theorem 1 (Alur & Dill 90’s) Reachability (or
equivalently emptiness) is decidable for timed
automata. It is a PSPACE-complete problem
(for both diagonal-free as well as general timed
automata).

Although this theorem has been first proved in [7],
the proof we choose to sketch is taken from [1],
where it is written in details.
Proof. [Sketch] PSPACE membership is easy: the
size of th region automaton is exponential in
the size of the original automaton. Using the
NLOGSPACE complexity of the reachability prob-
lem in classical untimed graphs, we get that reach-
ability in timed automata can be done in PSPACE.
PSPACE-hardness can be proved by reducing the
termination of a linearly bounded Turing machine
(LBTM for short) on some input to reachability in
timed automata. The encoding is done as follows:
assuming the alphabet is{a, b}, the content of cell
Cj of the track of the LBTM is encoded by two
clocksxj andyj . Cell Cj contains an “a” when
the constraintxj = yj holds, and cellCj contains
a “b” when the constraintxj < yj holds. Note that
these two conditions are invariant by time elaps-
ing.

Cjw0

{xj , yj}



If q
α,α′,δ
−−−−−→ q′ is a transition of the LBTM, then

for each positioni of the tape, there will be a tran-

sition (q, i)
g,Y :=0
−−−−−→ (q′, i′) where:

• g is xi = yi (resp. xi < yi) if α = a (resp.
α = b)

• Y = {xi, yi} (resp. Y = {xi}) if α = a

(resp.α = b)

• i′ = i + 1 (resp.i′ = i − 1) if δ is right and
i < n (resp. left)

We need to enforce time elapsing; this can be done
by adding a clockt which is checked to1 and reset
to 0 on all transitions. Initially the track contains
the encoding of the wordw0. This can be done
by a transition from a state “init” to(q0, 1) where
q0 is the initial state of the LBTM, which checks
whethert = 1, and resets clocks inY0 whereY0 =
{t} ∪ {xi | w0[i] = b}. The computation over
w0 of the LBTM terminates iff there is a run from
state “init” to some state(qf , i) whereqf is the
final state of the LBTM. �

Note that the above encoding uses diagonal con-
straints, but as will be seen later (see section 5.1),
there is no need of these diagonals. A direct but
more involved construction without diagonals can
be found in the appendix of [1].

Remark 2 Note that sets of regions we have de-
scribed could be refined: there is no need to have
the same maximal constant for all clocks, one max-
imal constant for each clock could be used. How-
ever, for our purpose here, there is no need for such
a refinement.

4.3 Interpretation in Terms of Finite Bisimu-
lation

With what has been presented before, conditions
➀, ➁ and ➂ (compatibility of the set of regions
with constraints, time elapsing and resets) have
a natural interpretation in terms oftime-abstract
bisimulation.

Timed transition system associated with a
timed automaton. We have defined the seman-
tics of a timed automaton as runs or timed words.
We could have defined its semantics as a timed
transition system as well. Transition systems (thus
in particular timed transition systems) are more
suitable for behavioural comparisons of systems.
LetA = (Σ, Q, T, I, F, X) be a timed automaton.
The timed transition system associated withA has

Q×
�X for set of states and its transition relation

is defined by the two following rules:










(`, v)
d
−→ (`, v + d) for everyd ∈

�

(`, v)
a
−−→ (`′, v′) if there is`

g,a,Y
−−−−→ `′ s.t.

v |= g, v′ = [Y ← 0]v

Time-abstract bisimulation. Time-abstract
bisimulation could be defined for two timed au-
tomata, but for our purpose, we follow the lines of
[22] and define time-abstract bisimulation on a sin-
gle timed automaton. LetA = (Σ, Q, T, I, F, X)
be a timed automaton (over alphabetΣ). We
say that a relation≡⊆ (Q ×

�X) × (Q ×
�X)

is a time-abstract bisimulationwhenever it is
an equivalence relation satisfying the following
conditions:

• if (`1, v1) ≡ (`2, v2) and (`1, v1)
d1−−→

(`1, v1 + d1) for somed1 ∈
�

, then there ex-

istsd2 ∈
�

such that(`2, v2)
d2−−→ (`2, v2 +

d2) and(`1, v1 + d1) ≡ (`2, v2 + d2)

• if (`1, v1) ≡ (`2, v2) and (`1, v1)
a
−−→

(`′1, v
′
1), then there exists(`′2, v

′
2) such that

(`2, v2)
a
−−→ (`′2, v

′
2) and(`′1, v

′
1) ≡ (`′2, v

′
2)

• andvice-versa.

By definition, such a relation is an equivalence re-
lation, and as such,≡ is said to have afinite in-
dexwhenever there are finitely many equivalence
classes. Informally, from two equivalent config-
urations, it is possible to do the same discrete ac-
tions and/or to wait some amount of time (possibly
different in the two configurations) and stay equiv-
alent.

Relation with the region automaton construc-
tion.

Proposition 2 Let A be a timed automaton and
R a set of regions for the constraints inA. The
relation{((`, v), (`, v′)) | [v]R = [v′]R} is a time-
abstract bisimulation with a finite index.

Time-abstract bisimulation appears indeed as the
right notion corresponding to the region automa-
ton construction and formally justifies everything
which has been explained previously. It proves
more precisely that the region automaton construc-
tion can be used to verify all properties that are
invariant by time-abstract bisimulation,e.g.reach-
ability properties, safety properties, many untimed



properties. However, notice that we can not use
directly this construction to verify properties ex-
pressed in a timed logic like TCTL because a prop-
erty like “reaching a state in exactly5 units of
time” is not invariant by time-abstract bisimula-
tion. For these properties a more involved con-
struction is needed which adds a clock for the for-
mula, and then construct a region automaton tak-
ing into account this additional clock. We do not
develop this construction here but better refer to
original articles on the subject [2].

The converse of Proposition 2 also holds and it
can be used to prove decidability of timed sys-
tems: if for a timed system we can compute a
time-abstract bisimulation relation with a finite in-
dex, then reachability (and other time-abstract in-
variant properties) can be decided using a region
automaton-like construction. Examples of such
constructions can for example be found in [29, 22].

4.4 Partial Conclusion
Timed automata are an interesting model for rep-
resenting systems with real-time constraints. De-
spite the infinite number of possible configurations
of a timed automaton, model-checking of reacha-
bility properties has been proved decidable. This is
probably the most fundamental property of timed
automata, which has been proved at the beginning
of the 90’s by Alur and Dill, and which is the start-
ing point of numerous works on timed models. We
have presented in this section the basics of the de-
cidability of timed automata, which relies on a re-
duction to finite automata: this is fundamental for
most of the works on timed systems. It is however
worth to notice that not everything can be reduced
to the finite automata case. For example (see [7]
and also [42]),

• universality (the dual of reachability) is an
undecidable problem;

• the class of timed languages accepted by
timed automata is not closed under comple-
mentation;

• not all timed automata can be determinized,
and, in addition, the problem of deciding
whether a timed automaton can be deter-
minized is an undecidable problem;

These problems will not be tackled in this tutorial,
but we refer to [10] for a survey of (un)decidability
results about timed automata.

In the rest of this tutorial, we will mostly con-
sider extensions (or variants) of timed automata

and study decidability of these models, and we will
also concentrate on algorithmics and implementa-
tion aspects. We hope this should help better un-
derstanding timed behaviours and timed models.

5 Extensions of Timed Automata

For representing real-life systems, it is much con-
venient to have expressive and easy-to-use models.
We will present in this section several extensions
(or variants) of timed automata, and will focus on
the decidability of their reachability problem. We
will also give some expressiveness results.

A class of systemsS is saidstrictly more expres-
sivethan a class of systemsS ′ whenever there ex-
istsS in S such that noS′ in S ′ accepts the same
language asS, and for every systemS′ in S ′, there
existsS in S which recognizes the same language
asS′. A class of systemsS is as expressive asS ′

whenever for everyS in S, there existsS′ in S ′

which accepts the same language asS.

5.1 Role of Diagonal Clock Constraints
Diagonal constraints (i.e. clock constraints of the
form x − y ./ c wherex, y ∈ X, c ∈ �and
./∈ {≤, <, =, >,≥}) have been first mentioned
in the seminal paper of Alur & Dill [7], and are
often considered as part of the model of timed au-
tomata. We have seen in previous section that di-
agonal constraints do not add any decidability and
complexity problems to the model.

It was known as a folklore result that diagonal con-
straints can be eliminated from timed automata,
and thus that they do not add expressive power to
timed automata. A formal proof of this result has
been done in [15].

Proposition 3 For every timed automatonA, pos-
sibly with diagonal constraints, there exists a
timed automatonB, with only diagonal-free con-
straints, which recognizes the same language.
Note thatB is strongly bisimilar2 toA.

This construction leads to an exponential (in the
number of diagonal constraints) blowup of the
number of states of the automaton, and this blowup
is unavoidable as timed automata with diagonal
constraints are exponentially more succinct than
diagonal-free timed automata [19].

2Which means they are bisimilar (in a classical way) for
actions taken inΣ ∪�: if a system can do action, then so can
also the other system, and if a system can waitd units of time,
then so can also the other system.



5.2 Adding Silent Actions
For finite automata, it is well-known thatsilent ac-
tions (also known asε-transitionsor internal ac-
tions) do not add expressive power to finite au-
tomata and that they can be eliminated with no
blowup in the number of states of the automaton.
Silent actions in timed automata have been studied
in details in [15], and the situation is far from the
one in the untimed framework.

A first (easy) fact is that the region automaton con-
struction can be done in a similar way when there
are silent actions, we thus get:

Proposition 4 The reachability problem is decid-
able for timed automata with silent actions. The
complexity is alsoPSPACE-complete.

However, and this is at first surprising, silent ac-
tions can not be removed, as it is the case for clas-
sical finite automata.

Theorem 2 Timed automata with silent actions
are strictly more expressive than classical timed
automata.

Several examples are given in [15]. Among them,
there is the languageL = {(a, t1) . . . (a, ti) · · · |
∀i, i mod 2 = 0}. This timed language is rec-
ognized by the following automaton but is recog-
nized by no timed automaton without silent ac-
tions.

x = 2
a

x := 0

x = 2
ε

x := 0

Proofs of non-expressivity by a classical timed au-
tomaton are alwaysad-hocas there is no real cri-
terion for a timed language to be recognized by
a classical timed automaton. However a sufficient
criterium is given in [15]: letA be a timed automa-
ton possibly with silent actions; if, inA, there is no
loop in which a clock is reset on anε-transition,
then ε-transitions can be removed fromA, and
we can construct a timed automatonB without ε-
transitions which recognizes the same language.

5.3 Adding Additive Clock Constraints
We have seen that diagonal constraints can be used
safely in timed automata. A natural idea is then to
consider clock constraints of the formx + y ./ c.
Such a constraint will be called anadditive clock
constraint. The model of timed automata which

uses classical constraints and additive clock con-
straints has been studied in [16].

Two clocks. For timed automata withtwo
clocks, a region construction can be done. We will
not define it precisely here but the region partition-
ing when the maximal constant is2 is illustrated
on Fig. 4. The general case can be easily deduced
from this representation.

0 1 2 x

1

2

y

Fig. 4: Region partitioning for additive clock con-
straints (two clocks)

Proposition 5 The reachability problem for timed
automata with at most two clocks and possibly ad-
ditive clock constraints is decidable.

The languageL+ represented onFig. 5 is accepted
by a timed automaton with two clocks and addi-
tive clock constraints but is accepted by no timed
automaton with classical clock constraints.

x + y = 1, a, x := 0

L+ = {(an, t1 . . . tn) | n ≥ 1 andti = 1− 1
2i }

Fig. 5: A language which needs additive clock
constraints

Four clocks or more. The following result holds
for timed automata with four clocks or more, and
additive clock constraints:

Theorem 3 The reachability problem is undecid-
able for timed automata with four clocks or more,
and additive clock constraints.

This undecidability result is rather involved and is
by reduction from the halting problem of a two
counter machine [39]. The proof can be found
in [16].



What about three clocks? The region graph
construction done for two clocks does not extend
to three clocks. Using the characterization of re-
gions using time-abstract bisimulation, it has been
proven in [41] that there is no finite partitioning
satisfying the conditions➀, ➁ and➂ as soon as
there are three clocks (x, y andz) and constraints
{x + y = 1, x = 0, z = 1} are used. However the
reduction presented above (for proving undecid-
ability of reachability checking in timed automata
with four clocks and additive clock constraints)
can not be adapted if we allow only three clocks. It
is still an open problem to know if the reachability
problem for timed automata with three clocks and
additive clock constraints is decidable or not.

5.4 Adding New Operations on Clocks
Up to now, we can only reset clocks to zero.
In [20], models using more generalupdates
have been studied. In the model ofupdatable
timed automata, a transition is of the form
`

g,a,up
−−−−−→ `′ where g is a clock constraint,a

is an action andup is an update, i.e. for each
clock x, an operationupx of the form x :./ c

or x :./ y + c wherec ∈ �, y is a clock, and
./∈ {<,≤, =,≥, >}. Let us take two valuations
v andv′. We have thatv′ ∈ up(v) whenever for
each clockx, v′(x) ∈ upx(v), whereupx(v) =
{

{α | α ./ c} if upx(v) is x :./ c

{α | α ./ v(y) + c} if upx(v) is x :./ y + c
For example, it is possible to decrement the
value of a clock by1, or to set a clock non-
determiniscally at a value less than2.

This model is very general and it is easy to prove
that the reachability problem is not decidable for
the whole class of updatable timed automata, by
reducing the computation of a two counter ma-
chine to the computation of an updatable timed
automaton (decrementation (resp. incrementation)
of counters are simulated by decrementation (resp.
incrementation) of clocks). In [20], tighter unde-
cidable classes and several decidable classes are
described. We will not enter into details here,
but will present two undecidability proofs and de-
scribe one decidable class.

Decrementing clocks leads to undecidability.
We now sketch the reduction from a two counter
machine to updatable timed automata with resets
to zero and decrementation. Let us consider a two
counter machineM with the two countersc and
d. We will construct a timed automatonA (with
decrementations and resets to zero) such that the

computation ofM terminates if and only if a given
state ofA is reachable. The value of counterc

(resp. counterd) is encoded by the value of clock
x (resp. clocky). An additional clockz is used
to rhythm the computation of automatonA. In-
crementation (and decrementation) of counters are
simulated as follows.

• Incrementation of counter c.

` `′
z = 1, z := 0 z = 0, y := y − 1z = 0

0

@

α
β
0

1

A

0

@

α + 1
β + 1

0

1

A

0

@

α + 1
β
0

1

A

x
y
z

For incrementing counterc, we let time
elapse during one unit of time. The two
clocksx andy thus increase by1. It is then
sufficient to decrease clocky by 1: the value
of x in `′ is equal to the value ofx in ` plus
1 whereas the value ofy in `′ is equal to the
value ofy in `. This correctly encodes an in-
crementation ofc by 1.

• Decrementation of counter c.

x ≥ 1 z = 0, x := x− 1z := 0

x = 0

x
y
z

0

@

α
β
0

1

A

0

@

α
β
0

1

A

0

@

α − 1
β
0

1

A

0

@

0
β
0

1

A

0

@

α
β
0

1

A

x
y
z

An explanation similar to the one for decre-
mentation can be done.

Incrementing clocks also leads to undecidabil-
ity as soon as diagonal constraints are used...
From the previous reduction, it is sufficient to be
able to simulate the part of the automaton which
is framed with dashed lines, thus to decrease the
value of a clock (sayx) by 1.

p q r s
z = 0, w := 0 x− w = 1, x := 0 x = w, z = 0

w := w + 1 x := x + 1

It is easy to see that this module simulates an in-
crementation.



... but remains decidable when no diagonal con-
straints are used. We will see that the usual
(diagonal-free) region partitioning is correct when
also using incrementation of clocks. However this
requires a more involved explanation. Indeed, the
three conditions➀, ➁ and ➂ are no more suffi-
cient because more general operations on clocks
are used. More precisely, we need to replace con-
dition ➂ by the following condition (whereR is a
finite partitioning of the set of valuations, andU is
a finite set of updates):

➂’ We say thatR is compatible with updates in
U whenever for allR, R′ ∈ R, for eachup ∈
U ,if for some valuationv ∈ R, up(v)∩R′ 6=
∅, then for every valuationv′ ∈ R, up(v′) ∩
R′ 6= ∅.

It is just an extension of Proposition 1 to prove that
if, for a finite set of constraintsC and a finite set of
updatesU , we can construct a set of regions satis-
fying conditions➀, ➁ and➂’, then the region au-
tomaton construction can be used to verify reach-
ability (or more generally time-abstract invariant)
properties.

Let us fix a finite setC of diagonal-free constraints,
and a finite set of updatesU of the formx := y+c

and possibly some resets of clocks. If the system
of inequations

{αx ≥ c | (x ./ c) is in C}

∪ {αx ≤ αy + c | (x := y + c) is in U}

has a solution(mx)x∈X , then the diagonal-free set
of regions where the maximal constant forx is
mx satisfies the three above-mentioned conditions.
Note that if only updates of the formx := x + 1
are authorized then, as claimed before, the usual
region partitioning is correct (because constraints
αx ≤ αx + 1 are trivially true).
However the usual region partitioning needs some-
times to be refined a little bit. Consider the follow-
ing example: the maximal constant to which the
two clocksx andy are compared is2, both resets
of x andy are allowed, and the more elaborated
updatey := x − 1. The system of inequations is
{αx ≥ 2, αy ≥ 2, αy ≤ αx−1}. It has a solution,
egαx = 2 andαy = 3. We explain the intuition
behind these conditions onFig. 6.
Updatable timed automata have been studied in
details in [20], where the precise frontier be-
tween decidable and undecidable subclasses has
been depicted: among other results, when only
diagonal-free constraints are used, decrementation

0 1 2 x

1

2

y

•

•
×

×

updatey := x− 1

(a) Classical partitioning not compatible withy := x − 1

0 1 2 3 x

1

2

y

(b) Set of regions satisfying conditions➀, ➁ and➂’.

Fig. 6: Partitioning for updatesy := x− 1

of clocks leads to undecidability whereas incre-
mentation leads to decidability, which may appear
as a surprising result. It has also been proved that
for every updatable timed automaton belonging to
some decidable subclass, we can construct a timed
automaton with silent actions (but with an expo-
nential complexity blowup) which recognizes the
same timed language.

5.5 Partial Conclusion
We have shortly presented in this section several
extensions and variants of timed automata, hav-
ing in mind the decidability of reachability check-
ing. Many other extensions or subclasses could
have been presented as well, for example timed
automata with modulo constraints [23], or timed
automata with event-predicting or event-recording
timed automata [9, 35].

Historically, (linear) hybrid automata [30, 32] have
not been defined and studied as an extension of
timed automata, but they can be viewed as such.
A hybrid automaton is roughly a timed automaton
where variables (instead of clocks) grow in every
state following some differential equation. Lin-
ear hybrid automata are particular hybrid automata
where variables evolve following linear differen-
tial equations. As soon as a variable has two differ-
ent slopes, the hybrid automata model is undecid-
able [32]. In particular,stopwatch automata, i.e.
timed automata in which clocks can be stopped,
are undecidable. However, a decidable subclass
has been exhibited, the so-called initialized rectan-
gular automata. Hybrid automata are a very inter-



esting model which would require a whole tutorial
in itself. We better refer to [40] for an introduction
to this model.

6 Algorithmics & Implementation

In practice the region automaton construction is
not used in tools. Algorithms for “minimizing” the
region automaton have been proposed for example
in [3, 4, 43]. However in practiceon-the-flytech-
nics are preferred.

6.1 Reachability Analysis: Two Methods
There are two main families of (semi-)algorithms
for analyzing reachability properties of systems
(not only timed systems, but all kinds of systems).

Forward analysis. The general idea of forward
analysis is to compute configurations which are
reachable from initial configurations within1
steps,2 steps, etc... until final states are reached
or until the computation terminates.

Backward analysis. The general idea of back-
ward analysis is to compute configurations from
which we can reach final configurations within1
step,2 steps, etc... until initial configurations are
reached or until the computation terminates.

These two generic approaches are used for many
models, for example counter machines, hybrid sys-
tems, etc... Of course, given a class of systems,
specific technics (e.g.abstractions, widening oper-
ations, etc...) can be used for improving the com-
putation. We will study how these approaches can
be used for verifying timed automata.

6.2 Reachability Analysis in Timed Au-
tomata: Zones

We need now to look carefully at how the above-
mentioned general methods can be used for veri-
fying timed automata. In particular, as timed au-
tomata have an infinite number of configurations,
we need to use symbolic representations for doing
the computation. Given a transitione of a timed

automatoǹ
g,a,Y
−−−−→ `′, we need to be able to com-

pute, given a setW of valuations, both sets

{v′ | ∃v ∈W ∃t ∈
�

s.t.v′ = [Y ← 0](v + t)}

{v | ∃v′ ∈W ∃t ∈
�

s.t.[Y ← 0](v + t) = v′}

It is worth to notice that if the forward computation
starts in an initial state with all clocks initialized to

0 or if the backward computation starts from the
final states with clocks set to any value (which is
sufficient as we are only interested in reachabil-
ity of discrete states), sets of valuations which are
computed arezones, i.e. sets of valuations defined
by a general clock constraint. Recall that general
clock constraints are defined by the grammar:

g ::= x ./ c | x− y ./ c | g ∧ g

where c ∈ �, ./∈ {≤, <, =, >,≥} and x, y

are clocks. A clock constraintg defines a zone
JgK = {v ∈

�X | v |= ϕ}. For analyzing timed
automata, zones are thesymbolic representation
which is commonly used. For implementing for-
ward and backward analysis, we need to be able to
perform several operations on zones. From what
has been said before, these operations are the fol-
lowing (Z andZ ′ are supposed to be zones):

- Future ofZ:
−→
Z = {v+ t | v ∈ Z andt ∈

�
}

- Past ofZ:
←−
Z = {v − t | v ∈ Z andt ∈

�
}

- Intersection ofZ andZ ′: Z ∩ Z ′ = {v | v ∈
Z andv ∈ Z ′}

- Reset to zero ofZ w.r.t. set of clocksY : [Y ←
0]Z = {[Y ← 0]v | v ∈ Z}

- Inverse reset to zero ofZ w.r.t. set of clocks
Y : [Y ← 0]−1Z = {v | [Y ← 0]v ∈ Z}

- Test emptiness ofZ: decide whetherZ = ∅

Using these operations, the basic steps of the
forward and the backward computations can be
rewritten as:
{

Poste(Z) = [Y ← 0](
−→
Z ∩ JgK)

Pree(Z) =
←−−−−−−−−−−−−−−−−−−−−−−
[Y ← 0]−1(Z ∩ JY = 0K) ∩ JgK

6.3 The DBM Data Structure
For representing zones, the most common data
structure which is used is the so-called DBM
data structure (where DBM stands for “Difference
Bounded Matrice”). This data structure has been
first introduced in [17] and then proposed in the
framework of timed automata in [28]. Several pre-
sentations of this data structure can be found in the
literature, for example in [24, 14, 18].

A difference bounded matrice(sayDBM for short)
for a setX = {x1, . . . , xn} of n clocks is an(n +
1)-square matrice of pairs

(m;≺) ∈�= (�× {<,≤}) ∪ {(∞; <)}.



A DBM M = (mi,j ,≺i,j)i,j=1...n defines the fol-
lowing subset of

�n (the clockx0 is supposed to
be always equal to zero,i.e. for each valuationv,
v(x0) = 0):

{v : X →
�
| ∀ i, j, v(xi)− v(xj) ≺i,j mi,j}

whereγ < ∞ simply means thatγ is some real
without bound. This subset of

�n is a zone and
will be denoted, in what follows, byJMK. In what
follows, to simplify notations, we will assume that
all constraints are non-strict, so that coefficient of
DBMs will be elements of�∪ {∞}.

Example 3 Consider the zone defined by the con-
straints(x1 ≥ 3) ∧ (x2 ≤ 5) ∧ (x1 − x2 ≤ 4).
This zone, depicted below on the right, can be rep-
resented by the DBM below (on the left).

x0 x1 x2

x0

x1

x2





∞ −3 ∞
∞ ∞ 4
5 ∞ ∞





3 4 9

5

2

A zone can have several representations using
DBMs. For example, the zone of the previous
example can equivalently be represented by the
DBM





0 −3 0
9 0 4
5 2 0





A normal form can be defined on DBMs, which
tightens all possible constraints. This can be done
using a Floyd algorithm on the matrice (viewed
as a weighted graph). A zone has a unique rep-
resentation as a DBM in normal form. Tests like
emptiness checking, or comparison of zones can
then be done syntactically on the DBMs in normal
form. For example, a zoneZ is included in a zone
Z ′ if the DBM in normal form representingZ is
smaller than the DBM in normal form represent-
ing Z ′. Finally all operations on zones described
in section 6.2 can easily be done on the DBMs,
details can be found in all mentioned papers on
DBMs.

Let us just mention that the DBM data structure is
the most basic data structure which is used for an-
alyzing timed systems, some more involved BDD-
like data structures can also be used, for example
CDDs (which stands for “Clock Difference Dia-
grams”) [37].

6.4 Backward Analysis
Let A = (Σ, Q, T, I, F, X) be a timed automa-
ton. Backward analysis then consists in com-
puting the following sets of symbolic configura-
tions: S0 = {(f,

�X) | f ∈ F}, and iteratively

Sp+1 = {(`, Z) | ∃e = (`
g,a,Y
−−−→ `′)∃(`′, Z ′) ∈

Sp s.t.Z = Pree(Z
′)}, . . .

Theorem 4 The backward computation termi-
nates and is correct w.r.t. reachability, i.e. if a
state is found reachable by the computation, then
it is really reachable.

Correctness is immediate as the computation isex-
act (as opposed to over-(or under-)approximate).
Termination needs some additional argument, re-
lated to properties of the region partitioning asso-
ciated with timed automata. The termination proof
then relies on the following lemma, which can be
proved as an exercise.

Lemma 2 Let A be a timed automaton and let
R be a set of regions satisfying conditions➀, ➁
and➂ (for A). Consider a finite union of regions
⋃p

i=1 Ri (with Ri ∈ R for 1 ≤ i ≤ p). Then the
following holds:

-
←−−−−−
⋃p

i=1 Ri is a finite union of regions

- [Y ← 0]−1(
⋃p

i=1 Ri) is a finite union of re-
gions (for any set of clocksY )

- g ∩ (
⋃p

i=1 Ri) is a finite union of regions ifg
is a constraint ofA (thus compatible withR)

Backward analysis thus appears as a very interest-
ing method for analyzing timed systems. However,
in practice, most commonly used tools (for exam-
ple UPPAAL) prefer using a forward analysis pro-
cedure. A natural question then arises: what’s the
problem with backward analysis? It comes from
the fact that the use of bounded integer variables
really improves and eases the modeling of real sys-
tems. Backward analysis is then not suitable for
arithmetical operations: for example if we know
in which interval lies the variablei and if we know
thati is assigned the valuej.k + `.m, it is not easy
to compute the possible values of variablesj, k,
`, m (apart from listing all possible tuples of val-
ues). For this kind of operations, forward analysis
is much more suitable.

6.5 Forward Analysis
Let A = (Σ, Q, T, I, F, X) be a timed automa-
ton. Forward analysis then consists in comput-
ing the following sets of symbolic configurations:



S0 = {(i,0) | i ∈ I}, and then iteratively

Sp+1 = {(`′, Z ′) | ∃e = (`
g,a,Y
−−−→ `′) ∃(`, Z) ∈

Sp s.t. Z ′ = Poste(Z)}, . . . The forward analy-
sis gives a correct answer (if it gives an answer),
but may not terminate. An example of automaton
where the forward computation does not terminate
is given onFig. 7. The zones which are computed
are represented on the right part of the figure, and
it is easy to check that the computation will never
terminate.

y := 0,
x := 0

x ≥ 1 ∧ y = 1,
y := 0

0 1 2 3 4 5 x

1

2

y

Fig. 7: Forward computation does not always ter-
minate...

To overcome this problem, it is necessary to use
some abstractions, several are proposed in [26].
For example, ifZ andZ ′ are computed for the lo-
cation`, zones are replaced by the smallest zone
containing bothZ andZ ′: this approximation is
called the “convex-hull”3, it does not ensure ter-
mination and is only semi-correct w.r.t. reachabil-
ity in the sense that a state which is announced as
reachable may not be reachable. The most inter-
esting abstraction studied in this paper is theex-
trapolationoperator.

The extrapolation operator. The abstraction
operator which is commonly used is calledextrap-
olation, and sometimesnormalization[14]. We
will note it hereApproxk, it is defined up to a con-
stantk as follows: ifZ is a zone,Approxk(Z) is
the smallestk-bounded zone4 which containsZ.
This operation is well-defined on DBMs: ifM is
a DBM in normal form representingZ, a DBM
representingApproxk(Z) is M ′ where each coef-
ficient less than−k is replaced by−k and all coef-
ficients greater thank is replaced by+∞, all other
coefficients remain unchanged.

Example 4 Consider the zoneM of Example 3.
Its extrapolation w.r.t.2 is the following DBM:

Approx2(M) =





0 −2 0
9 0 +∞

+∞ 2 0





3It is a language abuse, because it is not reaaly the convex
hull of the two zones, but it is the smallest zone containing the
convex-hull of the two zones.

4A k-bounded zone is a zone defined by ak-bounded clock
constraint.

2

2 JApprox2(M)K
JMK

Obviously,

• Approxk is a finite abstraction operator be-
cause there are finitely many DBMs whose
coefficients are either+∞ or some integer
between−k and+k

• the computation ofApproxk is effective and
can be done easily on DBMs

• Approxk is a complete abstraction w.r.t.
reachability because for every zoneZ, Z ⊆
Approxk(Z)

The only problem stands in the correctness of
Approxk w.r.t. reachability: we have to find a con-
stantk such that this abstraction operator will be
correct w.r.t. reachability.

Theorem 5 Let A be a diagonal-free timed au-
tomaton. Takek the maximal constant appearing
in the constraints ofA. ThenApproxk is correct
w.r.t. reachability inA.

Two different proofs of this theorem can be found
in [18] and [12]. Note that this theorem does not
extend to timed automata with general clock con-
straints. See [18] for a counter-example, and [21]
for a solution to the problem.

6.6 Tools for Timed Systems
Several tools implement timed (and hybrid) au-
tomata.

• HYTECH [31] is a model-checker for lin-
ear hybrid automata. Exact backward and
forward computations can be done, reach-
ability properties can thus be checked (but
there is of course no guarantee the computa-
tion will terminate). Many other operations
on polyhedra can be performed, for exam-
ple hiding of variables (corresponding to pro-
jections), “while” loops, emptiness checks,
etc... HYTECH, which has been developed in
Berkeley (USA), can be downloaded on

http://www-cad.eecs.berkeley.edu:

80/∼tah/HyTech/



• KRONOS [25] is a model-checker for timed
automata. Exact as well as abstract backward
and forward computations can be done. A
backward procedure for the logic TCTL [2]
is also implemented [34]. The tool KRO-
NOS, which has been developed in Grenoble
(France), can be downloaded on

http://www-verimag.imag.fr/

TEMPORISE/kronos/

• UPPAAL [38] is a model-checker for timed
automata which performs forward analysis
with extrapolation. It can verify reachabil-
ity properties of timed systems with some
extra features as bounded integer variables
and broadcast channels. The tool UPPAAL,
which is jointly developed in Aalborg Univer-
sity (Denmark) and Uppsala University (Swe-
den), can be downloaded on

http://www.uppaal.com/

7 Conclusion

In this tutorial we have presented the basic model
of timed automata, introduced at the beginning of
the 90’s by Rajeev Alur and David Dill [7]. One
of the most important and most fundamental con-
struction which is used in this domain is the region
automaton construction: it finitely abstracts be-
haviours of timed automata into behaviours of fi-
nite automata, which allows to model-check many
properties: although we only presented how reach-
ability properties could be checked, properties in
TCTL can also be verified using a region-like con-
struction [2]. We have also presented several ex-
tensions of timed automata, concentrating on the
decidability of the model-checking of reachability
properties.

There are so many works which have been devoted
to timed systems in general, and timed automata in
particular, that it is hopeless to present the whole
theory of timed automata in a single tutorial. The
current tutorial presents some results on timed au-
tomata, focusing on the decidability of reachability
properties and on implementation issues for veri-
fying such properties.
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