An Introduction to Timed Automata

Patricia Bouyer
LSV — CNRS & ENS de Cachan
61, avenue du sident Wilson
94230 Cachan — France
email:bouyer @ sv. ens- cachan. fr

1 Introduction [7]. Checking if a timed automaton is determiniz-
able (or complementable) is even an undecidable

Explicit timing constraints are naturally present problem [42]. An other important example is

in real-life systems (transmission delays, response the undecidability of the universality problem for

time, etc...). Classical models (finite automata, timed automata [7].

Petri nets, etc...) can not express such real-time

constraints. Since their introduction by Rajeev

Alur and David Dillin [6, 7], timed automata are the basic tools which are used in the domain of ver-
one of the most studied models for real-time sys- ...~ .) .
ification of timed systems. In particular, after hav-

tems: in those systems, quantitative properties of
. ing presented the model, we will present in details
delays between events can easily be expressed . . .
“ the region automata construction. For modeling
Numerous works have been devoted to the “theo-

. : .) reasons, it is important to have expressive mod-
retical’ comprehension of timed automata: deter- els, but it is also important that the models remain
minization [9], minimization [3], power of clocks ' P

[5, 33], power of=-transitions [15], extensions of deCIdabIe_. We W!|| then present severgl variants
. . or extensions of timed automata, focusing on the

the model [27, 35, 23, 13], logical characteriza- s . :

. : . . . decidability of reachability properties, and on the

tions [35], etc... have in particular been investi-

X expressiveness of the models. We will terminate
gated. Practical aspects of the model have alsothis tutorial with some implementation and algo-
been considered and several model-checkers are P 9

now available (b TECH [31], KRONOS[25], UP- rithmics issues.

PAAL [38]). These model-checkers have been used we would like to point out several recent surveys
to verify many industrial case studies (see the web on timed automata which present current works
pages of the tools, given page 13). and results on timed automata with a point of view
somewhat different from the one adopted in this
tutorial. A recent survey by Rajeev Alur and Mad-

husudan P. gives many hints about decidability is-
sues for timed automata [10]. In [11], Eugene
Asarin presents the current challenges in timed
languages theory.

The aim of this tutorial is to give some understand-
ing of the timed automata model. We will present

One of the major properties of timed automata is
probably that reachability properties are decidable
[7], though timed automata have an infinite num-
ber of configurations. The core of this result is
the construction of the so-called region automa-
ton, which finitely abstract behaviours of timed au-
tomata in such a way that checking reachability]
in a timed automaton reduces to checking reach- 2 Timed Automata

ability in a (somewhat larger) finite automaton.

This construction has many other applications, as If Z is a set, leZ* be the set ofinite sequences of
for example the decidability of the TCTL model- elements inZ. We consider as time domadif the
checking [2] (TCTL is the timed extension of the setQ. of non-negative rationals or the Rt of
logic CTL). However, many problems remain un- non-negative reals, arid as a finite set octions
decidable, as not everything can be reduced to the A time sequencever T is a finite non decreasing
untimed framework. For example, timed automata sequencer = (t;)1<i<, € T*. A timed word
are neither determinizable, nor complementable w = (a;,t;)1<i<p iS an element ofX x T)*, also

written as a paiw = (o, 7), wheres = (a;)1<i<p
is aword in¥* andr = (t;)1<<, atime sequence
in T* of same length.

Clock Valuations, Operations on Clocks. We
consider a finite seX of variables, calleatlocks
A clock valuatiorover X is amapping : X — T
which assigns to each clock a time value. The
set of all clock valuations oveX is denotedll X
Let t € T, the valuationv + ¢ is defined by
(v+1t)(z) = v(r) +t, Vo € X. We also use the
notation («;)1<i<», for the valuationv such that
v(z;) = «;. For a subseY” of X, we denote by
[Y < O]v the valuation such that for eaehe Y,
(Y < Olv)(z) = 0 and for eachr € X \'Y,
([Y « 0Jv)(2) = v(2).

Clock Constraints. Given a finite set of clocks
X, we introduce two sets @lock constraints over
X. The most general one, denotédX), is de-
fined by the grammar:

g n=axXc | xz—yxec | gAg | true
wherez, y € X, c€ Zand <€ {<,<,=,>, >}

We also use the proper subset dihgonal-free
constraints where the comparison between two
clocks is not allowed. This set, denotég (X),

is defined by the grammar:

g = axc | gAg | true
wherez € X, ce Zand e {<,<,=,>,>}.

A k-bounded clock constraing a clock constraint
which involves only constants between—k and
+k. The set ofk-bounded (resp. k-bounded
diagonal-free) clock constraints is denot&d X)
(resp.CJi; (X)). A constraint of the form: —y b4 ¢
is adiagonal constraint

If v is a clock valuation we writey = ¢ when
v satisfies the clock constraigtand we say that
v satisfiesz 1 ¢ (resp. x — y < ¢) whenever
v(z) > ¢ (resp.v(z) — v(y) < ¢). If gis a clock
constraint, we not§g] the set of clock valuations
{veT*|v g}

Timed Automata. A timed automatoverT is
atupled = (3,Q,T,1,F, X), whereX is afinite
alphabet of actions)) is a finite set of statesy is
afinite set of clocksT C Qx [C(X)x L x2X]xQ
is a finite set of transitiodsI C Q is the subset of

1For more readability, a transition will often be written as

g,a,Y / g,a,Y:=0 ;. .
q ———— ¢’ or even agy ———— ¢’ instead of simply

the tuple(q, g,a,Y,q’).

initial states and” C (@ is the subset of final states.
If all constraints appearing id are diagonal-free,
we say that4 is adiagonal-free timed automaton

A pathin A is a finite sequence of consecutive
transitions:

9psap,Yp

pP= g1,01,Y1
=4 ————q1 ... dp

Qp—l

9i,0:,Y;

whereg; _1 q; € T foreveryl <i <p.

The path is said to bacceptingif it starts in an
initial state o € I) and ends in a final statg, €
F). A run of the automaton along the pathis a
sequence of the form:

,a1,Y 9psap,Y;
(QOaUO) WZ%) (Q1a1}1) s z tp £ (qpa'Up)
P
wherer = (t;)i<i<p IS @ time sequence and

(vi)1<i<p are clock valuations such that:

’UQ(Z) = O, Ve e X
Vim1 + (6 —tic1) = s
v; = [C; — 0] (vi—1 + (8 — ti—1))

The label of the run is the timed word
(a1,t1) ... (ap, tp). If the pathP is accepting then
the timed wordw is said to be accepted b¥y. The
set of all timed words accepted byis denoted by
Li(A).

Remark 1 In these notes, we only consider finite

paths and words with finitely many actions, but

we could consider more general acceptance con-
ditions (Buchi, Muller, etc...) as well, see [7].

Examplel An example of timed automaton is
given below.

z<b5a,y:=0 r—y>3,b

~W O

This timed automaton accepts the timed word
(a,4.1)(b,5.5). An accepting run for this word is

(7))
%

(€0, (0,0)) = (1, (4.1,0)) % (L5, (5.5,1.4))

where(4.1, 0) represents the valuatiomsuch that
v(z) = 4.1 andv(y) = 0.
3 Reachability Analysis

For verification purposes, the most fundamental
properties that one should be able to verify are
reachability properties: safety properties can for

example be expressed as reachability properties.
Usually a class of models is sailécidablewhen-
ever checking reachability properties in this class
is decidable. Otherwise this class is saitlecid-
able For timed automata reachability properties
we want to check are: “Is stateof timed automa-
ton A reachabled.e. is there a run starting in an
initial state leading tg?” There is no requirement
as what are the values of the clocks when reaching
stateq. This problem is equivalent to thempti-
ness problen(from a language-theoretical point of
view), where the question is whether the language
accepted by a timed automaton is empty or not.

The class of finite automata is obviously decidable,
the reachability problem is even MNMIGSPACE
complete [36], and efficient methods, symbolic

techniques, data structures, etc... have been de-

veloped and implemented [24]. The problem with
timed automata is that the number of configura-
tions of a timed automaton is infinite (a config-
uration is a pair(q,v) where ¢ is a state and

4.1 TheRegion Automaton Construction
Region Partitioning. Let us fix a finite set of
clocks X. Let R be a finite partitioning ofl' .
Let C be a finite set of constraints ovar. We de-
fine three compatibility conditions as follows:

O We say thafR is compatible with constraints
C if for every constraing in C, for everyR in
R, either[g] € Ror[g] N R = 0.

O We say thafR is compatible with elapsing of
timeif for all R and R’ in R, if there exists
somev € R andt € T such that + ¢t € R/,
then for every’ € R, there exists somé €

T such that' + ¢ € R’.

0O We say thatR is compatible with resets
whenever for allR and R’ in R, for every
subsety” C X, if [Y « 0JRN R’ # (), then

[Y —0JRC R

If R satisfies these three conditions, we will say
thatR is aset of regiondor the set of constraints

v a clock valuation). Techniques used for ver- C or simply a set of regions (£ is clear from the
ifying finite automata can thus not be used for context). R defines in a natural way an equiva-
timed automata. Specific symbolic techniques lence relation=r over valuations« =z v" iff for
and abstractions have to be developed, which take€ach regionR of R, v € R <= v' € R). An
into account the specific properties of timed au- €duivalence class ot (or equivalently an ele-

tomata, in particular the fact that clocks evolve
synchronously with global time.

In the following, we will concentrate on the ver-
ification of reachability properties in timed au-
tomata, and present the basic technics for solving
this problem. Of course, in the literature, more
general properties have been considered. For ex-
ample, the model-checking of TCTL [2], a timed
extension of CTL, is decidable ingPACE and
symbolic technics have been developed to effi-
ciently model-check TCTL [34]. Note however
that not everything can be reduced to the finite un-
timed case using the region automaton construc
tion: for example, universality of timed automata
is undecidable [7], and model-checking of most
linear-time timed temporal logics are undecidable,
when equality can be used in the constraints [8].

4 TheRegion Abstraction

The construction we will describe below is due to
Alur and Dill first in [6]. The aim of this construc-
tion is to finitely abstract behaviours of timed au-
tomata, so that checking a reachability property in
a timed automaton reduces to checking a reacha-
bility property in a finite automaton.

ment of R) is called aregion If v is a valuation
we notev]r the region to which belongs.

The intuition behind these conditions is the fol-
lowing: we want to finitely abstract behaviours
of timed automata. To this aim, we finitely ab-
stract the (infinite) set of valuations: a valuation
will be abstracted by the regida]x. In order for

the abstraction to preserve (at least) reachability
properties, it must be the case that if two valua-
tions are equivalent, then their future behaviours
are also equivalent. The three conditions above
precisely express this property: conditidhsays
that two equivalent valuations satisfy the same
clock constraints, conditiol says that elapsing
of time does not distinguish two equivalent val-
uations whereas conditionl says that resetting
clocks does not distinguish two equivalent valua-
tions.

Region Graph. From a set of region® one can
define the so-callekgion graph which represents
the possible timing evolutions of the system: the
region graph is a finite automaton whose set of
states isR and whose transitions are:

{

R =5 R'if R is atime successor d?
R Rif[Y —0RCR

Intuitively, the region graph records possible timed
evolutions of the system: there is a transition
R <> R’ if, from every valuation ofR, it is possi-
ble to let some time elapse and red¢h There is a
transitionR —— R if, from R, R’ can be reached
by resetting clocks iry".

Example 2 Let us consider the following parti-
tioning of]Rﬂf’y}.

0 1 T
It is easy to verify thafR is a set of regions for

the constrainty = 1,2 = y}. The region graph
associated witlR is represented ofig. 1.

Ry
0<z<1

0<y<1
<y

_resety :== 0

time
elapsing

Fig. 1: A simple example of region graph

Region Automaton. Consider a timed automa-
ton A = (X,Q,T, I, F, X) with set of constraints
C. Let R be a finite set of regions faf (i.e. a
partitioning of TX satisfying condition§l, 0 and
0). Theregion automatori'z (\A) is the finite au-
tomaton whose set of states)sx R, whose initial
states ard x {Ry} (whereRy is the region con-
taining the valuation assigning to each clock),
whose final states atié x R and whose transitions
are defined as follows:

a

e there is a transition{,R) —— (¢, R)
whenever there exists a transitibrZ% ¢/

in Awith R C [¢g] andR Y, R transition
of the region graph

e there is a transitio/, R) — (¢, R') when-
everR = R’ transition of the region graph

This automaton somehow simulates the original

timed automaton: the first type of transitions sim-

ulates discrete actions (or transitions) whereas the
second type of transitions simulates elapsing of
time.

The fundamental property of this construction is
the following:

Proposition 1 Let A be a timed automaton with
set of constraintg. We assume we can construct
a set of regionsR for C. Then,

Untime(L:(A)) = L(T'z(A))

where L(I'r (A)) is the (untimed) language ac-
cepted by'z (A), and

Untime((ai,t1) ... (ap,tp)) = a1 ... ap.

More precisely, whenever id we can wait some
delay and do am, then inT'z(A), we can take
severale-transitions and then do an andvice-
versa We will see in section 4.3 that this prop-
erty naturally expresses in terms of time-abstract
bisimulation. Checking reachability properties in
A thus reduces to checking reachability properties
inT'z(A). AsT'z (A) is afinite automaton, we get
that for every timed automato# for which we can
construct a set of regions (satisfying conditians

O and), we can decide reachability properties
using the region automaton construction

4.2 Region Automaton for Classical Timed
Automata

We fix for this subsection a finite set of clock&s

Sets of regions for diagonal-free constraints.
Let M be an integer. We define the following par-
titioning of TX. Letv andv’ be two valuations
of TX, we say thav =}/ ' if all three following
conditions hold:

o v(z) > M iff v'(x) > M for eachr € X,

o if v(z) < M, then|v(z)]

(fo(@)} = 0t {/(2)} =
X, and

= [V'(z)] and
O) for eachx €

o if u(z) < M ando(y) < M, then{v(x)} < 1 37 W 7 o

{U()=) forale v e 2 '_:—,54'-:—{:-’:,_, ”/ i | region defined by:
,/', i ,’,,ji 2<z
The relationzﬁ‘l]/{ is an equivalence relation of finite 1 -:;fi-’- T {1 <y<2
index. The partitioningR}f (X) is then defined as S l<e-y<2
the set of equivalence classes’le/ e Fig. 2 0 12 z

explains the region construction fortwo clocks. . .
P g Fig. 3: Set of regions foR-bounded general con-

straints with two clocks

y 1 1
1 1
1 1
1 1
2T 2)(IXI+1)° Note that this set of regions is also cor-
1 R rect for M -bounded diagonal-free constraints.
1 1
e
0 1 2 x Region automata for classical timed automata.
(@) Partition compatible with con- Let A be a timed automaton with set of clocks
straints, not with time elapsing (the two Let M be the maximal constant involved in one

pointse and>x can not be equivalent) of the constraints of4, the setR (X) is a set

of regions forA. From the results of the previous

Y ! ! subsections, we get the following theorem, due to
5 ___i___ L [1 regiondefinedby: Alur and Dill [6, 7], which is the core of the veri-

) g ﬂ le<z<? fication of timed systems.
1 -~ 1<y<?2

s | sz |

MRV (=} <} Theorem 1 (Alur & Dill 90's) Reachability (or
0 12 T equivalently emptiness) is decidable for timed
(b) Partition compatible with con- automata. It is aPspacecomplete problem
straints, time elapsing (and resets) (for both diagonal-free as well as general timed

automata).

Fig. 2. Diagonal-free region partitioning for two

clocks and maximal constant Although this theorem has been first proved in [7],
the proof we choose to sketch is taken from [1],
where it is written in details.

Proof. [Sketch] FsPACE membership is easy: the
size of th region automaton is exponential in
the size of the original automaton. Using the
NLoGSPACE complexity of the reachability prob-
lem in classical untimed graphs, we get that reach-

Roughly counting all possible combinations ability in timed automata can be done iSFACE
above, we can bound the number of regions in PSPACEhardness can be proved by reducing the
RQ}(X) by 21X1 | X |1.(2M + 2)/X| where|X]| is termination of a linearly bounded Turing machine
the cardinal ofX . (LBTM for short) on some input to reachability in
timed automata. The encoding is done as follows:
assuming the alphabet{s, b}, the content of cell
C; of the track of the LBTM is encoded by two

Iockaj andy;. Cell C; contains an &” when
the constraint:; = y; holds and celC’; contains

a“b” when the Constrairtt <y holds Note that
these two conditions are invariant by time elaps-
ing

It is easy to prove (and left as an exercise) the fol-
lowing lemma:

Lemmal The partitioningR}{ (X) is a set of re-
gions for the constraint§j/ (X).

Sets of regions for general constraints. Recall
that the difference between diagonal-free clock
constraints and general clock constraints stands in
the fact thatdiagonal constraintgi.e. constraints

of the formz — y > ¢) can be used. An easy ex-
tension of the previous construction can be done.
We do not define it formally here, but only give a
simple example with two clocks, séég. 3.

This set of regions is denote® (X), and its wo |$]i |
cardinal can roughly be bounded b@2M + {z;,9;}

If ¢ -2, o is a transition of the LBTM, then @ x T for set of states and its transition relation

for each positioni of the tape, there will be a tran- IS defined by the two following rules:
sition (¢, 1) -22=% (¢, i') where: d
(l,v) — ({,u+d) foreveryd e T

o gisx; =y, (resp.x; < y,)if a = a (resp. (6,v) % (¢',0') ifthereist 22 ¢ st
a=1") vEg vV =[Y <0l

o Y = {x;,y;} (resp. Y = {x;})if a = a
(resp.i :Z{))} (resp o)) Time-abstract ~ bisimulation. Time-abstract

bisimulation could be defined for two timed au-
e i/ =i+ 1(resp.i/ =i —1)if §is right and tomata, but for our purpose, we follow the lines of
i < n (resp. left) [22] and define time-abstract bisimulation on a sin-

))) gle timed automaton. Letl = (X, Q, 7,1, F, X)
We need to enforce time elapsing; this can be done o 4 timed automaton (over alphab®). We
by adding a clock which is checked tdé and reset say that a relatiors C (Q x TX) x (Q x TX)

to 0 on all transitions. Initially the track contains is a time-abstract bisimulationvhenever it is

the encoding of the wordy,. This can be done 5 equivalence relation satisfying the following
by a transition from a state “init” tdqo, 1) where conditions:

qo i1s the initial state of the LBTM, which checks

whethert = 1, and resets clocks ir, whereY, = o if ({1,v1) = (la,v2) and (¢1,vy) TN
{t} U {x; | woli] = b}. The computation over (¢1,v1 + dy) for somed; € T, then there ex-
wy Of the ’I,_BTM terminates |ﬁ thereis a run from istsd, € T such thalts, v) do (£, 05 +
s_tate init” to some statéq,, i) whereg; is the do) and (€1, vy + dy) = (Ca, vg + da)

final state of the LBTM. |

Note that the above encoding uses diagonal con- ® if (¢1,v1) = (f2,v2) and ((1,01) —
straints, but as will be seen later (see section 5.1), (¢1,v1), then there exist$(y, v3) such that
there is no need of these diagonals. A direct but (bo,v0) = (L4, vh) and (£}, v}) = (L5, vh)

more involved construction without diagonals can

be found in the appendix of [1]. e andvice-versa

. By definition, such a relation is an equivalence re-
Remark 2 Note that sets of regions we have de- lation, and as such= is said to have dinite in-

scribed could 'be refined: there is no need to have yaoy\whenever there are finitely many equivalence
the same maximal constant for all clocks, one max- classes. Informally, from two equivalent config-
imal constant for each clock could be used. How- ,rations, it is possible to do the same discrete ac-

ever, for our purpose here, there is no need for such tjons and/or to wait some amount of time (possibly
arefinement. different in the two configurations) and stay equiv-

o o . alent.
4.3 Interpretation in Terms of Finite Bismu-

lation
With what has been presented before, conditions
O, O and O (compatibility of the set of regions
with constraints, time elapsing and resets) have
a natural interpretation in terms ¢ime-abstract
bisimulation.

Relation with the region automaton construc-
tion

Proposition 2 Let A be a timed automaton and
R a set of regions for the constraints id. The
relation{((¢,v), (¢,v")) | [v]r = [v']r }is atime-

_ o)) abstract bisimulation with a finite index.
Timed transition system associated with a

timed automaton. We have defined the seman- Time-abstract bisimulation appears indeed as the
tics of a timed automaton as runs or timed words. right notion corresponding to the region automa-
We could have defined its semantics as a timed ton construction and formally justifies everything
transition system as well. Transition systems (thus which has been explained previously. It proves
in particular timed transition systems) are more more precisely that the region automaton construc-
suitable for behavioural comparisons of systems. tion can be used to verify all properties that are
Let A= (%,Q,T,1, F, X)be atimed automaton. invariant by time-abstract bisimulatioe.g.reach-
The timed transition system associated witthas ability properties, safety properties, many untimed

properties. However, notice that we can not use and study decidability of these models, and we will
directly this construction to verify properties ex- also concentrate on algorithmics and implementa-
pressed in a timed logic like TCTL because a prop- tion aspects. We hope this should help better un-
erty like “reaching a state in exactly units of derstanding timed behaviours and timed models.
time” is not invariant by time-abstract bisimula-

tion. For these properties a more involved con- 5§ Extensions of Timed Automata

struction is needed which adds a clock for the for-

mula, and then construct a region automaton tak- For representing real-life systems, it is much con-
ing into account this additional clock. We do not yenjent to have expressive and easy-to-use models.
develop this construction here but better refer to we will present in this section several extensions
original articles on the subject [2]. (or variants) of timed automata, and will focus on

The converse of Proposition 2 also holds and it the decidability of their reachability problem. We
can be used to prove decidability of timed sys- Will also give some expressiveness results.

tems: if for a timed system we can compute & a class of systems is saidstrictly more expres-
time-abstract bisimulation relation with a finite in- ¢j\/athan a class of systend whenever there ex-
dex, then reachability (and other time-abstract in- ists 5 in S such that nos’ in S’ accepts the same
variant properties) can bg decided using a region language as, and for every systerfi’ in &', there
automato'n-llke construction. Exampleg of such ayistsS in S which recognizes the same language
constructions can for example be found in [29, 22]. ;567 A class of systems is as expressive as’
whenever for evenf in S, there existsS’ in S’

4.4 Partial Conclusion which accepts the same languagesas

Timed automata are an interesting model for rep-

regenting sygtems with real-timg constr.aints.. De- 51 Roleof Diagonal Clock Constraints
spite the infinite number of possible configurations
of a timed automaton, model-checking of reacha-
bility properties has been proved decidable. Thisis
probably the most fundamental property of timed
automata, which has been proved at the beginning
of the 90’s by Alur and Dill, and which is the start-
ing point of numerous works on timed models. We
have presented in this section the basics of the de
cidability of timed automata, which relies on a re-
duction to finite automata: this is fundamental for It was known as a folklore result that diagonal con-
most of the works on timed systems. It is however straints can be eliminated from timed automata,
worth to notice that not everything can be reduced and thus that they do not add expressive power to
to the finite automata case. For example (see [7] timed automata. A formal proof of this result has
and also [42]), been done in [15].

Diagonal constraints.g. clock constraints of the
formx — y < ¢ wherez, y € X, ¢ € Z and
e {<,<,=,>,>}) have been first mentioned
in the seminal paper of Alur & Dill [7], and are
often considered as part of the model of timed au-
tomata. We have seen in previous section that di-
agonal constraints do not add any decidability and
“complexity problems to the model.

e universality (the dual of reachability) is an

undecidable problem: Proposition 3 For every timed automatad, pos-

sibly with diagonal constraints, there exists a
e the class of timed languages accepted by timed automator3, with only diagonal-free con-

timed automata is not closed under comple- straints, which recognizes the same language.
mentation; Note thatf3 is strongly bisimilar? to A.

e not all timed automata can be determinized, This construction leads to an exponential (in the
and, in addition, the problem of deciding number of diagonal constraints) blowup of the
whether a timed automaton can be deter- number of states of the automaton, and this blowup
minized is an undecidable problem; is unavoidable as timed automata with diagonal

constraints are exponentially more succinct than

These problems will not be tackled in this tutorial, diagonal-free timed automata [19].

but we refer to [10] for a survey of (un)decidability

results about timed automata. 2Which means they are bisimilar (in a classical way) for

. . . actions taken irE U T if a system can do action, then so can
m the rest O_f this tum”fil’ we W'". mostly con- s the other system, and if a system can waitits of time,
sider extensions (or variants) of timed automata then so can also the other system.

5.2 Adding Silent Actions uses classical constraints and additive clock con-
For finite automata, it is well-known thatlent ac- straints has been studied in [16].
tions (also known ag-transitionsor internal ac-

tions) do not add expressive power to finite au- Two clocks. For timed automata withtwo

tomata and that they can be eliminated with no ¢,y 4 region construction can be done. We will

bl_(l)wup in the _numbedr of states ?]f thebautomat(;).na not define it precisely here but the region partition-
Silentactions in timed automata have been studied ;g \yhen the maximal constant isis illustrated
in details in [15], and the situation is far from the

. : onFig. 4. The general case can be easily deduced
one in the untimed framework. from this representation.
Afirst (easy) fact is that the region automaton con-
struction can be done in a similar way when there
are silent actions, we thus get:

Proposition 4 The reachability problem is decid-
able for timed automata with silent actions. The
complexity is alsé®’sPACEcomplete.

However, and this is at first surprising, silent ac-
tions can not be removed, as it is the case for clas- Fig. 4: Region partitioning for additive clock con-
sical finite automata. straints (two clocks)

Theorem 2 Timed automata with silent actions

are strictly more expressive than classical timed Proposition 5 The reachability problem for timed
automata. automata with at most two clocks and possibly ad-

Several examples are given in [15]. Among them, ditive clock constraints is decidable.

there is the languag®é = {(a,t1)...(a,t;) - |

Vi, ¢+ mod 2 = 0}. This timed language is rec-
ognized by the following automaton but is recog-
nized by no timed automaton without silent ac-
tions.

The languagé.* represented oRig. 5 is accepted
by a timed automaton with two clocks and addi-
tive clock constraints but is accepted by no timed
automaton with classical clock constraints.

r+y=1la,x:=0

r=2 r=2

X
Lt ={(a",t;...t,) [n>1andt; =1 — L}

e
I o

Proofs of non-expressivity by a classical timed au-
tomaton are alwayad-hocas there is no real cri-
terion for a timed language to be recognized by
a classical timed automaton. However a sufficient
criterium is given in [15]: letd be a timed automa-
ton possibly with silent actions; if, i, there is no Four clocksor more. The following result holds
loop in which a clock is reset on asntransition, for timed automata with four clocks or more, and
then e-transitions can be removed fromd, and additive clock constraints:

we can construct a timed automatBrwithout -

transitions which recognizes the same language. Theorem 3 The reachability problem is undecid-

) o) able for timed automata with four clocks or more,

We have seen that diagonal constraints can be used

safely in timed automata. A natural idea is then to This undecidability result is rather involved and is
consider clock constraints of the foraH- y > c. by reduction from the halting problem of a two
Such a constraint will be called auditive clock counter machine [39]. The proof can be found
constraint The model of timed automata which in [16].

Fig. 5: A language which needs additive clock
constraints

What about three clocks? The region graph computation ofM terminates if and only if a given
construction done for two clocks does not extend state of A is reachable. The value of counter

to three clocks. Using the characterization of re- (resp. countet) is encoded by the value of clock
gions using time-abstract bisimulation, it has been x (resp. clocky). An additional clockz is used
proven in [41] that there is no finite partitioning to rhythm the computation of automatoh In-
satisfying the condition&l, 0 and0 as soon as crementation (and decrementation) of counters are
there are three clocks:(y andz) and constraints simulated as follows.

{r+y=1,2=0,z =1} are used. However the
reduction presented above (for proving undecid-
ability of reachability checking in timed automata
with four clocks and additive clock constraints)

e |ncrementation of counter c.

can not be adapted if we allow only three clocks. It £ O |
is still an open problem to know if the reachability . wriN S et
problem for timed automata with three clocks and ~ * (5) (’y) < 0)

additive clock constraints is decidable or not.

5.4 Adding New Operationson Clocks For Incrementing countee, we let time

Up to now, we can only reset clocks to zero.
In [20], models using more generalpdates
have been studied. In the model opdatable
timed automata a transition is of the form
R where g is a clock constrainta

elapse during one unit of time. The two
clocksz andy thus increase by. It is then
sufficient to decrease clogkby 1: the value
of z in ¢’ is equal to the value af in ¢ plus
1 whereas the value gf in ¢’ is equal to the
value ofy in ¢. This correctly encodes an in-

is an action andip is anupdate i.e. for each

clock z, an operatiorup, of the formz < ¢

orz < y + c wherec € Z, y is a clock, and .
e {<,<,=,>,>}. Let us take two valuations

v andv’. We have that’ € up(v) whenever for) .
each clocke, v'(x) € up,(v), whereup,(v) = v (8)

crementation of by 1.

Decrementation of counter c.

{a] axc} if up,(v)isz xc
{ {a|axv(y) +c} ifup,(v)isz>xy+c 2=0 -0
For example, it is possible to decrement the ~ ~— = 7oooreommmemmmeees ;
value of a clock byl, or to set a clock non- 2:=0 221 j . O

determiniscally at a value less than

This model is very general and it is easy to prove : (0)
that the reachability problem is not decidable for
the whole class of updatable timed automata, by
reducing the computation of a two counter ma-
chine to the computation of an updatable timed
automaton (decrementation (resp. incrementation)
of counters are simulated by decrementation (resp. I ncrementing clocks also leads to undecidabil-
incrementation) of clocks). In [20], tighter unde- ity as soon as diagonal constraints are used...
cidable classes and several decidable classes arérom the previous reduction, it is sufficient to be
described. We will not enter into details here, able to simulate the part of the automaton which
but will present two undecidability proofs and de- is framed with dashed lines, thus to decrease the
scribe one decidable class. value of a clock (say) by 1.

An explanation similar to the one for decre-
mentation can be done.

Decrementing clocks leads to undecidability.

We now sketch the reduction from a two counter
machine to updatable timed automata with resets
to zero and decrementation. Let us consider a two
counter machineV with the two counterg and

d. We will construct a timed automatoA (with It is easy to see that this module simulates an in-
decrementations and resets to zero) such that thecrementation.

wi=w+1 r=x+1

z=0,w:=0 r—w=1,2:=0

r=w,z=0
p q T

®

... but remains decidable when no diagonal con- y

1 1
straints are used. We will see that the usual ' ' X
(diagonal-free) region partitioning is correct when 2 —:;«i——:,—'i ———————)7——
also using incrementation of clocks. However this 1 e _’:_:)
requires a more involved explanation. Indeed,_ the i i) X updatey —]
three conditiondd, 00 and O are no more suffi- o e
cient because more general operations on clocks 0 1 2 z

are used. More precisely, we need to replace con- (&) Classical partitioning not compatible wigh:= z — 1
dition O by the following condition (wher& is a :
finite partitioning of the set of valuations, abfis Y
a finite set of updates):

2
0 We say thatR is compatible with updates in 1
U whenever for allR, R’ € R, foreachup €
U.if for some valuationv € R, up(v) N R’ # B
@, then for every valuation’ € R, up(v') N 0 1 2 3 z
R £ 0. (b) Set of regions satisfying conditiofis [0 and’.

It is just an extension of Proposition 1 to prove that
if, for a finite set of constraint§ and a finite set of
updated/{, we can construct a set of regions satis-
fying conditionsd, O andl’, then the region au- of clocks leads to undecidability whereas incre-
tomaton construction can be used to verify reach- mentation leads to decidability, which may appear
ability (or more generally time-abstract invariant) as a surprising result. It has also been proved that
properties. for every updatable timed automaton belonging to
Let us fix a finite se€ of diagonal-free constraints, SOMe decidable subclass, we can construct a timed
and a finite set of updatesof the formz := y + ¢ automaton with silent actions (but with an expo-

and possibly some resets of clocks. If the system Nential complexity blowup) which recognizes the
of inequations same timed language.

Fig. 6: Partitioning for updateg) := = — 1

{az >c| (z>c)isinC} 55 Partial Conclusion

We have shortly presented in this section several
extensions and variants of timed automata, hav-
ing in mind the decidability of reachability check-
ing. Many other extensions or subclasses could

m, satisfies the three above-mentioned conditions. 2ve been presented as well, for example timed
Note that if only updates of the form :— z + 1 automata with modulo constraints [23], or timed

are authorized then, as claimed before, the usual2utomata with event-predicting or event-recording

region partitioning is correct (because constraints imed automata [9, 35].

ay < ay + 1 are trivially true). Historically, (linear) hybrid automata [30, 32] have
However the usual region partitioning needs some- not been defined and studied as an extension of
times to be refined a little bit. Consider the follow- timed automata, but they can be viewed as such.
ing example: the maximal constant to which the A hybrid automaton is roughly a timed automaton
two clocksz andy are compared i8, both resets where variables (instead of clocks) grow in every
of z andy are allowed, and the more elaborated state following some differential equation. Lin-
updatey := = — 1. The system of inequations is ear hybrid automata are particular hybrid automata
{az; > 2,0y > 2,00y <, —1}. Ithas asolution, where variables evolve following linear differen-
ega, = 2 anda, = 3. We explain the intuition tial equations. As soon as a variable has two differ-
behind these conditions dfg. 6. ent slopes, the hybrid automata model is undecid-
Updatable timed automata have been studied in able [32]. In particularstopwatch automatd.e.
details in [20], where the precise frontier be- timed automata in which clocks can be stopped,
tween decidable and undecidable subclasses hasre undecidable. However, a decidable subclass
been depicted: among other results, when only has been exhibited, the so-called initialized rectan-
diagonal-free constraints are used, decrementationgular automata. Hybrid automata are a very inter-

Ufay, <ay+c|(z:=y+c)isinU}

has a solutiorim,.)..c x, then the diagonal-free set
of regions where the maximal constant foris

esting model which would require a whole tutorial 0 or if the backward computation starts from the
in itself. We better refer to [40] for an introduction final states with clocks set to any value (which is

to this model. sufficient as we are only interested in reachabil-
ity of discrete states), sets of valuations which are
6 Algorithmics & Implementation computed argonesi.e. sets of valuations defined

by a general clock constraint. Recall that general

In practice the region automaton construction is Clock constraints are defined by the grammar:
not used in tools. Algorithms for “minimizing” the

region automaton have been proposed for example 9
in [3, 4, 43]. However in practicen-the-flytech-
nics are preferred.

= xXce | x—ye | gAg

wherec € Z, xe {<,<,=,>>}andz, y
are clocks. A clock constraing defines a zone
. - lg] = {v € TX | v = »}. For analyzing timed
6.1 Reachability Analyg; Two Methods] automata, zones are ttsymbolic representation
There are two main families of (semi-)algorithms \ynich is commonly used. For implementing for-

for analyzing reachability properties of systems \yarq and backward analysis, we need to be able to

(not only timed systems, but all kinds of systems). perform several operations on zones. From what
has been said before, these operations are the fol-

Forward analysis. The general idea of forward lowing (Z andZ’ are supposed to be zones):

analysis is to compute configurations which are _

reachable from initial configurations within - FutureofZ: Z = {v+t|v e Zandt € T}

steps,2 steps, etc... until final states are reached

-
or until the computation terminates. - PastofZ: Z ={v—t|ve Zandt €T}

- IntersectionoZ andZz’: ZNZ' ={v|ve

Backward analysis. The general idea of back- Zandv € Z'}

ward analysis is to compute configurations from

which we can reach final configurations within - Resetto zero of w.r.t. setof clocks’™: [V
step,2 steps, etc... until initial configurations are 012 ={[Y = 0lv|ve 2z}

reached or until the computation terminates. - Inverse reset to zero of w.rt. set of clocks

These two generic approaches are used for many Y:[Y —0]7'Z ={v|[Y < 0Jv € Z}
models, for example counter machines, hybrid sys-
tems, etc... Of course, given a class of systems,
specific technicsg.g. abstractions, widening oper- Using these operations, the basic steps of the

ations, etc...) can be used for improving the com- forward and the backward computations can be
putation. We will study how these approaches can rewritten as:

be used for verifying timed automata.

- Test emptiness ¢f: decide whetheZ =

Post.(Z) = [Y — 0)(Z N [g])
6.2 Reachability Analysis in Timed Au- Pre.(Z) =Y < 0]"(Zn[Y =0]) N [g]
tomata: Zones
We need now to look carefully at how the above- 6.3 TheDBM Data Structure
mentioned general methods can be used for veri- For representing zones, the most common data
fying timed automata. In particular, as timed au- structure which is used is the so-called DBM
tomata ha.Ve an |nf|n|te number Of Configurations, data structure (Where DBM Stands for “Diﬁ"erence
we need to use symbolic representations for doing Bounded Matrice”). This data structure has been
the computation. Given a transitienof a timed first introduced in [17] and then proposed in the
automatorf 2%, ¢, we need to be able to com- framework of timed automata in [28]. Several pre-
pute, given a sel of valuations, both sets sentations of this data structure can be found in the
literature, for example in [24, 14, 18].

"|weWIHeTsty =Y «0 t . .
{v] 30 V= =0+ A difference bounded matri¢geayDBM for short)
{v]| W €eW3teTstly —0(w+t)=2} forasetl={a,...,z,} ofnclocksisar(n +
1)-square matrice of pairs
Itis worth to notice that if the forward computation

starts in an initial state with all clocks initialized to (m;<) eV =(Zx{<,<}) U{(o0;<)}.

ADBM M = (mi,j, Ki,j)i,jzl‘..n defines the fol-
lowing subset ofl"™ (the clockz is supposed to
be always equal to zerag. for each valuation,
v(zp) = 0):

{1} X —->T | Vi,j, U(JZ,') — ’U(l’j) <5 mm}

wherevy < oo simply means that is some real
without bound. This subset &" is a zone and
will be denoted, in what follows, bjA/]. In what
follows, to simplify notations, we will assume that
all constraints are non-strict, so that coefficient of
DBMs will be elements o U {oo}.

Example 3 Consider the zone defined by the con-
StraintS(l'l > 3) A (ZQ < 5) A (lEl — 29 < 4)
This zone, depicted below on the right, can be rep-
resented by the DBM below (on the left).

rg T1 X2 5
To oo —3 ™
T o oo 4 2
To 5 o0 oo

34

A zone can have several representations using

DBMs. For example, the zone of the previous
example can equivalently be represented by the
DBM

0 -3 0
9 0 4
5 2 0

A normal form can be defined on DBMs, which
tightens all possible constraints. This can be done
using a Floyd algorithm on the matrice (viewed
as a weighted graph). A zone has a unique rep-
resentation as a DBM in normal form. Tests like
emptiness checking, or comparison of zones can
then be done syntactically on the DBMs in normal
form. For example, a zon#& is included in a zone

Z' if the DBM in normal form representing is
smaller than the DBM in normal form represent-
ing Z’. Finally all operations on zones described
in section 6.2 can easily be done on the DBMs,
details can be found in all mentioned papers on
DBMs.

Let us just mention that the DBM data structure is
the most basic data structure which is used for an-
alyzing timed systems, some more involved BDD-
like data structures can also be used, for example
CDDs (which stands for “Clock Difference Dia-
grams”) [37].

6.4 Backward Analysis

Let A = (£,Q,T,1I,F, X) be a timed automa-
ton. Backward analysis then consists in com-
puting the following sets of symbolic configura-
tions: Sy = {(f,T%) | f € F}, and iteratively
Spr1 = {(6,2) | Fe = (¢ 225 30, 2) €
SpSt.Z =Pre.(Z')}, ...

Theorem 4 The backward computation termi-
nates and is correct w.r.t. reachability, i.e. if a
state is found reachable by the computation, then
it is really reachable.

Correctness is immediate as the computatiaxis
act (as opposed to over-(or under-)approximate).
Termination needs some additional argument, re-
lated to properties of the region partitioning asso-
ciated with timed automata. The termination proof
then relies on the following lemma, which can be
proved as an exercise.

Lemma?2 Let A be a timed automaton and let
R be a set of regions satisfying conditionis (I
and O (for A). Consider a finite union of regions

P L R; (with R; € Rfor1 < i < p). Then the
following holds:

e . - - . .
- UY_, R; is a finite union of regions

- [Y « 071U, R:) is a finite union of re-
gions (for any set of clocKg)

- ¢ (UY_; R;) is afinite union of regions i§
is a constraint ofA (thus compatible witlR)

Backward analysis thus appears as a very interest-
ing method for analyzing timed systems. However,
in practice, most commonly used tools (for exam-
ple UppAAL) prefer using a forward analysis pro-
cedure. A natural question then arises: what'’s the
problem with backward analysis? It comes from
the fact that the use of bounded integer variables
really improves and eases the modeling of real sys-
tems. Backward analysis is then not suitable for
arithmetical operations: for example if we know
in which interval lies the variableand if we know
thati is assigned the valugk + ¢.m, it is not easy

to compute the possible values of variabjes:,

£, m (apart from listing all possible tuples of val-
ues). For this kind of operations, forward analysis
is much more suitable.

6.5 Forward Analysis

Let A = (X,Q,T,I,F,X) be a timed automa-
ton. Forward analysis then consists in comput-
ing the following sets of symbolic configurations:

So = {(i,0) | ¢ € I}, and then iteratively /

Spr1 = {0, 2) | 3e = (¢ 2225 1) 30, 2) € 4
S, st. Z' = Post.(Z)}, ... The forward analy- 7 B v

sis gives a correct answer (if it gives an answer), 2 W [Approxy (M)]

but may not terminate. An example of automaton

where the forward computation does not terminate

is given onFig. 7. The zones which are computed

are represented on the right part of the figure, and Obviously,
it is easy to check that the computation will never

e Approx;, is a finite abstraction operator be-

terminate. -
cause there are finitely many DBMs whose
y coefficients are eithe#-co or some integer
vl 2 between-k and+k
\Cg‘” >1ay=1, 1 e the computation oRpprox, is effective and
y:=0 can be done easily on DBMs

0 e Approx, is a complete abstraction w.r.t.
Fig. 7: Forward computation does not always ter- reachability because for every zote Z C
minate... Approx,(Z)

To overcome this problem, it is necessary to use The only problem stands in the correctness of
some abstractions, several are proposed in [26]. Approx, W.r.t. reachability: we have to find a con-
For example, ifZ andZ’ are computed for the lo- stantk such that this abstraction operator will be
cation?, zones are replaced by the smallest zone correct w.r.t. reachability.

containing bothZ and Z’: this approximation is
called the ‘tonvex-hull®, it does not ensure ter-
mination and is only semi-correct w.r.t. reachabil-
ity in the sense that a state which is announced as
reachable may not be reachable. The most inter-
esting abstraction studied in this paper is the

trapolationoperator. Two different proofs of this theorem can be found
in [18] and [12]. Note that this theorem does not

The extrapolation operator. The abstraction extend to timed automata with general clock con-

operator which is commonly used is calledtrap- straints. See [18] for a counter-example, and [21]

olation, and sometimesormalization[14]. We for a solution to the problem.

will note it hereApprox,,, it is defined up to a con-

stantk as follows: if Z is a zone Approx, (Z) is 6.6 Toolsfor Timed Systems

the_ smallesjk—bpunded qubeh'Ch contalnsZ_. Several tools implement timed (and hybrid) au-

This operation is well-defined on DBMs: i/ is tomata.

a DBM in normal form representing, a DBM

representing\pprox, (Z) is M’ where each coef-

ficient less than-k is replaced by-k and all coef-

ficients greater thah is replaced byt oo, all other

coefficients remain unchanged.

Theorem 5 Let A be adiagonal-free timed au-
tomaton. Take: the maximal constant appearing
in the constraints ofAd. ThenApprox,, is correct
w.r.t. reachability inA.

e HYTECH [31] is a model-checker for lin-
ear hybrid automata. Exact backward and
forward computations can be done, reach-
ability properties can thus be checked (but

Example 4 Consider the zoné/ of Example 3. there is of course no guarantee the computa-
Its extrapolation w.r.t2 is the following DBM: tion will terminate). Many other operations
on polyhedra can be performed, for exam-
0 -2 0 ple hiding of variables (corresponding to pro-
Approxy(M) = 9 0 oo jections), whi | e” loops, emptiness checks,
oo 2 0 etc... Hr TECH, which has been developed in
3t is a language abuse, because it is not reaaly the convex Berkeley (USA), can be downloaded on

hull of the two zones, but it is the smallest zone containhey t
convex-hull of the two zones.

4A k-bounded zone is a zone defined by-aounded clock http://ww cad. eecs. berkel ey. edu:
constraint. 80/ ~t ah/ HyTech/

e KRONOS[25] is a model-checker for timed [2] R. Alur, C. Courcoubetis, and D. Dill. Model-
automata. Exact as well as abstract backward checking in dense real-time.Information and
and forward computations can be done. A Computation104(1):2-34, 1993.
backward procedure for the logic TCTL [2] [3] R. Alur, C. Courcpubetig, D. Dill, N. Halbwachs,
is also implemented [34]. The tool RO- and H. Wong-Toi. An implementation of three

NOs, which has been developed in Grenoble algorithms fqr timing verification based on_ au-
tomata emptiness. IRroc. 13th IEEE Real-Time
(France), can be downloaded on

Systems Symp. (RTSS'9gxges 157-166. |IEEE
Comp. Soc. Press, 1992.
[4] R. Alur, C. Courcoubetis, N. Halbwachs, D. Dill,
and H. Wong-Toi. Minimization of timed tran-
sition systems. InProc. 3rd Int. Conf. Con-
currency Theory (CONCUR’92)Volume 630 of
LNCS pages 340-354. Springer, 1992.

http://ww- verimg.img.fr/
TEMPORI SE/ kr onos/

e UpPPAAL [38] is a model-checker for timed
automata which performs forward analysis

W'th eXtrapC)lat'on', It can verify re,aChab'l' [5] R. Alur, C. Courcoubetis, and T. A. Henzinger.
ity properties of timed systems with some The observational power of clocks. Rroc. 5th
extra features as bounded integer variables Int. Conf. Concurrency Theory (CONCUR'94)
and broadcast channels. The toobrAAL, volume 836 ofLNCS pages 162—177. Springer,
which is jointly developed in Aalborg Univer- 1994.
sity (Denmark) and Uppsala University (Swe- [6] R. Alurand D. Dill. Automata for modeling real-
den), can be downloaded on time systems. IProc. 17th Int. Coll. Automata,
Languages and Programming (ICALP’90yol-
http://ww. uppaal . com ume 443 of LNCS pages 322-335. Springer,
1990.
7 Conclusion [7]1 R. Alur and D. Dill. A theory of timed automata.
Theoretical Computer Sciencé26(2):183—-235,
In this tutorial we have presented the basic model 1994. _
of timed automata, introduced at the beginning of [8] R. Alur, T. Feder, and T. A. Henzinger. The ben-

the 90's by Rajeev Alur and David Dill [7]. One efits of relaxing punctualityJournal of the ACM
. : 43(1):116-146, 1996.
of the most important and most fundamental con- [9]

. hich i din this d inis th : R. Alur, L. Fix, and T. A. Henzinger. A deter-
struction which is used in this domain is the region minizable class of timed automata. Rroc. 6th

automaton construction: it finitely abstracts be- Int. Conf. Computer Aided Verification (CAV'94)
haviours of timed automata into behaviours of fi- volume 818 oLNCS pages 1-13. Springer, 1994.
nite automata, which allows to model-check many [10] R. Alur and P. Madhusudan. Decision problems
properties: although we only presented how reach- for timed automata. IfProc. 4th Int. School For-
ability properties could be checked, properties in mal Methods for the Design of Computer, Commu-
TCTL can also be verified using a region-like con- nication and Software Systems: Real Time (SFM-
struction [2]. We have also presented several ex- 04:RT) volume 3142 ofLNCS pages 122-133.

Springer, 2004.
[11] E. Asarin. Challenges in timed languages: From
applied theory to basic theor¥he Bulletin of the

tensions of timed automata, concentrating on the
decidability of the model-checking of reachability

properties. European Association for Theoretical Computer

There are so many works which have been devoted Science83, 2004.

to timed systems in general, and timed automata in [12] G. Behrmann, P. Bouyer, E. Fleury, and K. G.

particular, that it is hopeless to present the whole Larsen. Static guard analysis in timed automata

verification. InProc. 9th Int. Conf. Tools and Al-

theory of timed automata in a single tutorial. The) i ‘
gorithms for the Construction and Analysis of Sys-

current tutorial presents some results on timed au- tems (TACAS'03)volume 2619 ofLNCS pages
tomata, focusing on the decidability of reachability 254-277. Springer, 2003 pag
properties and on implementation issues for veri- [13] G. Behrmann. A. Eehnker. T. Hune. K. G. Larsen

fying such properties. P. Pettersson, J. Romijn, and F. Vaandrager.
Minimum-cost reachability for priced timed au-
References tomata. InProc. 4th Int. Work. Hybrid Sys-
tems: Computation and Control (HSCC'Qijpl-
[1] L. Aceto and F. Laroussinie. Is your model- ume 2034 ofLNCS pages 147-161. Springer,
checker on time ? on the complexity of model- 2001.
checking for timed modal logicslournal of Logic [14] J. BengtssonClocks, DBMs ans States in Timed

and Algebraic Programming2-53:7-51, 2002. Systems PhD thesis, Department of Information

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

Technology, Uppsala University, Uppsala, Swe-
den, 2002.

B. Bérard, V. Diekert, P. Gastin, and A. Petit.
Characterization of the expressive power of silent
transitions in timed automat&undamenta Infor-
maticae 36(2—3):145-182, 1998.

B. Bérard and C. Dufourd. Timed automata and
additive clock constraint$nformation Processing
Letters 75(1-2):1-7, 2000.

B. Berthomieu and M. Menasche. An enumerative
approach for analyzing time Petri nets. Pnoc.
IFIP 9th World Computer Congressolume 83

of Information Processingpages 41-46. North-
Holland/ IFIP, 1983.

P. Bouyer. Forward analysis of updatable timed
automata. Formal Methods in System Design
24(3):281-320, 2004.

P. Bouyer and F. Chevalier. On conciseness of ex-
tensions of timed automatdournal of Automata,
Languages and Combinatoric®005. To appear.

P. Bouyer, C. Dufourd, E. Fleury, and A. Petit.
Updatable timed automat@heoretical Computer
Science321(2-3):291-345, 2004.

P. Bouyer, F. Laroussinie, and P.-A. Reynier. Di-
agonal constraints in timed automata — Forward
analysis of timed systems. Rroc. 3rd Int. Work.
Formal Modeling and Analysis of Timed Systems
(FORMATS'05) LNCS. Springer, 2005. To ap-
pear.

T. Brihaye, V. Brure, and J.-F. Raskin. Model-
checking for weighted timed automata. In
Proc. Joint Conf. Formal Modelling and Anal-
ysis of Timed Systems and Formal Techniques
in Real-Time and Fault Tolerant System (FOR-
MATS+FTRTFT'04) volume 3253 of LNCS
pages 277-292. Springer, 2004.

C. Choffrut and M. Goldwurm. Timed automata
with periodic clock constraints.Journal of Au-
tomata, Languages and Combinatorit$4):371—
404, 2000.

E. Clarke, O. Grumberg, and D. Peledlodel-
Checking The MIT Press, Cambridge, Mas-
sachusetts, 1999.

C. Daws, A. Olivero, S. Tripakis, and S. Yovine.
The toolkRONOS. In Proc. Hybrid Systems llI:
Verification and Control (1995)volume 1066 of
LNCS pages 208-219. Springer, 1996.

C. Daws and S. Tripakis. Model-checking of
real-time reachability properties using abstrac-
tions. In Proc. 4th Int. Conf. Tools and Algo-
rithms for the Construction and Analysis of Sys-
tems (TACAS'98)volume 1384 ofLNCS pages
313-329. Springer, 1998.

F. Demichelis and W. Zielonka. Controlled timed
automata. InProc. 9th Int. Conf. Concurrency
Theory (CONCUR’98) volume 1466 ofLNCS
pages 455-469. Springer, 1998.

D. Dill. Timing assumptions and verification of
finite-state concurrent systems. Rroc. of the

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

[41]

[42]

(43]

Work. Automatic Verification Methods for Finite
State Systems (1989plume 407 oLNCS pages
197-212. Springer, 1990.

T. A. Henzinger. Hybrid automata with finite
bisimulations. InProc. 22nd Int. Coll. Automata,
Languages and Programming (ICALP’95)ol-
ume 944 of LNCS pages 324-335. Springer,
1995.

T. A. Henzinger. The theory of hybrid automata.
In Proc. 11th Ann. Symp. Logic in Computer
Science (LICS’96)pages 278-292. IEEE Comp.
Soc. Press, 1996.

T. A. Henzinger, P.-H. Ho, and H. Wong-Toi.
HYTecH: A model-checker for hybrid systems.
Journal on Software Tools for Technology Trans-
fer, 1(1-2):110-122, 1997.

T. A. Henzinger, P. W. Kopke, A. Puri, and
P. Varaiya. What's decidable about hybrid au-
tomata? Journal of Computer and System Sci-
ences57(1):94-124, 1998.

T. A. Henzinger, P. W. Kopke, and H. Wong-Toi.
The expressive power of clocks. Rroc. 22nd
Int. Coll. Automata, Languages and Programming
(ICALP’95), volume 944 ofLNCS pages 417-
428. Springer, 1995.

T. A. Henzinger, X. Nicollin, J. Sifakis, and
S. Yovine. Symbolic model-checking for real-
time systems. Information and Computatign
111(2):193-244, 1994.

T. A. Henzinger, J.-F. Raskin, and P.-Y.
Schobbens. The regular real-time languages.
In Proc. 25th Int. Coll. Automata, Languages
and Programming (ICALP’98)volume 1443 of
LNCS pages 580-591. Springer, 1998.

J. E. Hopcroft and J. D. Ullmanlntroduction to
Automata Theory, Languages and Computation
Addison-Wesley, 1979.

K. G. Larsen, J. Pearson, C. Weise, and W. Yi.
Clock difference diagrams. Nordic Journal of
Computing 6(3):271-298, 1999.

K. G. Larsen, P. Pettersson, and W. Yi.PRAAL

in a nutshell.Journal of Software Tools for Tech-
nology Transferl(1-2):134-152, 1997.

M. Minsky. Computation: Finite and Infinite Ma-
chines Prentice Hall Int., 1967.

J.-F. RaskinAn Introduction to Hybrid Automata
chapter Handbook of Networked and Embedded
Control Systems, pages 491-518. Springer, 2005.
A. Robin. Aux frontéres de la @cidabilié... Mas-
ter’s thesis, DEA Algorithmique, Paris, 2004.

S. Tripakis. Folk theorems on the determinization
and minimization of timed automata. Rroc. 1st
Int. Work. Formal Modeling and Analysis of Timed
Systems (FORMATS’'Q3yolume 2791 olLNCS
pages 182—188. Springer, 2003.

S. Tripakis and S. Yovine. Analysis of timed sys-
tems using time-abstracting bisimulatioRermal
Methods in System Desigh8(1):25-68, 2001.

