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1. Introduction

The reachability problem plays a central réle in Petri net theory, and has been studied in
numerous papers (see [5] for a comprehensive list of references). In the first part of this
paper we study it for the nets in which every transition needs exactly one token to occur.
Following [8], we call them communication-free nets, because no cooperation between places
is needed in order to fire a transition; every transition is activated by one single token, and the
tokens may flow freely through the net independently of each other. We obtain a structural
characterisation of the set of reachable markings of communication-free nets, and use it to
prove that the reachability problem for this class is NP-complete. Another consequence
of the characterisation is that the set of reachable markings of communication-free nets is
effectively semilinear (this same result has been proved for many other net classes, see again
[5] for a survey).

In the second part of the paper we apply the results of the first part to two different
problems in the areas of formal languages and process algebras.

The first problem concerns commutative grammars. Huynh proved in [13] the NP-
completeness of the uniform word problem for commutative context-free grammars. The
proof is rather involved (8 journal pages). It is easy to see that this problem coincides with
the reachability problem for communication-free nets. Therefore, our results lead immedi-
ately to a new and considerably shorter proof of Huynh’s result. In passing, we also derive a

*A former version of this paper appeared in the Proceedings of Fundamentals of Computer Theory
95, LNCS 965, 221-232. This work has been partially supported by the Teilprojekt A3 of the
Sonderforschungsbereich 342.
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new proof of Parikh’s theorem showing that the Parikh mapping of a context-free language
is a semilinear set [6].

The second problem concerns the decidability of process equivalences for infinite-state
systems (see [9, 5] for a survey of results in this area). Strong bisimulation equivalence [15]
has been shown to be decidable for the processes of Basic Process Algebra (BPA) (2, 10], and
the Basic Parallel Processes (BPPs) [3, 11}, a natural subset of Milner’s CCS. Since weak
bisimulation is more useful than strong bisimulation for verification problems, it is natural
to ask about the decidability of weak bisimulation for these classes. Using our results, we
prove that weak bisimulation is semidecidable for BPPs, which hopefully will be a first step
towards a decidability proof.

2. Petri nets and labelled Petri nets

For the purposes of this paper it is convenient to describe Petri nets using some notations
on monoids.

Given a finite alphabet V = {v,...,v,}, the symbols V*, V¥ denote the free monoid
and free commutative monoid generated by V, respectively. Given a word w of V* or V&,
and an element v of V', w(v) denotes the number of times that v appears in w.

A word w of V® will be represented in two different ways:

e as a multiset of elements of V' (for instance, {v;, v1,v;} is the word containing two copies
of vy and one of v,);

e as the vector (w(vy),...,w(v,)).

The context will indicate which representation is being used at each moment.

The Parikh mapping P: V* — V@ is defined by P(w) = (w(vy),...,w(vn)).

Given u,v € V® u + v denotes the concatenation of u and v, which corresponds to
addition of multisets or sum of vectors.

A net is a triple N = (5,7, W), where S is a finite set of places, T is a finite set of
transitions, and W: (S x T)U (T x S) — IN is a weight function. Graphically, places are
represented by circles, and transitions by boxes. If W{(z,y) > 0, then there is an arc from
x to y labeled by W(z,y) (when W(z,y) = 1, the arc is not labeled for clarity). We denote
by *z the set {y | W(y,z) > 0} and by z* the set {y | W(z,y) > 0}. For a set X, *X (X*)
denotes the union of *z (z*) for every element z of X. A path of N is a sequence z1z;...2,
of places and transitions such that W(z;,z;41) > 0 forevery 1 < ¢ <n—1. A circuitis a
path z322...2, such that W(z,,z,) > 0and z; # z; forevery ] <1< j <n.

An element of S? is called a marking of N. A marking M is graphically represented by
putting M (s) tokens (black dots) in each place s. A Petri net is a pair (N, M), where N is
a net and My is a marking of V called the ineitial marking.

A marking M of a net N = (S,T, W) enables a transition t if M(s) > W(s,t) for every
place s € *t. If t is enabled at M, then it can occur, and its occurrence leads to the marking
M', given by M'(s) = M(s) + W(t,s) — W(s,t) for every place s. This is denoted by
M - M'. Given a sequence o = tity...t, and markings M and M', M -2, M’ denotes
that there exist markings My, M,, ..., M,_; such that

MM 5 My My 5 M
We say that o is an occurrence sequence, and that M’ is reachable from M or reachable in
(N,M). M % (read “o is enabled at M") denotes that M —~ M’ for some marking M’.

The reachability problem for a class of Petri nets consists of deciding, given a Petri net
(N, My) of the class and a marking M of N, if M is reachable form M.

The following result is well known:
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Proposition 2.1. Let N = (5,7, W) be a net, and let M, M’ be markings of N. M ——» M’
implies
M'(s) = M(s)+ ) (W(t,s) = W(s,1)) - P(o)(t)

teT

for every place s. O

In Section 5 we shall consider labelled Petri nets. A labelled net is a fourtuple (S, T, W, 1},
where (S,T,W) is a net and I:T — Act is a labelling function on a set Aet of actions.
Markings, enabledness and ocurrence of transitions are defined as for unlabelled nets. If a is

an action, then M —%» M’ denotes that M —— M’ for some transition t such that I(t) = a.

3. Communication-free Petri nets

Definition 3.1. A net N = (S,T, W) is communication-free if |*t| =1 for every t € T, and
W(s,t) <1 for every s € S and every t € T. A Petri net (N, Mp) is communication-free if
N is communication-free .

We assume for convenience that communication-free nets contain no isolated places, i.e.,
that each place has some input transition or some output transition.

We provide a structural characterisation of the set {P(a) | My —} for a communication-
free Petri net (N, My). We need the notions of subnet generated by a set of transitions and
markable place.

Definition 3.2. Let N = (S,7,W) be a net and let U C T'. The subnet of N generated by
Uis (*UUU®,U,Wy), where Wy is the restriction of W to the pairs (z,y) such that z or y
is a transition of U. Given X € T®, the net Ny is defined as the subnet of N generated by
the set of transitions that appear in X.

Definition 3.3. Let N = (S,T, W) be a net and let M € §?® be a marking of N.

A place s € S is markable from M if M'(s) > 0 for some marking M’ € S® reachable in
(N, M).

Let N’ = (S',T',W') be a subnet of N generated by transitions.

A place s € S’ is markable from M in N'if M'(s) > 0 for some marking M’ € §'®
reachable in (N, Ms), where My is the projection of M onto S’

The following lemma states a basic property of communication-free nets.

Lemma 3.1. Let N be a communication-free net and let M be a marking of N. A place s
is markable from M iff N contains a path leading from some place s’ satisfying M(s') > 0
to s.

Proof:
In order to mark s we just let the transitions of the path occur. o

We are now ready to state the characterisation of the set {P(o) | My - 1.

Theorem 3.1. Let (N, M) be a communication-free Petri net with a set T of transitions,
and let X € T®. There exists a sequence o € T* such that My 2= and P(c) = X iff

(a) Mo(s)+ Z(W(t,s) —W(s,t)) - X(t) > 0 for every place s of N, and
teT
(b) every place of Nx is markable from My in Ny.
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Before proving the result we illustrate it with an example. Consider the communication-
free Petri net of Figure 1. There is no occurrence sequence with Parikh mapping X =
(1,0,0,1), because for the place s5 we have

Mo(ss) + > (W(t,s5) — W(ss, 1)) X(t) = —X(ty) = —1
teT

and therefore (a) does not hold. There is no occurrence sequence with Parikh mapping
X =(0,1,1,0) either. In this case, (a) holds, but not (b): the net Nx contains the transi-
tions ty, t3, and the places sq, s3, s4, S5, none of which is markable from M, in Nx. Finally,
the reader may check that (1,1,0,1) satisfies both (a) and (b), and in fact t; ¢; {4 is an
occurrence sequence having this Parikh mapping.

s4

Figure 1. Illustration of Theorem 3.1.

Proof:
(=) (a) follows from Proposition 2.1. To prove (b), let s be an arbitrary place of Nx. Since
Nx is generated by a set of transitions, s has an input or output transition ¢ such that
X(t) > 0. So t occurs in o, and therefore s is marked by at least one of the markings
reached during the occurrence of ¢. So s is markable from My in Ny.

(<) By induction on n = 3, . X(t).

If n =0then X =(0,...,0), and o can be taken as the empty sequence.

Assumen > 0. Let s be a place of Nx such that My(s) > 0 and s* # @ — the existence of
s follows from (b) and the fact that N contains no isolated places. We consider two cases,
according to whether s is contained in some circuit of Ny or not.

(1) Some circuit v of Nx contains s.

Let t; be the unique output transition of s contained in v. Let M; be the marking

reached by the occurrence of t;, i.e., My — My, and let X; € T'® be given by X;(t;) =
X(t1) — 1 and Xi(t) = X(¢) for every ¢t # t;. We claim that (N, M;) and X, satisfy (a)
and (b).

(a) is easy to prove. Let r be an arbitrary place of S. We have:
(r) + Y _(W(t,r) = W(r,1)- Xi(1)

teT
= {My(r) = Mo(r) + W(ts,r) = W(r,1,)}
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Mo(r) + W(ti,r) = W(rth) + »_(W(t,r) = W(r,1)) - Xa(t)
teT
= {Definition of X}
Mo(r) + Y _(W(t,r) — W(r,t))- X()
teT
> {Conditioi (a) holds for My and X'}
0

To prove (b), let 7 be an arbitrary place of Nx,. We consider two cases:

(1.1) Some path 7 of Nx leads from ¢; to r.
Let s; be an output place of ¢; contained in w. Every node of = with the possible
exception of ¢; belongs to Nx,. Therefore, the path leading from s; to r obtained
by removing ¢, from 7 is a path of Nx,. Since M;(s;) > 0, r is markable in Ny,
under M;.

(1.2) No path of Nx leads from ¢, to r.
Since r is markable from M, in Ny, some path = of Nx leads from a place s’
satisfying Mo(s") > 0 to r. This path does not contain any node of v, since otherwise
Nx would contain a path leading from t; to r. In particular, = contains neither s
nor t;. So M;(s") = My(s’) > 0, and moreover 7 is contained in Nx,, which implies
that r is markable from M; in Nx,.

Since (a) and (b) hold for (N, M;) and X, the induction hypothesis guarantees the

existence of a sequence o such that M 1, and P(o1) = Xi. Since My IR M, the
sequence ¢ = t; gy is enabled at My and satisfies P(o) = X.

(2) No circuit of Nx contains s.

The proof is similar to that of case (1), but obviously we can no longer choose ¢; as a
transition of s* contained in some circuit. Fortunately, we can just let ¢; be an arbitrary
transition of s°, and define M; and X; as above. We show that (N, M;) and X satisfy
(a) and (b).

Condition (a) is proved as in case (1).

To prove (b) let r be an arbitrary place of Nx,. By assumption r is markable from Mg
in Ny, and so Nx contains a path 7 leading from a place s satisfying Mo(s’) > 0 to
r. Without loss of generality we assume that s’ is the unique place of # marked under
M,. We consider three cases:

(2.1) ' # s.
Then 7 is also a path of Nx,, and we have M;(s") = My(s') > 0. So r is markable
from M; in Ny,.

(2.2) s' = s and t; is the successor of s in 7.
Let s; be the successor of ¢y in 7. We have M;(s;) > 0. Moreover, the path
obtained by removing s and ¢; from m, which leads from s; to r, is contained in
Nx,. So r is markable in Nx, under M;.

(2.3) s’ = s and t; is not the successor of s in 7.
This case needs to be divided into two:

(2.3.1) s has some input transition t; in Ny.
This transition has an input place s,, which also belongs to Nx. By assumption,
s2 1s markable from My in Nx, and so Nx contains a path 72 leading from some
place s3 satisfying Mp(s3) > 0 to s,. Since no circuit of Nx contains s, we have
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sy # 5 # s3, and so Mi(s3) = Mo(s3) > 0. Moreover, mat,m is a path of Ny,
which leads from s to 7. So r is markable from M; in Ny, .

(2.3.2) s has no input transitions in Nx.
Then s has no input transitions in Nx, too. Since the successor of s in 7 is
different from t;, it belongs to Nx,, and so we have

D (W(tys) = W(s, 1)) Xy (t) <0
teT
Since (a) holds for (N, M;) and X, we also have
Mi(s)+ ) (W(t,s) = W(s, 1)) Xi(t) 2 0
teT

From these two inequalities we derive M;(s) > 0. Since 7 is a path of Nx,, r is
markable from M; in Ny,.
Since (a) and (b) hold for (I, M;) and X,, we can apply the induction hypothesis as
in case (1). 0
We easily derive two results:
Theorem 3.2. The reachability problem for communication-free Petri nets is NP-complete.
Proof:
NP-hardness follows from a straightforward reduction from the satisfiability problem for
boolean formulae in conjunctive normal form. Given such a formula F, we construct a
communication-free Petri net (N, My) and a marking M such that F is satisfiable iff M is

reachable from My. Figure 2 shows the communication-free Petri net corresponding to the
formula Cy A C,, where

Ci=z1VTaVzy Co=T VI VT;

The marking M puts one token on the places C; and C;, and no tokens everywhere else.

Figure 2. Communication-free Petri net for the formula of the text. The formula is satisfi-

able iff the marking {C, C,} is reachable

To prove membership in NP, use the following nondeterministic algorithm, whose correct-
ness follows immediately from Theorem 3.1. Given a communication-free Petri net (N, My)
and a marking M, guess a set U of transitions of N. Check in polynomial time that every
place of Ny is markable from My in Ny. Construct the system of linear equations containing
for each place s the equation

M(s) = Mo(s) + >_(W(t,s) = W(s, 1)) - X(t)
teT
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Add the equation X(¢) = 0 for every t ¢ U and X(t) > 0 for every t € U. Check in
nondeterministic polynomial time that the enlarged system has an integer solution. This is
possible because Integer Linear Programming belongs to NP ([12], p. 339). o

For the second result we need to introduce semilinear sets. A subset X of a free commutative
monoid V?® is linear if

X={v+avi+...+aw, | ay,...,a, >0}

for some v, vy, ..., v, € V&, X is semilinearif it is a finite union of linear sets. X is effectively
semilinearif the generators v, vy,...,v, € V® of these linear sets can be effectively computed.
Notice that we can also speak of semilinear subsets of cartesian products of free commutative
monoids, because VlEB X V;B can be identified with V®, where V' is the disjoint union of ¥}
and V,. ~

Semilinear sets are closed under boolean operations and under projection onto V'¥, where
V' C V. Even further, they are exactly the sets expressible in Presburger arithmetic, the
first order theory of addition [7].

We can now formulate our second result:

Theorem 3.3. Let N = (5,7, W) be a communication-free Petri net, and let Reach be the
set of triples (M, X, M') € S% x T® x 5% such that M —— M’ for some sequence o satisfying
Plo] = X. The set Reach is effectively semilinear.

Proof:

Let M(S’) be the set of markings M € S® such that M(s) > 0iff s € ', and let X(T”) be
the set of elements X of T such that X(¢) > 0iff ¢ € T'. Define Reach(S’,T’) as the set
of trlples (M, X, M) of Reach such that M € M(S') and X € X(I”). Clearly, Reach is the
union over all 5 € S and T" C T of the sets Reach(S’,T’). Since the number of these sets
is finite, it suffices to prove that Reach(S’,T") is effectively semilinear for every S', T".

We apply Theorem 3.1. Since all markings of M(S’) mark exactly the same places, a
place is markable from a marking of M(S’) iff it is markable from every marking of M(S),
for instance from the marking Mg which puts one token on each place of S’ and no token
anywhere else. Let N7/ be the subnet of N generated by T’, and consider two cases:

e Every place of Nt/ is markable from Mg/ in N7..
Then, by Theorem 3.1., the set Reach(S’,T’) contains exactly the triples (M, X, M’)
satisfying the equation
M(s) = Mo(s) + > (W(t,s) = W(s, 1)) - X(t)
teT

for every place s. Since the set of integer solutions of a system of linear equations is an
effectively semilinear set, Reach(S’,T") is effectively semilinear.
e Some place of N7 is not markable from Mg in Np.

Then, by Theorem 3.1. we have Reach(S’,T') = @, which is an effectively linear set. O

By projection of the set Reach onto an appropriate submonoid we obtain as corollary
that the set of reachable markings of a communication-free Petri net is semilinear.

4. Context-free and commutative context-free gram-
mars

A context-free grammar is a 4-tuple G = (Non, Ter, A, P), where Non and Ter are disjoint
sets, called the sets of nonterminals and terminals, respectively, A is an element of Non called
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the ariom, and P is a finite subset of Non x (Non U Ter)*, called the set of productions. The
language L(G) of a context-free grammar G is defined as usual.

A commutative contezt-free grammar (ccf-grammar) is a 4-tuple G¢ = (Non, Ter, A, P¢),
where Non, Ter, and A are as above, and P° C Non x (Non U Ter)®. That is, free monoids
are replaced by free commutative monoids.

Given two commutative words «, 8 € (Non U Ter)®, o directly generates B, written
a— Bifa=ar+7, 8 =a+86, and (v,6) € P°. a generates 3 if @ — 3, where ——
denotes the reflexive and transitive closure of —.

The following ccf-grammar with Non = {A, B} and Ter = {a, b, c} generates the language
{{a,t*,c"} | n > 0}.

A— {a}
A— {b,b,A, B}
B —{c}

Given a ccf-grammar G° = (Non, Ter, A, P¢), we assign it a Petri net (S, T, W, M,). The
Petri net of Figure 3 is the one assigned to the grammar above.

t2

Figure 3. A Petri net

The reader can probably guess the definition of the Petri net from this example: S is
the set Non U Ter, i.e., there is a place for each terminal and for each nonterminal; T is
the set P°, i.e., there is a transition for each production. Given a place s and a transition
t = (X, w), the weight W(s,t) is 1 if s = X and 0 otherwise, whereas the weight W (¢, s) is
the number of times that s appears in the commutative word w. Finally, My is the marking
that puts one token on the axiom A and no tokens on the rest.

It follows directly from this description that commutative context-free grammars are
assigned communication-free Petri nets.

Every word w of (Non U Ter)® is a marking of the net (S,T,W). The application of a
production corresponds to the occurrence of a transition. In particular, the relation —— on
words of (Non U Ter)® corresponds to the reachability relation on markings.

The uniform word problem for commutative context-free grammars.  The uni-
form word problem for commutative grammars is the problem of deciding, given a grammar
G¢ = (Non, Ter, A, P°) and a commutative word w of terminals, if A — w. It follows
immediately from our description of the net assigned to G° that A —— w iff w is a reachable
marking of the Petri net translation of G°. So the uniform word problem for ccf-grammars
can be reduced in linear time to the reachability problem for communication-free Petri nets,
and vice versa. Therefore, we have a new proof for the following result of {13]:

Theorem 4.1. The uniform word problem for commutative context-free grammars is NP-
complete. a
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The connection between commutative context-free grammars and Petri nets was pointed
out in {13], but not used. The proof of membership in NP of [13] takes 8 journal pages, and
is rather involved. Qur proof is much shorter!, and it uses only standard techniques of net

theory.

Parikh’s Theorem As a second consequence of Theorem 3.1., we obtain a new proof of

Parikh’s Theorem.

Theorem 4.2. Let G = (Non, Ter, A, P) be a context-free grammar. The set {P(w) €
Ter® | w € L(G)} is semilinear.

Proof:
Let G¢ = (Non, Ter, A, P°) be the commutative grammar obtained after replacing the pro-
ductions of G by their commutative versions. We have:

e if w € L(G), then P(w) € L(G°);
o if w € L(G°), then there exists w’ € L(G) such that w = P(w’).

Let (IV, Mp) be the Petri net assigned to G°. We have P(w) € L(G°) iff P(w), seen as a
marking of N, is reachable from My. Therefore, P(L(G)) is the set of reachable markings of
(N, M) that only put tokens in the places corresponding to terminals. This latter condition
can be expressed using linear equations. The result follows now from Theorem 3.3. 0

‘e do not claim this proof to be simpler than Parikh’s proof, which is rather straightforward,
and takes little more than 3 pages in [6]. However, it shows still another connection between
Petri nets and formal language theory.

5. Weak bisimilarity in Basic Parallel Processes
We show that communication-free Petri nets are also strongly related to Basic Parallel Pro-

cesses (BPPs), a subset of CCS.
Basic Parallel Process expressions are generated by the following grammar:

E:x=0 (inaction)
| X (process variable)
| a£  (action prefix)
| E+ E (choice)
| E | E (merge)

where a is an element of a set Act of actions containing a distinguished silent action 7. A
BPP is a finite family of recursive equations

E={X.Y¥E|1<i<n}

where the X; are distinct and the E; are BPP expressions at most containing the variables
{X1,...,X,}. We further assume that every variable occurrence in the E; is guarded, that
is, appears within the scope of an action prefix. The variable X} is singled out as the leading

variable and X def Ey is the leading equation.

!The comparison of the lengths is fair, because both proofs rely on the NP-completeness of Integer Linear
Programming,.
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Any BPP determines a labelled transition system, whose transition relations — are the
least relations satisfying the following rules:

a ESFE E-SFE
el — F 3 3
E+F —E E|F—E|F
E_u.;E’(Xd_erE) -2 F2
X -5 E E+F -2 F E”F—aeEllFl

The states of the transition system are the BPP expressions £ such that X; — E for some
string w of actions.

Let £ and F be two BPPs with disjoint sets of variables. Consider the labelled transition
system obtained by putting the transition systems of £ and F side by side. A binary relation

R between the states of this labelled transition system is a strong bisimulation if whenever
ERF then, for each a € Act,

o if £ % E' then F -2 F’ for some F' with E'RF",
o if F %5 F' then E - E' for some E’ with F'RE";

The relation R is a weak bisimulation if whenever ERF then, for each a € Act \ {7},

o if E %5 E' then F == F’ for some F' with E'RF";
o if F X F’ then E == E' for some E' with F'RE’;

and, moreover

o if E -7 F' then F == F' for some F' with E'RF",
o if F -5 F' then E == E' for some E’ with F'RE’,

T

where == (—5)* -5 (—)*, and === ()~

£ and F are strongly (weakly) bisimilar if their leading variables are related by some
strong (weak) bisimulation.

A BPP is in standard form if every expression E; on the right hand side of an equation is
of the form aya;1 + ... + a,an, where for each 7 the expression «; is a merge of variables. It
is shown in [1] that every BPP is strongly bisimilar to a BPP in standard form, which can
be effectively (and easily) constructed. Therefore, the problem of deciding strong or weak
bisimilarity for BPPs can be reduced to the same problem for BPPs in standard form.

Every BPP in standard form can be translated into a labelled communication-free Petri
net. The translation is graphically illustrated by means of an example in Figure 4. The net
has a place for each variable X;. For each subexpression a;a; in the defining equation of
X;, a transition is added having the place X; in its preset, and the variables that appear in
a; in its postset. If a variable appears n times in «;, then the arc leading to it is given the
weight n. The transition is labelled by a;.

X=a(XIY)+b(YIY)

b(X1Y)

Figure 4. A BPP and its corresponding Petri net
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It follows easily from the rules of the operational semantics that every state £ of a

BPP {X; “ E; |1 <i<n} in standard form can be written (up to commutativity and

associativity of parallel composition) as
XXX
where X' = X || ... || X. A state of this form corresponds to the marking XpXg.. X
N’

of the labelled Petri net assigned to £, and vice versa. Moreover, if Mg and Mg are the
markings corresponding to the states E and E', then E =5 E'iff Mg — Mg So the
transition system of a BPP in standard form and the reachability graph of its labelled Petri
net are isomorphic. It follows that two BPPs are strongly bisimilar iff their correspond-
ing labelled communication-free Petri nets are strongly bisimilar, where strong (and weak)
bisimilarity for labelled Petri nets is defined as for BPPs, just replacing the states of the
labelled transition systems by markings, and the relations —— between BPP expressions by
the corresponding reachability relations between markings.

5.1. Weak bisimilarity is semidecidable for BPPs

We give a positive test for weak bisimilarity in labelled communication-free Petri nets, which
immediately leads to a positive test for BPPs. The test is very similar to the positive test
for strong bisimularity presented by Janéar in Section 4.2 of {14]. We do not repeat here
Janéars argumentation in detail, just sketch the main points.

The test of [14] works for the class of nets N satisfying the following property?: the largest
strong bisimulation ~ between markings of N is a semilinear subset of 5% x S, where S is
the set of places of N.

The existence of the test is a consequence of the following three facts, which either follow
immediately from the definitions, or are given very simple proofs in [14]:

(1) It suffices to give a positive test for strong bisimilarity of pairs of labelled Petri nets
having the same underlying net, i.e., Petri nets (N, Moq;), (N, My,) differing only in
their initial markings.

(2) There exists an effective enumeration of the semilinear relations on the markings of a net.
Therefore, if we can decide whether a given semilinear relation is a strong bisimulation,
then we have a positive test for strong bisimilarity: the semilinear relations containing
the pair of markings to be tested are examined in turn, and a “yes” answer is given if
one of them is a strong bisimulation.

(3) Let R be an arbitrary semilinear relation on the markings of a net. The statement “R
is a strong bisimulation” can be encoded into Presburger arithmetic. Since Presburger
arithmetic has a decidable truth problem, it is decidable whether a given semilinear
relation is a strong bisimulation.

For the test of weak bisimilarity we follow the same line of reasoning. Let N = (S,T, W)
be an arbitrary communication-free net. First, we show that communication-free nets satisfy
Jancar’s condition:

Theorem 5.1. Let N be a labelled communication-free net. The largest weak bisimulation
~ between markings of N is a semilinear subset of S x 5@,

Proof:
It is well-known that = is an equivalence relation (for arbitrary transition systems, not only
those generated by communication-free nets). For N it is also a congruence, i.e., for every

2 Actually, a sligtly more general class.
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My, My, M € §% My &~ M, implies M; + M =~ M, + M. To prove it, it suffices to observe
that the relation

R = {(M]+ M, M, + M)

M] ~ M, M ¢ S%}

is a weak bisimulation. A result by Eilenberg and Schiitzenberger, quoted in [14] as Theorem
4.10, shows that congruences over a finitely generated commutative monoid are semilinear.
So & is a semilinear subset of S® x S9. a

Now, we examine the facts (1) to (3) above. Fact (1) also holds for weak bisimulation (just
use the same easy proof of [14]), and Fact (2) is a general statement about semilinear sets.
So it remains to extend Fact (3), i.e., to prove that the statement “R is a weak bisimulation”
can be encoded into Presburger arithmetic.

An inspection of the definition of weak bisimulation shows that the only problem is the
encoding of the statement M == M’. More precisely, we have to show that there exists a
formula of Presburger arithmetic, with vectors of free variables M and M’, which is true of
two markings M and M’ iff M == M’

At this point we recall Ginsburg and Spanier’s result [7]: a set of integers can be encoded
into Presburger arithmetic (i.e., there exists formula with a free integer variable which is
true exactly of the integers in the set) iff it is semilinear. So it suffices to prove the following
result:

Theorem 5.2. Let N be a labelled communication-free net. The set {(M,M’) | M =
M'}, where M and M’ are markings of N, is semilinear.

Proof:

The set {(M,M')| M == M'} is the projection onto the first and third components of the
intersection of two sets of triples: the set Reach, which is semilinear by Theorem 3.3., and
the set of triples (M, X, M') satisfying the following two conditions:

e X(¢) =0 for every t such that {({) ¢ {a,T}

(X contains only transitions labelled by @ and 7, and

o« > X(t)=1
tel—1(a)
(X contains exactly one transition labelled by «a)

It is immediate to prove that this latter set of triples is also semilinear. Use now that the
semilinear sets are closed under intersection and projection [7]. a

Janéar also presents in [14] a negative test for strong bisimilarity in arbitrary Petri nets. The
test follows again from a simple observation: Petri nets have image-finite labelled transition
systems, i.e., a marking has only a finite number of immediate successors. Therefore, the
well-known result ~= |J_ ., ~n, which holds for arbitrary image-finite systems, can be
applied (~, is bisimilarity up to n-steps [15]). The relations ~, are all decidable, because
they only require to examine the transition system of a Petri net up to depth n.
Unfortunately, the test cannot be extended to weak bisimilarity, not even for communi-
cation-free Petri nets or BPPs, because the equation ~= |, 5, = does not hold. Consider
the following two BPPs with leading variables X and Y (this example is due to Hirshfeld):

X=a0+7(X|b0) Y =aZ+a0+7(Y | b0)
Z=bZ

We have X =2, Y for every n > 0, but X % Y.
The existence of a negative test for weak bisimilarity of BPPs is still open.
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6. Conclusions

We have solved the reachability problem for communication-free Petri nets using well-known
techniques of net theory. We have then shown that this solution has several applications to
context-free and commutative context-free grammars, and to Basic Parallel Processes. More
precisely, and in order of increasing interest, we have obtained a new proof of Parikh’s theo-
rem, a simpler proof of the NP-completeness of the uniform word problem for commutative
context-free grammars, and a positive test for weak bisimularity of Basic Parallel Processes.
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