Computer aided verification

Lecture 2: LTL



Def.. Kripke structure M = (S, Sinit, —, L)
— Sinit € S nonempty set of initial states
— —- C § xS transition relation
— L:S — P(P), P -propositional variables (atomic

properties)

Often we assume that — Is total: no deadlock!

Vse S. 35’ € S. s — ¢

—n. 2/32



— N, private section

— T attempt to enter critical section

— (; critical section

Proc: -

Proc: -

Proc; ‘ Procs

wantsi:=true; turn:=2 —wantsoVturn=1

N, Ch

13

\/

wantsji:=false

wantsg:=true; turn:=1 —wantsi Vturn=2

Ny 15

\/

wantso:=false

&

—p. 3/32



wantsi:=true; turn:=2 —wantsoVturn=1

N1 Tl

wantsi:=false

—n. 4/32






{p,q}

—
-

{r}

{q}

{p,q}

{p}
VN
{p,q} {q}
l S\
o 1A q) {q}

MUV
VAR



Def.: Path (run) is a maximal sequence

II = So —7>S1 —> SS9 — ...

Notation: |II| — number of states in II

LTL says about paths. In a Kripke structure M, formula ¢ €
LTL is interpreted as follows:
for every path such that sy € Sinit, ¢ holds.

Notation:. ME ¢, IIFE®

—n. 7/32



Def.. LTL (Linear Temporal Logic)

¢ = p| 20| diAg | X | ¢1Ugy
OO
X (D s (7)o (D -
e OO OO —O— -

Przyktad:

—starts U key, —starts U —starts Akey



Pytanie. How to write

awsze s (DDA
kiedys ¢ @%@%@@%



Pytanie. How to write

awsze s (DDA
kiedys ¢ @%@%@@%

Notation:
Fo = trueUo
ng p— —IF—lgb

G1V P2 = (21 A )



safety liveness possibility

?

—n. 10/32



- + + L]
L] - d ]
- . 1 '

safety liveness possibility
2
G¢ F ¢ G ¢
-G ¢

G —(cry A cry) F granted G —occ

—n. 10/32



Semantics: II = 59— 58— 50— ...

I[TEp iff pe L(so)

ME—¢ iff ...

TE ¢ A gy iff ...

IIF Xo¢ iff ITI'E ¢, whereIl' = s; — s;01 — Siza —> ...

IE ¢ Uy iff 3i<|II. I E ¢y A Vj <i. IV E ¢y

—n. 11/32



Infinitely often ¢ ?
almost always ¢ ?
weak” U: o1 W ¢, (¢ not necessarily) ?

If req then granted In future ?

—n. 12/32



Infinitely often ¢ GFo
almost always ¢ FGo
weak” ¢; U ¢y . ¢ Not necessarily Gor Vo U,
If req then granted In future

G (req = X Fgranted)
fairness: if stubbornly req then granted
weak”. stubbornly = almost always ?

,strong”: stubbornly = infinitely often ?

—n. 13/32



Infinitely often ¢ GFo
almost always ¢ FGo
weak” ¢; U ¢y . ¢ Not necessarily Gor Vo U,
If req then granted In future

G (req = X Fgranted)
fairness: if stubbornly req then granted
weak”: stubbornly = alm. always F Greq =— Fgranted

,strong”: stubbornly = inf. often G Freq =— Fgranted

—n. 14/32



Fairness

(if stubbornly req then granted)

Variant 1
Jweak”. stubbornly = alm. always F Greq = Fgranted
,strong”: stubbornly = inf. often G Freq =— Fgranted
Variant 2
,weak”

FGreq = G Fgranted = G(F Greq = Fgranted)

,strong”:
G Freq = G Fgranted = G(G Freq = Fgranted)

—n. 15/32



De Morgane laws

1V Py = —(mP1 A o) ? = X9
qu — —IFﬂgb



G1V P2 = —(mP1 A o) Xop = 2 X9
G¢ — —uF—|¢

(= U —p)



G1V P2 = —(mP1 A o) Xop = 2 X9
G¢ — —|F—|¢

oRY = =(=9U )

o U -y H%H@%@% ‘.

Mk ¢Ry iff ?



G1V P2 = —(mP1 A o) Xop = 2 X9
G¢ — —|F—|¢

oRY = =(=9U )

U %%H@%@% X

[IE¢Ry iff Vi<l|I]. (Vj<i.IlVE —¢) = II'E



o U 1) %%%@%@% ‘.

PRy = (= U—)

ME¢Ry iff Vi <|T|. (Vj<i.llVE-¢) = T Eq

e DO @— () O
D@D

ORY = ~(-pU—) = YU AV G = W (A Q)



o U 1) %%%@%@% ‘.

PRy = (= U—)

ME¢Ry iff Vi <|T|. (Vj<i.llVE-¢) = T Eq

e DO @— () O
D@D

ORY = ~(-pU—) = YU AV G = W (A Q)

— U 1 R as fixed points ...



(1 A p2) = 71 V gy
~Go = Fo

X = X-¢



Pushing negation down

(1 A P2) = =1V gy

~F¢ = G—¢
~G¢ = Fg
“X¢ = X-¢
—(pUy) = (¢ N Y)W (=g A 1) why not in this way?

~(eUv) = ~¢R—Y



(1) if b then some a was ?
(1’) ...strictly beforehand ... ?
(2) every b is proceeded by a that appears after last b,

If any before ?

(3) alternating blocks of a i b (,relay”) ?

—n. 22/32



(1) if b then some a was Fb — (-bUa

)
)
(1’) ... strictly beforehand ... Fb — (—-bU(a N b))
= bW (aAN-b) = aR-b = SPr(a,b)
(2) every b Is proceeded by a that appears after last b,
If any before Pr(a,b) N G(b = X Pr(a,b))
(3) alternating blocks a 1 b (,,relay”)

G((a = aW(—aAb) AN (b = ...))

—n. 23/32



(1) on every path a state appears such that
INn every successor state
(on every path) a holds

(1’) on some path ...

(2) on every path a state appears such that

In every following state a holds

(pictures...)

—n. 24/32



(1) on every path a state appears such that
IN every successor FXa ?
(on every path) a holds
(1') on some path ... ?
(2) on every path a state appears such that
In every following state a holds FGa ?

too much!

OL ﬁa—>ao F F Ga

—n. 25/32



(3) even(a): on every even position a ?
(3’) oddeven(a): on every even position a
and on every odd position —a
G((a = X—-a) AN(—a = Xa)
(4) from every reachable state some initial state is

reachable ?

—n. 26/32



Tw.: LTL =LTL(X, U) is more expressive than LTL(X, F)
Tw.: LTL=FO( <, +1)

Thm: Past temporal connectives:
U—l F —1 G —1

do not increase expressive power.

Thm: LTL(F, G, F~!, G1) =2

—n. 27/32



Def.. Property = subset of P(P)“

Safety properties X

negative decision always after finitely many steps

—n. 28/32



Def.. Property = subset of P(P)“

Safety properties X
negative decision always after finitely many steps

If 7 ¢ X then there is a prefix p < « such that p < #’ implies
& X

Liveness properties X
negative decision never after finitely many steps

forevery pexists m > pt. zer € X

—n. 28/32



Model Checking PSPACE-complete
— Input: M, ¢

— question: M E ¢?

Satisfiability PSPACE-complete

— Input: ¢
— question: dM. M E ¢?



Complexity

Complexity of model checking:

M| - 70(|¢l)

20(9]) OK
M|  too much!



(1) M — Ay
(2) ¢ — A, LTL — w-automata
(3) L(Ay x A_y) =07

tak - ME ¢

nie — —=(M F ¢), counterexample = a path in M

—n. 31/32



Algorithm

(1) M — Ay

(2) ¢ — A LTL — w-automata

(3) L(.AM X .Aﬁqb) = ()7
tak — ME ¢

nie — —(M E ¢), counterexample = a path in M

6= G(p — XFq) Ay = Hﬁﬁ

—n. 32/32



	Kripke structure
	Abstraction:  program  $mapsto $  Kripke structure
	Abstraction:  program  $mapsto $  Kripke structure
	Kripke structure  $mapsto $  tree
	Kripke structure  $mapsto $  tree
	Paths
	LTL
	LTL - always, finally
	LTL - always, finally

	Typical properties
	Typical properties

	LTL -- semantics
	Example properties
	Example properties
	Example properties
	Fairness
	De Morgane laws
	De Morgane laws
	De Morgane laws
	De Morgane laws
	$U $ versus $RR $
	$U $ versus $RR $

	Pushing negation down
	Pushing negation down

	Write a formula ldots 
	Write a formula ldots 
	What is inexpressible?
	What is inexpressible?
	What is inexpressible? (cont.)
	Expressivity
	Classification of properties
	Classification of properties

	Decision problems
	Complexity
	Algorithm
	Algorithm

