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Abstract6

As it has been recently shown, Parikh images of languages of nondeterministic one-register automata7

are rational (but not semilinear in general), but it is still open if the property extends to all register8

automata. We identify a subclass of nondeterministic register automata, called hierarchical register9

automata (HRA), with the following two properties: every rational language is recognised by a HRA;10

and Parikh image of the language of every HRA is rational. In consequence, these two properties11

make HRA an automata-theoretic characterisation of languages of nondeterministic register automata12

with rational Parikh images.13
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1 Introduction19

Register automata, also know as finite-memory automata, introduced over 25 years ago by20

Francez and Kaminski [14], are nondeterministic finite-state devices recognising languages21

over infinite alphabets. They are equipped with a finite number of registers that can store22

data values (atoms) from an infinite data domain. A register automaton inputs a string23

of data values (a data word) and compares each consecutive input to its registers; based24

on this comparison and on the current control state, it chooses a next control state and25

possibly stores the input value in one of its registers. The only allowed comparisons of data26

values considered in this paper are equality and inequaltiy tests. An automaton can also27

guess a fresh data value different from the ones seen currently in the input or stored in28

registers, and store it in some register (we thus consider nondeterministic register automata29

with guessing [24]). Likewise one may define register context-free grammars [6], [1, Sect.5].30

Register automata lack most of the good properties of finite automata, like determinisation31

or closure properties. In particular, no satisfactory characterisation in terms of rational32

(regular) expressions is known. Indeed, all known generalisations of Kleene’s theorem for33

register automata either apply to a restricted subclass of the model [17], or introduce an34

involved syntax significantly extending the concept of rational expressions [19, 18], or rely on35

a richer algebraic structure than the free monoid of data words [3].36

Register automata are expressively equivalent to orbit-finite automata [5, 6], a natural37

extension of finite automata where input alphabets and state spaces are possibly infinite, but38

finite up to permutation of the data domain (such sets are called orbit-finite). Along these39

lines, we focus on a natural extension of rational expressions, which differ from the classical40

ones just by allowing for orbit-finite unions instead of only finite ones. In other words, we41
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27:2 Parikh images of register automata

consider the class of rational languages, defined as the smallest class of languages containing42

all single-word languages, and closed under concatenation, star, and orbit-finite unions. In43

particular, the class contains the empty language, all finite and all orbit-finite languages.44

Languages of register automata are not rational in general, even in case of deterministic45

one-register automata. Kleene theorem may be however recovered, at least in case of automata46

with one register, when commutative images (Parikh images) are considered: the language of47

every one-register automaton is Parikh-equivalent to (i.e., has the same Parikh image as) a48

rational language [16]. An analogous result holds for one-register context-free grammars [16].49

50

▶ Example 1. Fix the data domain Atoms = {0, 1, 2, . . .}. As a working example we will51

use the language L1 consisting of all nonempty words over Atoms of length divisible by 3,52

where every three consecutive letters are pairwise different (we write ̸=(a, b, c) as a shorthand53

for a ̸= b ̸= c ̸= a, to concisely express pairwise inequality of three atoms):54

L1 = {a1a2 . . . a3n ∈ Atoms∗ : n ≥ 0, ̸=(a1, a2, a3), ̸=(a2, a3, a4), ̸=(a3, a4, a5), . . .}.55

The language is recognised by a deterministic two-register automaton but it is not rational56

(cf. Section 3). It is however Parikh-equivalent to a larger language L2, where the pairwise57

inequality constraint is imposed at consecutive disjoint triples of positions only:58

L2 = {a1a2 . . . a3n ∈ Atoms∗ : n ≥ 0, ̸=(a1, a2, a3), ̸=(a4, a5, a6), . . .},59

which is defined by the following rational (regular) expression60

L2 =
( ⋃

a,b,c∈Atoms, ̸=(a,b,c)

abc
)∗

(1)61

62

and is thus rational. The formal definition of rational languages will be given in Section 3;63

here we note that the union is indexed by the set Atoms(3) = {⟨abc⟩ ∈ Atoms3 : ̸=(a, b, c)}64

of all triples of pairwise-distinct atoms, which is infinite but orbit-finite, i.e., finite up to65

permutations of Atoms (in fact, it is one orbit).66

The language L1 is Parikh-equivalent to L2 as every w = a1a2 . . . a3n ∈ L2 can be67

transformed, by swapping letters, to a word in w′ ∈ L1.68

Indeed, consider the first two triples (a1, a2, a3) and (a4, a5, a6) in w. We keep the first69

triple in w′. For the fourth position of w′, we choose a letter from {a4, a5, a6} − {a2, a3}, say70

a6. For the fifth position we choose {a4, a5} − {a3}, say a4. We note that both the choices71

are possible due to pigeon-hole principle. Finally, at the sixth position of w′ we place the72

remaining letter a5. Then we consider next two triples, (a5, a4, a6) and (a7, a8, a9), and treat73

them analogously by swapping a7, a8 and a9 accordingly. Continuing in this way we finally74

arrive at a word in w′ ∈ L1. ◀75

Contribution. We contribute to understanding of expressive power of nondeterministic76

register automata (NRA), by investigating sets of data vectors obtainable as commutative77

images (Parikh images) of their languages. Parikh images of rational languages we call78

rational as well. Here are our contributions:79

(1) We identify a syntactic subclass of NRA, called hierarchical register automata (HRA).80

(2) We show that every rational language is recognised by a HRA.81

(3) We show that Parikh images of HRA languages are rational (as a set of data vectors).82

(4) As a corollary, we deduce that an NRA has rational Parikh image if, and only if it is83

Parikh-equivalent to some HRA (with, possibly, more registers).84
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These results are a step towards the ultimate (but still unreachable) goal: generalise85

the main result of [16], namely rationality of Parikh images of nondeterministic 1-register86

automata, to all NRA. Point (3) is an extension from 1-NRA to all HRA. In consequence of87

(4), the ultimate goal can be equivalently achieved by proving that every nondeterministic88

register automaton is Parikh-equivalent to a hierarchical one. Finally, we believe that the89

subclass of HRA (1) is interesting on its own, as it seems to be equally well-behaved as90

one-register automata.91

Related research. Register automata have been intensively studied with respect to92

their foundational properties [14, 23, 17, 21]. Following the seminal paper of Francez and93

Kaminski [14], subsequent extensions of the model allow for comparing data values with94

respect to some fixed relations such as a total order, or introduce alternation, variations95

on the allowed form of nondeterminism, etc. The model is well known to satisfy almost no96

semantic equivalences that hold for classical finite automata, in particular register automata97

admit no satisfactory characterizations in terms of regular expressions [19, 18] or logic [21, 10].98

There just are few positive results: simulation of two-way nondeterministic automata by99

one-way alternating automata with guessing [1]; Myhill-Nerode-style characterisation of100

languages of deterministic automata [15, 5, 6]; and the well-behaved class of languages101

definable by orbit-finite monoids [2], characterised in terms of logic [9] and a syntactic102

subclass of deterministic register automata [8]. Register automata have been also intensively103

studied with respect to their applications to XML databases and logics [12, 21, 10, 24].104

Other extensions of finite-state machines to infinite alphabets include: abstract refor-105

mulation or register automata, known as orbit-finite automata, or nominal automata, or106

automata over atoms) [5, 6, 1]; symbolic automata [11]; pebble automata [20]; and data107

automata [4, 7] (the list is illustrative).108

2 Orbit-finite sets109

Sets with atoms. Our definitions rely on basic notions and results of the theory of sets110

with atoms [1], also known as nominal sets [22]. In this section we recall, following [16],111

what is necessary for understanding of our arguments. This paper is a part of a uniform112

abstract approach to register automata in the realm of orbit-finite sets with atoms, developed113

in [5, 6, 1].114

Fix a countably infinite set Atoms, whose elements we call atoms. Informally speaking, a115

set with atoms is a set that can have atoms, or other sets with atoms, as elements. Formally,116

we define the universe of sets with atoms by a suitably adapted cumulative hierarchy of117

sets, by transfinite induction: the only set of rank 0 is the empty set; and for a cardinal γ,118

a set of rank γ may contain, as elements, sets of rank smaller than γ as well as atoms. In119

particular, nonempty subsets X ⊆ Atoms have rank 1. Sets containing no atoms, whose120

elements contain no atoms, and so on, we call pure (or atomless).121

Denote by Perm the group of all permutations of Atoms. Atom permutations π :122

Atoms → Atoms act on sets with atoms by consistently renaming all atoms in a given set.123

Formally, by another transfinite induction we define π(X) = {π(x) : x ∈ X}. Via standard124

set-theoretic encodings of pairs or finite sequences we obtain, in particular, the pointwise125

action on pairs π(x, y) = (π(x), π(y)), and likewise on finite sequences. For pure sets X,126

π(X) = X for every π ∈ Perm.127

We restrict to sets with atoms that only depend on finitely many atoms, in the following128

sense. A support of x is any set S ⊆ Atoms such that the following implication holds for129

all π ∈ Perm: if π(s) = s for all s ∈ S, then π(x) = x. An element (or set) x is finitely130

supported if it has some finite support; in this case x has the least support, denoted supp(x),131
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27:4 Parikh images of register automata

called the support of x (cf. [1, Sect. 6]), [22, Prop. 2.3], [6, Cor. 9.4]). Sets supported by ∅ we132

call equivariant. For instance, given a, b ∈ Atoms, the support of the set133

Lab = {a1a2 . . . an ∈ Atoms∗ : n ≥ 2, a1 ̸= a, an = b}134

is {a, b}; every pure set is equivariant; the support of a sequence ⟨a1 . . . an⟩ ∈ Atoms∗,135

encoded as a set in a standard way, is the set of atoms {a1, . . . , an} appearing in it; and the136

support of a function f : Atoms → N such that dom(f) = {a ∈ Atoms : f(a) > 0} is finite,137

is exactly dom(f).138

From now on, we shall only consider sets with atoms that are hereditarily finitely supported139

(called briefly legal), i.e., ones that are finitely supported, whose every element is finitely140

supported, and so on.141

Orbit-finite sets. Two (elements of) sets with atoms x, y are in the same orbit if π(x) = y142

for some π ∈ Perm. This equivalence relation splits every set with atoms X into equivalence143

classes, which we call orbits in X. A (legal) set is orbit-finite if it splits into finitely many144

orbits. Examples of orbit-finite sets are: Atoms (1 orbit); Atoms−{a} for some a ∈ Atoms145

(1 orbit); Atoms2 (2 orbits: diagonal {⟨a, b⟩ : a = b} and non-diagonal {⟨a, b⟩ : a ̸= b});146

Atoms3 (5 orbits, corresponding to equality types of triples); {1, . . . , n} × Atoms (n orbits,147

as π(i) = i for every i ∈ N and π ∈ Perm, since {1, . . . , n} is pure); the set of non-repeating148

n-tuples of atoms Atoms(n) = {a1 . . . an ∈ Atomsn : ai ̸= aj for every 1 ≤ i < j ≤ n} (1149

orbit). On the other hand, the set Atoms∗ is an example of an orbit-infinite set.150

A finer equivalence relation is defined using S-atom permutations, i.e., permutations that151

fix a finite set S ⊆ Atoms. Each orbit splits into finitely many S-orbits (cf. [1, Sect. 3.2]).152

For instance, for every a ∈ Atoms, the set Atoms2 splits into four {a}-orbits: {⟨a, a⟩},153

{⟨a, b⟩ : b ̸= a}, {⟨b, a⟩ : b ̸= a}, {⟨b, c⟩ : b, c ̸= a}.154

Given a family (Xi)i∈I of sets indexed by an orbit-finite set I, the union
⋃

i∈I Xi we call155

orbit-finite union of sets Xi. (Formally, not only each set Xi is assumed to be legal, but also156

the indexing function i 7→ Xi.) As an example, consider (Lab)b∈Atoms. The indexing function157

b 7→ Lab is supported by {a}, and so is the union:158 ⋃
b∈Atoms

Lab = {a1a2 . . . an ∈ Atoms∗ : n ≥ 2, a1 ̸= a}.159

Orbit-finite sets are closed under Cartesian products, subsets, and orbit-finite unions: if each160

of Xi is orbit-finite, their union
⋃

i∈I Xi is orbit-finite too [1, Sect. 3].161

3 Rational sets162

In this section we recall the definition of rational sets of data words and data vectors163

introduced in [16], and state and prove its useful closure properties.164

Data words and vectors. By a finite multiset over a set (an alphabet) Σ we mean any165

function v : Σ → N such that v(α) = 0 for all α ∈ Σ except finitely many. We define the166

domain of v as dom(v) = {α ∈ Σ : v(α) > 0}, and its size as |v| =
∑

α∈dom(v) v(α) (the167

same notation is used for the size of a set, and for the length of a word). The Parikh image168

(commutative image) of a word w ∈ Σ∗ is the multiset Par(w) : Σ → N, where Par(w)(α) is169

the number of appearances of a letter α ∈ Σ in w. For a language L ⊆ Σ∗, its Parikh image170

is Par(L) = {Par(w) : w ∈ L}. Two languages L,L′ ⊆ Σ∗ are Parikh-equivalent if they171

have the same Parikh images: Par(L) = Par(L′). Overloading the notation, we write |w|172

for the length of a word w, and hence |Par(w)| = |w|. We order multisets pointwise: v ⊑ v′
173
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if v(α) ≤ v′(α) for all α ∈ Σ. The zero (empty) multiset 0 satisfies 0(α) = 0 for every α ∈ Σ.174

Thus 0 = Par(ε). A singleton {α} that maps α to 1 and all other letters to 0, is written as175

α, omitting brackets {}. Addition of multisets is pointwise: (v + v′)(α) = v(α) + v′(α) for176

every α ∈ Σ; likewise subtraction v − v′, for v′ ⊑ v.177

When Σ is an orbit-finite alphabet, words w ∈ Σ∗ are traditionally called data words,178

languages L ⊆ Σ∗ are called data languages, and finite multisets v : Σ → N are called data179

vectors.180

Orbit-finite unions. Consider a family of sets X . We say that X is closed under orbit-181

finite unions if for every family (Xi)i∈I of sets Xi ∈ X indexed by an orbit-finite set I, the182

union
⋃

i∈I Xi belongs to X . We instantiate below this abstract definition to families X of183

sets of data words and data vectors.184

Rational data languages. We consider data languages over a fixed orbit-finite alphabet185

Σ. As usual, we define concatenation of two data languages LL′ = {ww′ : w ∈ L,w′ ∈ L′},186

and the Kleene star (iteration): L∗ = {w1 . . . wn : n ≥ 0, w1, . . . , wn ∈ L}. Let rational data187

languages be the smallest class of data languages that contains that contains {ε}, all singleton188

languages {σ} containing a single one-letter word σ ∈ Σ, and is closed under concatenation,189

iteration, and orbit-finite unions. In particular the empty language, all finite languages and190

all orbit-finite ones are rational. For finite Σ we obtain the classical rational (regular) sets.191

As expected, without the Kleene star we obtain exactly sets of words of bounded length, or192

equivalently (cf. [16, Lemma 1]) orbit-finite languages.193

When convenient, we may speak of a rational expression, by which we mean a formal194

derivation of a rational language according to the closure rules listed above, in the form of195

well-founded tree. Concretely, a derivation of
⋃

i∈I Li is the function mapping every i ∈ I to196

a derivation of Li (a node in a tree whose children are labeled by I), a derivation of LL′ is a197

pair of derivations of L and L′ (a binary node), a derivation of L∗ is just a derivation of L198

(a unary node), and a derivation of {ε} or {σ} is a leaf node.199

▶ Example 2. Continuing Example 1, the language L2 is rational, as it can be presented by200

a rational expression:201

L2 =
( ⋃

a,b,c∈Atoms, ̸=(a,b,c)

{a}{b}{c}
)∗
.202

For readability, in the sequel we omit brackets {} when denoting singletons, as in (1). On the203

other hand, one easily shows that the language L1 is not rational (e.g., using Proposition 12204

from Section 4 and Theorem 13 from Section 5).205

Rational sets of data vectors. We consider sets of data vectors over a fixed orbit-finite206

alphabet Σ. Let addition of two sets X,Y of data vectors be defined by Minkowski sum207

X + Y = {x+ y : x ∈ X, y ∈ Y },208

and let the additive star X∗ contain all finite sums of elements of X:209

X∗ = {x1 + . . .+ xn : n ≥ 0, x1, . . . , xn ∈ X}.210

We define rational sets of data vectors as the smallest class of sets of data vectors that211

contains {0}, all singletons {σ} where σ stands for the ’unit’ data vector over Σ that maps212

σ to 1 and all other letters to 0, and is closed under addition, additive star, and orbit-finite213

unions. In particular, the empty set, all finite sets and all orbit-finite sets of data vectors are214

rational.215
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27:6 Parikh images of register automata

▶ Example 3. Continuing Example 2, the Parikh image of L1 (and L2) is rational (for216

readability we keep omitting brackets {}):217

Par(L1) =
( ⋃

a,b,c∈Atoms, ̸=(a,b,c)

a+ b+ c
)∗
.218

219

▷ Claim 4. (1) Rational sets of data vectors are exactly Parikh images of rational data220

languages. (2) Par(L) is rational if, and only if, L is Parikh-equivalent to a rational data221

language.222

▶ Remark 5. The classical notion of rational sets in an arbitrary monoid ([13, Chapter223

VII]) can be generalised along the same lines as above to sets with atoms, by considering224

orbit-finite unions instead of finite ones. In this paper we stick to monoids of data words and225

data vectors, over an orbit-finite alphabet.226

Closure properties. As tools to be used later, we prove that rationality of a language is227

preserved by the restriction to a subset of its alphabet, as well as by substitution by rational228

languages. The same preservation property holds for languages with rational Parikh images.229

▶ Lemma 6. If a language L ⊆ Σ∗ has rational Parikh image (resp. is rational) and Γ ⊆ Σ230

then the restriction L ∩ Γ∗ has also rational Parikh image (resp. is rational).231

Proof. Intuitively speaking, it is enough to syntactically remove, in the rational expression232

defining Par(L), every appearance of a letter σ ∈ Σ − Γ.233

Formally, we proceed by induction on a derivation of L. By Claim 4(2) we assume,234

w.l.o.g., that the language L is rational.235

The induction base: when L = {σ} is a singleton, σ ∈ Σ, then236

L ∩ Γ∗ =
{
L if σ ∈ Γ,
∅ otherwise,

237

and in each case L ∩ Γ∗ is rational. The induction step follows immediately as restriction238

commutes with all the operations involved:239

(LK)∩Γ∗ = (L∩Γ∗)(K∩Γ∗) L∗ ∩Γ∗ = (L∩Γ∗)∗ ( ⋃
i∈I

Li

)
∩Γ∗ =

( ⋃
i∈I

Li ∩Γ∗)
.240

◀241

Consider a language L over an orbit-finite alphabet Σ and a (legal) family of languages242

K = (Kσ)σ∈Σ over an alphabet Γ, indexed by Σ. We use the anonymous function notation243

σ 7→ Kσ.244

The substitution L(K) is the language over Γ containing all words obtained from some word245

σ1σ2 . . . σn ∈ L, by replacing every letter σi by some word from Kσi :246

L(K) =
⋃

σ1σ2...σn∈L

Kσ1Kσ2 . . .Kσn
.247

248

▶ Example 7. As usual, let L+ = L∗L. Consider the language L1 from Example 1 and249

Σ = Γ = Atoms. By the equivariant substitution Ka = a+, or a 7→ a+, we obtain the250

language L1(K) ⊆ Atoms∗ containing words, where each three consecutive maximal constant251

infixes use three distinct letters (each two consecutive maximal constant infixes use two252

distinct letters by the very definition), and the total number of these infixes is divisible by 3.253

▶ Lemma 8 ([16], Lemma 5). If L and all languages Kσ have rational Parikh images (resp. are254

rational) then the substitution L(K) has also rational Parikh image (resp. is rational).255
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4 Register automata256

We define the model of nondeterministic register automata, and its syntactic subclass of257

hierarchical automata.258

Nondeterministic register automata (NRA). From now on we mostly consider input259

alphabets of the form Σ = H × Atoms, where H is a finite pure (atomless) set.260

Let k ≥ 1. In the sequel we consistently use variables xi, x
′
i, for 1 ≤ i ≤ k, to represent261

the value of ith register at the start (pre-value) and at the end (post-value) of a transition,262

respectively. We also consistently use the variable y to represent an input atom. A non-263

deterministic k-register automaton (k-NRA) A consists of: a finite set H (finite component of264

the alphabet), a finite set of control locations Q, subsets I, F ⊆ Q of initial resp. accepting265

locations, and a finite set ∆ of transition rules of the form266

(q(x1, x2 . . . xk), ⟨h, y⟩, φ, q′(x′
1, x

′
2 . . . x

′
k)) (2)267

268

where q, q′ ∈ Q, h ∈ H, and the transition constraint φ(x1, x2 . . . xk, y, x
′
1, x

′
2 . . . x

′
k) is a269

Boolean combination of equalities involving the variables x1, x2 . . . xk, y, x
′
1, x

′
2 . . . x

′
k. The270

constraint specifies possible relation between the register pre-values (x1, x2 . . . xk), input271

atom (y), and register post-values (x′
1, x

′
2 . . . x

′
k) resulting from a transition. If φ entails the272

equality xi = x′
i, we say that the ith register is preserved by the transition rule.273

A configuration ⟨q, (a1a2 . . . ak)⟩ ∈ Q × Atoms(k) of A, written briefly q(a1a2 . . . ak),274

consists of a control location q ∈ Q and (pairwise distinct1) register values ai ∈ Atoms, for275

1 ≤ i ≤ k. We note that different registers can not store the same value. For each tuple276

r = a1a2 . . . ak ∈ Atoms(k), atom b ∈ Atoms, and tuple r′ = a′
1a

′
2 . . . a

′
k ∈ Atoms(k) that277

satisfy the transition constraint, i.e., (a1a2 . . . ak, b, a
′
1a

′
2 . . . a

′
k) |= φ, a rule (2) induces a278

transition279

q(a1a2 . . . ak) ⟨h,b⟩−−−→ q′(a′
1a

′
2 . . . a

′
k)280

labeled by ⟨h, b⟩ from the configuration q(a1a2 . . . ak) to the configuration q′(a′
1a

′
2 . . . a

′
k).281

The semantics of k-NRA is defined as in case of classical NFA, with configurations considered282

as states and Σ = H × Atoms as an alphabet. A run of A over a data word w =283

⟨h1, b1⟩⟨h2, b2⟩ . . . ⟨hn, bn⟩ ∈ Σ∗ is any sequence of configurations q0(r0), q1(r1), . . . , qn(rn),284

related by transitions labeled by consecutive letters of w:285

q0(r0) ⟨h1,b1⟩−−−−→ q1(r1) ⟨h2,b2⟩−−−−→ . . .
⟨hn,bn⟩−−−−−→ qn(rn), (3)286

287

where q0(r0) is an initial configuration (i.e., q0 ∈ I). A run is accepting if the ending288

configuration qn(rn) is accepting (i.e., qn ∈ F ). A data word w is accepted by A if A has an289

accepting run over w.290

Let Lq(r) q′(r′)(A) be the set of data words having an accepting run (3) that starts in291

q0(r0) = q(r) and ends in qn(rn) = q′(r′). The language L(A) recognised by A is defined as:292

L(A) =
⋃

q∈I,q′∈F,r,r′∈Atoms(k)

Lq(r) q′(r′)(A). (4)293

294

▶ Remark 9. The above definition allows for guessing, i.e., an automaton may nondetermin-295

istically choose, and store in its register, an atom not yet seen in the input (cf. [24]). In296

particular, the initial register values are guessed nondeterministically.297

1 Distinctness of register values is not relevant for expressiveness of register automata.
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27:8 Parikh images of register automata

▶ Remark 10. An alphabet H × Atoms and configurations Q× Atoms(k) are orbit-finite.298

The model of NRA is a special case of the abstract notion of orbit-finite automata (cf. [1,299

Sect. 5.2]), where alphabets and state spaces may be arbitrary orbit-finite sets. For alphabet300

of the form Σ = H × Atoms, where H is pure and finite, NRA are expressively equivalent to301

orbit-finite automata [1, Sect. 5.2].302

Hierarchical register automata (HRA). We define a syntactical subclass of NRA by303

restricting transition constraints. The idea is to update registers in a hierarchical manner: if304

a transition rule does not preserve ith register, pre- and post-values of every larger register305

(jth register, for j > i) are unspecified. Formally, a HRA is a NRA where each transition306

constraint φ has the following form:307

φ ≡ ψ(x1, x2, . . . , xi, y, x
′
i) ∧

∧
1≤j<i

xj = x′
j , (5)308

309

for some i ∈ {1, . . . , k}. The sub-formula ψ describes how the post-value of ith register (x′
i)310

depends on the relation between the input atom (y) and the pre-values of ith register and311

smaller ones (x1, x2, . . . , xi). Note that all smaller registers are preserved, and larger ones are312

not mentioned in φ (and hence their pre- and post-values are unspecified, which means that313

any pre- and post-values are allowed). Note also that the constraint φ allows for updating314

ith register (according to the sub-constraint ψ) as well as every larger register (arbitrarily);315

the former we call specified update, and the latter one we call unspecified one. The number316

i we call the level of the transition constraint, or of the transition (rule) it appears in. As317

extreme examples, the following all-registers-preserving constraint318 ∧
1≤j≤k

xj = x′
j ̸= y, (6)319

320

as well as the most liberal constraint true satisfied by any pre- and post-values of registers321

and any input atom, both are in the syntactic form (5), at level k and 1, respectively.322

Intuitively speaking a HRA, when restricted to transition rules of some fixed level i,323

resembles a NRA with just one (ith) register, with all larger registers removed, and all smaller324

registers frozen to some fixed values. For i ≤ k and a tuple of atoms r ∈ Atoms(i), we may325

define a refined semantics of a k-HRA A as the language of words accepted by a run where326

the values of the first (smallest) i registers are continuously r and hence never change. We327

denote the so defined language by Lr(A).328

W.l.o.g. we may assume that a HRA is orbitized, i.e., its every transition constraint329

φ(x1, . . . , xi, y, x
′
1, . . . , x

′
i) at level i defines one orbit (one equality type) in Atoms2i+1. For330

instance, the constraint (6) defines one orbit, while true does not.331

▶ Example 11. Let H be a singleton, omitted below; we thus consider Atoms as an alphabet.332

The following 2-HRA recognises the language L2 from Example 1. The control locations are333

Q = {q1, q2, q3}, with single initial and accepting one I = F = {q3}. The automaton has the334

following three transition rules:335

(q3(x1, x2), y, x1 = x′
1 ̸= y ∧ x2 = x′

2 ̸= y, q2(x′
1, x

′
2)),336

(q2(x1, x2), y, x1 = x′
1 ∧ x2 = x′

2 = y, q1(x′
1, x

′
2)),337

(q1(x1, x2), y, x1 = y, q3(x′
1, x

′
2)).338

339

the first two at level 2 and the last one at level 1. The post-value x′
2 of the second register340

is unspecified in the last two rules. Moreover, the post-value x′
1 of the first register is also341
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unspecified in the last rule, and therefore the automaton is not orbitized. It can be easily342

made orbitized by replacing this last rule with the following ones:343

(q1(x1, x2), y, x1 = y = x′
1, q0(x′

1, x
′
2)),344

(q1(x1, x2), y, x1 = y ̸= x′
1, q0(x′

1, x
′
2)).345

346

It is not difficult to show that in terms of expressiveness HRA are a strict subclass of347

NRA:348

▶ Proposition 12. The language L1 from Example 1 is not recognised by any HRA.349

Proof. Towards contradiction, suppose L1 is recognised by a k-HRA A. Consider a word350

w = a1a2 . . . ak+2 ∈ Atoms∗ of length k+2 in which all letters are pairwise different (ai ̸= aj351

for i ̸= j) and an accepting run π of A over w. Let ri be the valuation of registers in π after352

reading ai.353

We observe that each letter ai, for i < k+2, must be stored in a register in the considered354

run π: ai it is the value of some register in ri. Indeed, suppose contrarily that ai is not the355

value of any register in ri. By replacing this letter in w with ai+1 we obtain a word w′ where356

two consecutive letters are equal, and hence w′ /∈ L1. On the other hand the run π is also an357

accepting run over w′, and hence w′ ∈ L(A) – a contradiction.358

Therefore we know that ai is the value of some ℓith register in ri, for every i = 1, . . . , k+1.359

Note that this register with value ai is unique, and that it gets its value either by the specified360

or unspecified update. We claim that ℓi < ℓi+1 for every i = 1, . . . , k. Indeed, suppose361

ℓi ≥ ℓi+1 for some i. The inequality implies that either the value ai stored in ℓith register is362

overwritten by the specified update (when ℓi = ℓi+1), or may be overwritten by an unspecified363

one (when ℓi > ℓi+1). By replacing ai in w with ai+2 we obtain a word w′′ /∈ L1. On the364

other hand the run π is easily modified into an accepting run over w′′ by replacing ai with365

ai+2 in ri. In consequence, w′′ ∈ L(A) – a contradiction, similarly as before.366

We have thus an increasing sequence 1 ≤ ℓ1 < ℓ2 < . . . < ℓk+1 ≤ k, thus yielding a367

contradiction. ◀368

As an intermediate corollary of Proposition 12 and Theorem 13 (cf. Section 5) we deduce369

that L1 is not rational either.370

5 Parikh-equivalence of HRA and rational languages371

As our main contribution, we prove that Parikh images of rational languages (rational sets372

of data vectors) coincide with Parikh images of HRA (cf. Corollary 22). This is split into two373

parts: on one side we prove that rational data languages are recognised by HRA, and on the374

other side Parikh images of HRA languages are rational (as sets of data vectors):375

▶ Theorem 13. Rational data languages are recognised by HRA.376

▶ Theorem 14. Parikh images of HRA languages are rational.377

Proof of Theorem 13. We proceed by induction on derivation of a rational language. For378

convenience we assume, w.l.o.g., that each orbit-finite sum is indexed by a subset of I ⊆379

Atoms(n) of non-repeating n-tuples of atoms, for some n ∈ N. Indeed, every orbit-finite380

union can be split into a finite union of single-orbit unions, and every single-orbit set J is381

the image of an equivariant function f from such a set I (cf. [1, Sect. 3.2]), J = f(I), hence382 ⋃
j∈J

Lj =
⋃
i∈I

Lf(i) =
⋃
i∈I

Ki383
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where Ki = Lf(i). Under this simplifying assumption we prove, by induction on derivation384

of a rational language, the following claim (we say that a tuple s ∈ Atoms(n) supports x if385

the set of n atoms appearing in s does so):386

▷ Claim 15. For every rational language L over an alphabet of the form Σ = H × Atoms,387

and every tuple s supporting its derivation, there is a HRA A such that Ls(A) = L.388

We emphasise that we consider supports of derivations of rational languages, defined as389

well-founded trees (cf. Section 3), instead of supports of languages themselves. Clearly, a390

tuple supporting a derivation of a language also support the language itself.391

The induction base, for L = {ε} or L = {σ} where σ ∈ Σ, is straightforward. The392

induction step splits into three cases.393

Case 1: L = L1 L2. Let s be a tuple of atoms supporting the derivation of L, and hence394

also the derivations of L1 and L2. Let A1 and A2 be the HRA which, due to the induction395

assumption, recognize Ls(A1) = L1 and Ls(A2) = L2. Let the automaton A initially run396

A1, and from each accepting location of A1 nondeterministically choose either to continue397

inside A1, or to run A2. We have Ls(A) = L, as required.398

Case 2: L = K∗. This case is dealt with similarly to the previous one.399

Case 3: L =
⋃

i∈I Li. Let s be a tuple of atoms supporting the derivation of L, and hence400

also the set I and the mapping i 7→ Li. Thus the concatenated tuple si supports Li (recall401

that i is assumed for convenience to be a tuple of atoms). For an s-orbit J in I, let402

LJ =
⋃
j∈J

Lj ⊆ L.403

Consider an arbitrary s-orbit J in I (each orbit is treated separately). Fix an arbitrary404

element i ∈ J and an automaton B such that, due to the induction assumption, recognizes405

Lsi(B) = Li. Therefore, for every j = π(i) ∈ J , where π is an s-automorphism, the same406

automaton B recognizes Lsj(B) = Lj . Let the automaton AJ initially guess i ∈ J and put it407

into the smallest registers not occupied by s, and then run B. We have Ls(AJ) = LJ . The408

language L is the union of finitely many languages LJ , and hence L is recognized by a HRA409

that initially chooses an s-orbit J in I and then runs AJ . ◀410

Proof of Theorem 14. We now focus on showing that Parikh images of languages of HRA411

are rational. The proof proceeds by induction on the number of registers.412

Induction base. The induction base, i.e., rationality of Parikh images of 1-HRA languages,413

follows immediately by the following result of [16]:414

▶ Lemma 16 ([16], Theorem 6). Parikh images of 1-NRA languages are rational.415

Altering paths. Before proceeding to the induction step we recall an immediate corollary416

of another results of [16] (cf. Lemma 17 below). Given a k-HRA A = ⟨H,Q, I, F,∆⟩, we417

define the language PA over the alphabet2 (Q× Atoms ×Q) ∪ (H × Atoms) containing418

words of the form:419

⟨q1, a1, p1⟩⟨h1, b1⟩⟨q2, a2, p2⟩⟨h2, b2⟩ . . . ⟨qn−1, an−1, pn−1⟩⟨hn−1, bn−1⟩⟨qn, an, pn⟩ (7)420
421

2 This is the unique place where we consider reacher alphabets than H × Atoms, for finite H.
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(n ≥ 1) such that, for i = 1, . . . , n− 1, it holds ai ̸= ai+1 and422

pi(air) ⟨hi,bi⟩−−−−→ qi+1(ai+1r′) (8)423
424

is a transition of A at level 1 for some tuples r, r′ ∈ Atoms(k−1), and such that q1 ∈ I and425

pn ∈ F . The atoms ai and ai+1 are here pre- and post-values of the first register, and r, r′
426

are pre- and post-values of the remaining k− 1 registers. Words in P are called altering paths.427

Intutively, a letter ⟨q, a, p⟩ represents a run of A starting from a configuration q(ar′) and428

ending in p(ar), for some r, r′ ∈ Atoms(k−1), such that the first register contains a and is429

preserved along the run until the automaton reaches the configuration p(ar), from which the430

automaton finally updates the first register. Along this run other registers may be updated.431

As an immediate consequence3 of [16, Lemma 17] we get:432

▶ Lemma 17. The altering path language PA of a 1-HRA A has rational Parikh image.433

We observe that the altering path language of a k-HRA A is the same as the altering path434

language of a 1-HRA A′ obtained from A by removing all registers except the first (smallest)435

one, and all transition rules of level greater than 1. Therefore, as an immediate corollary of436

Lemma 17 we get:437

▷ Claim 18. For every k ≥ 1, the altering path language PA of k-HRA A has rational Parikh438

image.439

Induction step. We now proceed to the induction step. To this aim we fix k > 1 and440

assume that languages of HRA with less than k registers have rational Parikh images. We441

consider a fixed k-HRA A = ⟨H,Q, I, F,∆⟩ and aim at showing that Parikh image of L(A)442

is rational. W.l.o.g. we assume that A is orbitized. Let Σ = H × Atoms denote the input443

alphabet.444

We construct a k-HRA Aqp by removing from A all transition rules that update (i.e., do445

not preserve) the first register, and by taking q as the only initial location and p as the only446

accepting one. Intuitively speaking, the first register is frozen in Aqp, in the sense that it is447

never updated and thus keeps its initial value a along the whole run. For a ∈ Atoms, we448

denote by449

La(Aqp) =
⋃

r,s∈Atoms(k−1)

Lq(ar) p(as)(Aqp) ⊆ L(Aqp)450

the subset of L(Aqp) consisting of words accepted by Aqp by a run where the value of the451

first register is (continuously) a. We need to deduce from the induction assumption the452

following claim:453

▷ Claim 19. The languages La(Aqp) have rational Parikh images.454

Before proving the above claim we use it to complete the proof Theorem 14. Consider the455

language K = PA(S) obtained by applying the following substitution S to the language PA:456

⟨q, a, p⟩ 7→ La(Aqp) ⟨h, b⟩ 7→ {⟨h, b⟩}.457
458

In words, triples ⟨q, a, p⟩ are replaced by any word accepted by Aqp by a run where the value459

of the first register is continuously a, while pairs ⟨h, b⟩ are preserved.460

3 Altering path languages considered in Lemma 17 in [16] start and end in fixed locations. The language
PA is thus a finite union of these languages.
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▷ Claim 20. L(A) = K.461

We argue that both inclusions hold. The inclusion L(A) ⊆ K is shown by factorising each462

accepting run of A by transitions that update the first register, of the form (8), so that each463

word w ∈ L(A) factorizes into:464

w = w1 ⟨h1, b1⟩w2 ⟨h2, b2⟩ . . . wn−1 ⟨hn−1, bn−1⟩wn, (9)465
466

for wi ∈ Lai
(Aqipi

) for some atom ai and control locations qi, pi, and therefore w ∈ K. For467

the reverse inclusion K ⊆ L(A) consider a word w ∈ K, necessarily of the form (9), due to an468

altering path as in (7) and accepting runs πi of Aqipi
over words wi, where the first register469

is continuously equal ai along πi. By concatenating these runs (considered as sequences of470

configurations) one gets an accepting run π = π1π2 . . . πn of A over the word w, as required.471

The transitions (8) confirm that π is a run since A is hierarchical: all these transitions are472

all at level 1 and may perform (unspecified) updates of all other registers.473

Having Claims 18, 19 and 20 one easily completes the proof of Theorem 14. Indeed,474

Parikh image of K = PA(S) is rational due to Lemma 8, as Parikh images of PA and all475

languages La(Aqp) are so due to Claim 18 and 19, respectively, and therefore the same holds476

for L(A), due to Claim 20.477

Proof of Claim 19. For every q, p ∈ Q we define a new (k − 1)-HRA A′
qp that behaves478

exactly as Aqp except that the first register is removed. The removal of the register is479

compensated by an additional bit in the finite component of the alphabet of A′
qp that informs480

the automaton whether the input atom is equal to the (removed) first register or not.481

Formally, the new automaton is A′
qp = ⟨{=, ̸=} ×H,Q, {q}, {p},∆′⟩, where the transition482

rules ∆′ are defined as follows. Due to the assumption that A is orbitized (and hence so are483

all automata Aqp), its every transition constraint (5) at level i, say, either entails the equality484

y = x1, or the inequality y ̸= x1. The transition rules ∆′ are obtained from the transition485

rules of Aqp (i.e., from transition rules of A at level greater than 1) by transforming each486

transition rule487

(q(x1, x2 . . . xk), ⟨h, y⟩, φ, q′(x′
1, x

′
2 . . . x

′
k))488

of Aqp to the following one:489

(q(x1, x2 . . . xk), ⟨(∼, h), y⟩, φ′, q′(x′
1, x

′
2 . . . x

′
k))490

where ∼∈ {=, ̸=} is chosen so that φ entails y ∼ x1, and φ′ is obtained from φ by removing491

all (in)equalities referring to the first register.492

By induction assumption we know that Parikh image of A′
qp is rational, for every q, p ∈ Q.493

For a ∈ Atoms, consider the following sub-alphabet (that fixes, intuitively, the value of the494

first register to be a):495

Σa = {⟨(=, h), a⟩ : h ∈ H} ∪ {⟨(̸=, h), b⟩ : h ∈ H, b ∈ Atoms − {a}} ⊆ Σ,496

and define the languages Lqap as the restriction of L(A′
qp) to the sub-alphabet Σa:497

Lqap := L(A′
qp) ∩ (Σa)∗.498

By Lemma 6 we have:499

▷ Claim 21. Parikh images of the languages Lqap are rational.500
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Finally, we observe that La(Aqp) is obtained from Lqap by applying the substitution (actually,501

the projection):502

⟨(∼, h), b⟩ 7→ {⟨h, b⟩}503

and therefore also has rational Parikh image, as required. This completes the proof of504

Claim 19, and hence also the proof of Theorem 14. ◀505

▶ Corollary 22. Parikh images of HRA languages and of rational languages coincide.506

▶ Corollary 23. An NRA has rational Parikh image if, and only if, it is Parikh-equivalent to507

some HRA.508
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