
Causality Versus True-Concurrency

Sibylle Fröschle1 ,2 and S�lawomir Lasota3 ,4

Institute of Informatics, Warsaw University
02–097 Warszawa, Banacha 2, Poland

Abstract

Category theory has been successfully employed to structure the confusing setup of models and equivalences
for concurrency: Winskel and Nielsen have related the standard models via adjunctions and (co)reflections
while Joyal et al. have defined an abstract notion of equivalence, known as open map bisimilarity. One
model has not been integrated into this framework: the causal trees of Darondeau and Degano. Here we
fill this gap. In particular, we show that there is an adjunction from causal trees to event structures,
which we bring to light via a mediating model, that of event trees. Further, we achieve an open map
characterization of history preserving bisimilarity: the latter is captured by the natural instantiation of the
abstract bisimilarity for causal trees.

Keywords: Event structures, causal trees, history preserving bisimulation.

In [6] Winskel and Nielsen employ category theory to relate and unify the many

models for concurrency. The basic idea is to represent models as categories: each

model is equipped with a notion of morphism that shows how one model instance

can be simulated by another. Category theoretical notions such as adjunctions

and (co)reflections can then be applied to understand the relationships between the

models. We give an example. Synchronization trees are intuitively those transi-

tion systems with no cyclic behaviour. Formally, the two models are related by

a coreflection: the inclusion functor embedding synchronization trees into transi-

tion systems is accompanied by a right adjoint that unfolds transition systems to

synchronization trees.

The categorical approach has also been applied to bring uniformity to the con-

fusing setup of behavioural equivalences. Joyal et al. define an abstract notion of

bisimilarity in the following way [4]: given a category of models M and a choice of

path category P within M, two model instances of M are P-bisimilar iff there is

a span of P-open maps between them. P-open maps are morphisms that satisfy a

1 Partially supported by the EU Research Training Network GAMES.
2 Email: sib@mimuw.edu.pl
3 Partially supported by the EU project SENSORIA within the IST 6th Framework Programme.
4 Email: sl@mimuw.edu.pl

Electronic Notes in Theoretical Computer Science 154 (2006) 3–18

1571-0661/$ – see front matter © 2006 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2006.05.003

mailto:sib@mimuw.edu.pl
mailto:sl@mimuw.edu.pl
http://www.elsevier.com/locate/entcs

special path-lifting property with respect to P. As one would expect, on transition

systems and synchronization trees the abstract bisimilarity gives rise to classical

bisimilarity [4]. Various well-known equivalences are motivated as instantiations of

P-bisimilarity in a natural way [2].

Winskel and Nielsen’s framework has helped to clarify the connections between

truly-concurrent models such as event structures, asynchronous transition systems,

and Petri nets. These are all independence models: they have additional structure

which shows when two transitions are independent of each other. Common to

these models is that they come with a notion of event : given two runs r1, r2 and

two transitions t1 on r1, t2 on r2 it is possible to tell whether t1 and t2 represent

two occurrences of the same event and can thus be considered equivalent modulo

independent behaviour. The notion of event is primary in event structures; they

can be considered to be the independence model for unfolded behaviour.

On independence models P-bisimilarity was shown to yield hereditary history

preserving bisimilarity (hhp-b) [4]. This left open whether it is at all possible

to capture history preserving bisimilarity (hp-b) via open maps, which was then

thought to be the truly-concurrent bisimilarity. In particular, it was found that the

characterization of hhp-b is very robust with respect to the choice of path category.

Along a different strand of research, a new model emerged in the late 80’s: the

causal trees of Darondeau and Degano [3]. They are a variant of synchronization

trees with enriched action labels that supply information about which transitions

are causally dependent on each other. Thereby, they reflect one aspect of true-

concurrency, causality, while being different from the truly-concurrent models of [6]

in that they do not come with a notion of event. However, the precise relationship

between causal trees and the standard models has never been clarified.

Roughly one could say the strand of research along which causal trees have

emerged is that of syntax-enriched process calculi. A unifying framework for a wide

range of such calculi, including the π-calculus, has been provided by the history-

dependent automata of Pistore [5]. In this context a first, albeit indirect, open

map account of hp-b has been achieved: in [5] history-dependent bisimilarity, which

induces hp-b with respect to Petri nets, is captured via open maps. It has remained

open, though, whether hp-b has a direct open map characterization: one that is as

natural as that of hhp-b and illustrates the difference between the two equivalences,

one within a model related to event structures.

Our contribution is twofold. Firstly, we integrate the model of causal trees into

Winskel and Nielsen’s framework. We equip causal trees with a notion of morphism,

and thus define the category of causal trees, C. We investigate how C relates to

the other model categories. In particular, we show that there is an adjunction from

causal trees to event structures. This is brought to light via a larger model, called

event trees: the adjunction arises as the composition of a coreflection from causal

trees to event trees and a reflection from event trees to event structures.

Secondly, we identify the natural instantiation of P-bisimilarity for causal trees:

CBranL-bisimilarity. It turns out that CBranL-bisimilarity fills in a prominent

gap: it characterizes hp-b in a direct fashion. Finally, we capture the difference

S. Fröschle, S. Lasota / Electronic Notes in Theoretical Computer Science 154 (2006) 3–184

between hp-b and hhp-b by characterizing them within the category of event trees.

1 Relating Causal Trees to Other Models for Concur-

rency

We first define the category of transition systems, T, and that of synchronization

trees, S.

A transition system is a tuple (S, sin , L,Tran) where S is a set of states, sin ∈ S

is the initial state, L is a set of labels, and Tran ⊆ S×L×S is the transition relation.

We write s
a
→ s′ to denote that (s, a, s′) ∈ Tran . We extend this notation to possibly

empty strings of labels v = a1 . . . an writing s
v
→ s′ to indicate that s0

a1→ s1 · · ·
an→ sn

for some s0, . . . , sn with s = s0 and sn = s′. Given t = (s, a, s′) ∈ Tran , we use

src(t) for s, tgt(t) for s′, and l(t) for a.

A run of a transition system T is a sequence of transitions t1t2 . . . tn, n ≥ 0,

such that if n > 0 then src(t1) = sin and for all i ∈ [1, n− 1] tgt(ti) = src(ti+1). We

denote the set of runs of T by Runs(T).

Let T0 = (S0, s
in
0 , L0,Tran0) and T1 = (S1, s

in
1 , L1,Tran1) be transition systems.

A morphism f : T0 → T1 is a pair f = (σ, λ) where σ : S0 → S1 is a function and

λ : L0 ⇀ L1 is a partial function such that

(i) σ(sin
0) = sin

1 ,

(ii) (s, a, s′) ∈ Tran0 & λ(a) defined =⇒ (σ(s), λ(a), σ(s′)) ∈ Tran1,

(s, a, s′) ∈ Tran0 & λ(a) undefined =⇒ σ(s) = σ(s′).

Transition systems together with their morphisms form a category T. Composition

of morphisms is pairwise and identity for an object T is (1S , 1L) where 1S is identity

on the set of states S of T and 1L is identity on the set of labels L of T .

A synchronization tree is a transition system (S, sin , L,Tran) such that

(i) every state is reachable: ∀s ∈ S. ∃v. sin v
→ s,

(ii) the transition system is acyclic: s
v
→ s for some v ∈ L∗ =⇒ v = ε,

(iii) there is no backwards branching: s′
a
→ s & s′′

b
→ s =⇒ a = b & s′ = s′′.

Write S for the full subcategory of synchronization trees in T.

We define causal trees explicitly as a generalization of synchronization trees. In

particular, this means: we add causality information not via enriched labelling and

backwards pointers as in [3] but by a causal dependency relation on transitions.

Definition 1.1 A causal tree is a tuple (S, sin , L,Tran , <) where (S, sin , L,Tran)

is a synchronization tree and < ⊆ Tran×Tran , the causal dependency relation, is a

strict order, which satisfy:

(i) for all t, t′ ∈ Tran , t < t′ =⇒ tgt(t)
v
→ src(t′) for some v ∈ L∗.

Axiom (i) expresses a natural property of causality: if t is a cause of t′ then t

must have happened before t′. Causal trees inherit their notion of run from that

of transition systems. We say two transitions t, t′ ∈ Tran are consistent, denoted

S. Fröschle, S. Lasota / Electronic Notes in Theoretical Computer Science 154 (2006) 3–18 5

by t Con t′, iff they appear on the same branch: t Con t′ ⇐⇒ t = t′ ∨ ∃v ∈ L∗.

tgt(t)
v
→ src(t′) ∨ tgt(t′)

v
→ src(t).

The morphisms of the truly-concurrent models of [6] preserve concurrency. Let

t, t′ be consistent transitions of a causal tree C; t and t′ are concurrent iff they are

not identical and they are not related by <. Note that in contrast to event-based

models, here concurrency is only meaningful when interpreted with respect to a

branch. Thus, we define causal tree morphisms as follows.

Definition 1.2 Let C0 = (S0, s
in
0 , L0,Tran0, <0), C1 = (S1, s

in
1 , L1,Tran1, <1) be

causal trees. A morphism f : C0 → C1 is a morphism of transition systems (σ, λ) :

(S0, s
in
0 , L0,Tran0) → (S1, s

in
1 , L1,Tran1) such that σ preserves concurrency:

(i) for all t = (s, a, s′), t′ = (u, b, u′) ∈ Tran0 such that t Con0 t′, and λ(a), λ(b)

are both defined, (σ(s), λ(a), σ(s′)) <1 (σ(u), λ(b), σ(u′)) =⇒ t <0 t′.

Causal trees and their morphisms give rise to the category of causal trees, C.

There is an obvious coreflection from S to C: a synchronization tree can be

regarded as a causal tree, one in which the causal dependency relation is given by

the order of the transitions in the tree; the corresponding functor is accompanied

by a right adjoint which forgets about the causality information. It is more difficult

to understand the precise relationship between causal trees and event structures.

We first give the definition of the category of event structures, E.

A (labelled) event structure is a structure (E,<,Con , L, l) consisting of a set

E of events, which are strictly ordered 5 by <, the causal dependency relation, a

consistency relation Con consisting of finite subsets of events, a set L of labels and

a labelling function l : E → L, which satisfy

(i) e↓ = {e′ | e′ < e} is finite,

(ii) {e} ∈ Con,

(iii) Y ⊆ X ∈ Con ⇒ Y ∈ Con ,

(iv) X ∈ Con & e < e′ ∈ X ⇒ X ∪ {e} ∈ Con,

for all events e, e′ and their subsets X, Y . Axiom (i) ensures an event occurrence

depends only on finitely many previous event occurrences. The consistency relation

is thought to specify which finite subsets of events can occur together in a run.

Axioms (ii)–(iv) express natural properties of this interpretation.

To define a run of an event structure (E,<,Con , L, l), we need the notion of

configuration, defined as any finite 6 set X ⊆ E which is

(i) downwards-closed: e′ < e ∈ X ⇒ e′ ∈ X, and

(ii) consistent: X ∈ Con.

In particular, e↓ is always a configuration. For two configurations X, X ′ we write

X
e
→ X ′ when e /∈ X and X ′ = X ∪ {e}. A run is a possibly empty sequence

e1 . . . en of events such that there is a sequence of transitions ∅
e1→ X1 . . .

en→ Xn

5 Defining causal dependency in terms of a strict rather than a partial order is more convenient here.
6 We deliberately restrict ourselves to finite configurations only.

S. Fröschle, S. Lasota / Electronic Notes in Theoretical Computer Science 154 (2006) 3–186

starting from the empty configuration, for some configurations X1 . . . Xn. For runs,

r
e
→ r′ means r′ = re. The set of all runs of an event structure E is denoted

by Runs(E). Let E0 = (E0, <0,Con0, L0, l0) and E1 = (E1, <1,Con1, L1, l1) be

labelled event structures. A morphism E0 → E1 is a pair (η, λ) where η : E0 ⇀ E1

and λ : L0 ⇀ L1 are partial functions such that

(i) η(e) defined ⇒ η(e)↓ ⊆ η(e↓),

(ii) X ∈ Con0 ⇒ η(X) ∈ Con1,

(iii) ∀e, e′∈E0. {e, e
′}∈Con0 & η(e), η(e′) both defined & η(e) = η(e′) ⇒ e = e′,

(iv) λ ◦ l0 = l1 ◦ η.

Event structures and their morphisms form the category of event structures, E.

The runs of an event structure give rise to a tree. Thus, any event structure

can be transformed into a causal tree by abstracting away the notion of event; this

operation has been defined in, e.g., [3]. On the other hand, there is no uniform way

of reconstructing the notion of event so as to obtain a coreflection between C and

E. Indeed, there is one aspect in which event structures are less expressive than

causal trees: their notion of run is induced abstractly by the consistency and causal

dependency relation; in particular, this means the set of runs of any event structure

is trace-closed, that is closed under the shuffling of concurrent transitions. In the

following, we expose an adjunction from C to E via a larger model, which we call

event trees, that embeds C as well as E. Event trees are like event structures in

that causality and concurrency are event-based, global notions. They are like causal

trees in that their possible runs are specified explicitly by a tree.

Definition 1.3 A (labelled) event tree is a tuple (S, sin , E,Tran , <,L, l) where

(S, sin , E,Tran) is a synchronization tree, < ⊆ E × E is a strict order on the

set E of events, L is a set of labels, and l : E → L is a labelling function such that

(i) e ∈ E ⇒ ∃s, s′ ∈ S. s
e
→ s′,

(ii) s
e
→ s′ & s

e
→ s′′ ⇒ s′ = s′′,

(iii) s
e
→ s′ & u

e
→ u′ ⇒ � ∃v ∈ E∗. s′

v
→ u,

(iv) e < e′ & s
e′
→ s′ ⇒ ∃u

e
→ u′, v ∈ E∗. u′ v

→ s.

Axiom (i) says every event appears as a transition, and axiom (ii) that the

occurrence of an event at a state leads to a unique state. (This is as for asynchronous

transition systems.) Axiom (iii) expresses a natural property of acyclic models:

every event appears at most once on a branch. Axiom (iv) ensures that if e is

a cause of e′ then e must have happened before e′. We say two events e, e′

are consistent iff they appear on the same branch: e Con e′ ⇐⇒ e = e′ ∨

∃s, s1, s2, s3 ∈ S, v ∈ E∗. s
e
→ s1

v
→ s2

e′
→ s3 ∨ s

e′
→ s1

v
→ s2

e
→ s3. Event trees

inherit a notion of run from synchronization trees, where a run is a sequence of

consecutive transitions. By axiom (ii) the sequence of events appearing along a run

determines this run uniquely. Hence, we consider a run of an event tree to be a

sequence of events rather than one of transitions.

S. Fröschle, S. Lasota / Electronic Notes in Theoretical Computer Science 154 (2006) 3–18 7

A partial function η : E0 ⇀ E1 induces a total function η̄ : E∗
0 → E∗

1 defined

inductively by: η̄(ε) = ε, and η̄(re) = η̄(r)η(e) if η(e) defined, and η̄(r) otherwise.

Definition 1.4 Assume two event trees T0 = (S0, s
in
0 , E0,Tran0, <0, L0, l0), T1 =

(S1, s
in
1 , E1,Tran1, <1, L1, l1). A morphism from T0 to T1 is a pair (η, λ) where

η : E0 ⇀ E1 and λ : L0 ⇀ L1 are partial functions such that

(i) η(e) defined ⇒ η(e)↓ ⊆ η(e↓),

(ii) r ∈ Runs(T0) ⇒ η̄(r) ∈ Runs(T1),

(iii) λ ◦ l0 = l1 ◦ η.

Clause (ii) implies that we also have: ∀e, e′ ∈ E0. e Con0 e′ & η(e), η(e′) both

defined & η(e) = η(e′) ⇒ e = e′. This is analogous to clause (iii) of event structure

morphisms.

If (η, λ) : T0 → T1 is a morphism of event trees then η̄ maps Runs(T0) to

Runs(T1). Since each state of an event tree is reachable by a unique run, η̄ induces

a total function, say ση, from S0 to S1. It is routine to check:

Proposition 1.5 If (η, λ) : T0 → T1 is a morphism of event trees then (ση, η) is

a morphism of transition systems (S0, s
in
0 , E0,Tran0) → (S1, s

in
1 , E1,Tran1) such

that η preserves concurrency: ∀e, e′ ∈ E0. e Con0 e′ & η(e), η(e′) both defined &

η(e) <1 η(e′) ⇒ e <0 e′.

Event trees and their morphisms give rise to the category of event trees, ET.

Any event tree gives rise to a causal tree by forgetting about events. Considering

axiom (i) of causal trees, we carry over the causal dependency relation from events

to consistent transitions only. Extending this operation to a functor et2c : ET → C

we make use of Prop. 1.5 in our translation of morphisms.

Definition 1.6 Let T = (ST , sin
T , ET ,TranT , <T , LT , lT) be an event tree. Define

et2c(T) = (ST , sin
T , LT ,Tran , <) where

• Tran = {(s, lT (e), s′) | s
e
→T s′}, and

• < = {((s, lT (e), s′), (u, lT (e′), u′)) | s
e
→T s′, u

e′
→T u′, e <T e′ &

∃v ∈ E∗
T . s′

v
→T u}.

Let f = (η, λ) be a morphism of event trees. Define et2c(f) = (ση, λ).

On the other hand, every causal tree C determines an event tree: that induced

by C when we assume each transition of C represents a separate event. We take as

events the transitions of C, and label each arc of C by the corresponding transition.

This operation extends to a functor c2et : C → ET.

Definition 1.7 Let C = (SC , sin
C , LC ,TranC , <C) be a causal tree. Let c2et(C) =

(SC , sin
C ,TranC ,Tran , <C , LC , l) where

• Tran = {(s, (s, a, s′), s′) | s
a
→C s′}, and • l is given by l(s, a, s′) = a.

For f = (σ, λ) : C0 → C1, define c2et(f) = (η, λ) where η : Tran0 → Tran1 is given

S. Fröschle, S. Lasota / Electronic Notes in Theoretical Computer Science 154 (2006) 3–188

by: η(s, a, s′) =

⎧⎨
⎩

(σ(s), λ(a), σ(s′)) if λ(a) is defined,

undefined otherwise.

Theorem 1.8 The functor c2et is left adjoint to et2c. The adjunction is a core-

flection, i.e., the unit is a (natural) isomorphism.

Proof. [Sketch] Let C be a causal tree. Then et2c(c2et(C)) = C, and the unit of

the adjunction at C, ηC , is the pair of identities (1S , 1L).

The pair (c2et(C), ηC) is free over C wrt. et2c, i.e. for any arrow (σ, λ) : C →
et2c(T) in C, with T an event tree, there is a unique arrow f : c2et(C) → T in

ET such that et2c(f) ◦ (1S , 1L) = (σ, λ): the label component of f is necessarily λ,

and the event component of f is determined uniquely since events of c2et(C) are

transitions of C. �

As a consequence, C embeds fully and faithfully into ET and is equivalent to

the full subcategory of ET consisting of those event trees T that are isomorphic to

c2et(et2c(T)). These event trees T are exactly those in which each event occurs

only once.

The runs of an event structure can be arranged into a tree. Hence, any event

structure forms an event tree whose states are the runs of the event structure. This

gives rise to a functor e2et : E → ET.

Definition 1.9 Let E = (EE , <E,ConE , LE , lE) be an event structure. Define

e2et(E) = (Runs(E), ε, EE ,→E, <E , LE , lE). On morphisms, e2et(f) = f .

On the other hand, any event tree determines an event structure: we define a

set of events to be consistent iff they appear together on some branch, and, having

extracted this information, we forget about the tree structure. Thereby we obtain

a functor et2e : ET → E.

Definition 1.10 Let T = (ST , sin
T , ET ,TranT , <T , LT , lT) be an event tree. Define

et2e(T) = (ET , <T ,Con , LT , lT) where Con exactly contains all sets {e1, . . . , en}

such that s1
e1→ s′1

v1→ s2
e2→ . . .

vn−1
→ sn

en→ s′n in T, for some states s1 . . . sn, s′1 . . . s′n
and sequences of events v1 . . . vn−1. On morphisms, again et2e(f) = f .

Theorem 1.11 The functor e2et is right adjoint to et2e. The adjunction is a

reflection, i.e., the counit is a (natural) isomorphism.

Proof. [Sketch] Let E be an event structure. Then et2e(e2et(E)) = E, essentially

because the consistency relation derived from e2et(E) recovers that of E. Hence,

the counit εE is the pair of identities (1E , 1L).

The pair (e2et(E), εE) is cofree over E wrt. et2e, i.e. for any arrow (η, λ) :

et2e(T) → E in E, with T an event tree, there is a unique arrow f : T → e2et(E)

in ET such that (1E , 1L) ◦ et2e(f) = (η, λ): it is f = (η, λ), considering that (η, λ)

is a morphism from T to e2et(E) as well; f is uniquely determined since et2e is

identity on morphisms. �

S. Fröschle, S. Lasota / Electronic Notes in Theoretical Computer Science 154 (2006) 3–18 9

As a consequence, E embeds fully and faithfully into ET and is equivalent to

the full subcategory of ET consisting of those event trees T that are isomorphic to

e2et(et2e(T)). Event trees that correspond to event structures are characterized as

follows. We say that two distinct events e1, e2 of an event tree T are concurrent,

denoted by e1 coT e2, if they are consistent and neither e1 <T e2 nor e2 <T e1,

similarly as it is done for event structures.

Proposition 1.12 An event tree T is isomorphic to e2et(et2e(T)) iff Runs(T)

is trace-closed , i.e., satisfies the following condition: if re1e2r
′ ∈ Runs(T) and

e1 coT e2 then re2e1r
′ ∈ Runs(T) as well.

Proof. Assume T is isomorphic to e2et(et2e(T)). The latter is obtained by e2et

from some event structure E. In particular, the co relation and runs of e2et(et2e(T))

are precisely the same as in E. Hence Runs(e2et(et2e(T))) is trace-closed since

Runs(E) is. As a consequence of the isomorphism, Runs(T) is trace-closed as well.

For the opposite direction, assume that Runs(T) is trace-closed. Note that

events, causality relation, and labelling in e2et(et2e(T)) are the same as in T .

Moreover, each run of T is a run of e2et(et2e(T)). We only need to show the

opposite: each run r = e1 . . . en of e2et(et2e(T)) is a run of T .

A run of e2et(et2e(T)) is also a run of the event structure et2e(T), hence

{e1 . . . en} is a consistent set. Hence, events e1 . . . en appear together in some run

of T , i.e., there is e′1 . . . e′m ∈ Runs(T) such that {e1 . . . en} = {e′i1 . . . e′in}, for some

1 ≤ i1 < . . . < in ≤ m. Moreover, since r is a run of et2e(T), it is downwards-

closed. I.e., if e′i < ej then e′i appears among e1 . . . en, say e′i = ek; and necessarily

k < j. Due to this observation, by trace-closure of Runs(T), we can regroup the run

e′1 . . . e′m of T so that the events e1 . . . en form a prefix. Having done this, we can

furthermore reorder them as in r. Since the runs of T are prefix-closed, we obtain

that r ∈ Runs(T), which completes the proof. �

The following diagram summarizes the four functors, which relate causal trees
and event structures via event trees.

C
⊂

c2et�
�

et2c
ET

et2e�
�

e2et
⊃

E

The hooks represent embeddings and the black arrows indicate the direction of left

adjoints. Altogether, we have derived a composed adjunction between causal trees

and event structures. It is not a coreflection, but induced by a coreflection and a

reflection via a larger category. The object component of the right adjoint of this

adjunction amounts to the transformation suggested in, e.g., [3]: it ‘linearizes’ an

event structure into a causal tree by forgetting about events.
Integrating the coreflection from synchronization trees S to C, and the well-

known coreflection from S to E of [6] we obtain:

C
⊂�
� ET

S

∪

�
�
⊂ �
� E

∪

�

�

S. Fröschle, S. Lasota / Electronic Notes in Theoretical Computer Science 154 (2006) 3–1810

The diagram can be seen as a decomposition of the coreflection from S to E into
three consecutive adjunctions. It is routine to check that the embeddings and left
adjoints commute. The latter implies that right adjoints commute as well, and
hence we obtain three different commuting squares:

C ⊂� ET C ⊂� ET C � ET

� � �

S

∪
�

⊂� E

∪

�

S

∪
�

⊂� E

�
S

�

� E

∪

�

2 Bisimulation from Open Maps

2.1 P-bisimilarity

Assume a category of models M and a choice of path category P ↪→ M, a subcate-

gory of M. The choice for P determines the notion of computation path that will

be reflected by P-bisimilarity.

A morphism f : X → Y in M is P-open iff it satisfies the following path-lifting

condition. Whenever, for m : P → Q a morphism in P, a square (1) (c.f. diagrams

below) in M commutes, i.e. q◦m = f◦p, meaning the path f◦p in Y can be extended

via m to a path q in Y , then there is a morphism p′ such that in diagram (2) the

two triangles commute, i.e. p′ ◦ m = p and f ◦ p′ = q, meaning the path p can be

extended via m to a path p′ in X which matches q.

Two objects X1, X2 of M are P-bisimilar iff there is a span of P-open morphisms

f1, f2 as depicted in diagram (3). For the categories considered in this paper, P-

bisimilarity is indeed an equivalence relation.

(1)
P

p� X

Q

m � q� Y

f� (2)
P

p� X

Q

m � q�
p
′ �

Y

f� (3)
X

X1

�
f1

X2

f
2�

In the following, we work with respect to a fixed label set L. Given a model
category M, whose objects have a label set, we restrict our attention to the fibre over
L in M with respect to the obvious functor projecting the model objects to their
label sets. This is exactly the subcategory of M with objects those models with label
sets L, and morphisms those having the identity on L, 1L, as label component. We
denote the fibre over L in M by ML. Observe that all the adjunctions of Section 1
cut down to the fibres; in particular we have:

CL

⊂ �
� ETL

�
� ⊃

EL

2.2 Hp-b via Open Maps

To obtain a natural instantiation of P-bisimilarity for causal trees we single out a

path category within CL. Path objects are naturally taken to be causal branches,

that is those causal trees which correspond to finite sequences of transitions.

Definition 2.1 With respect to L, define the category of causal branches CBranL

to be the full subcategory of CL with objects those finite causal trees C satisfying:

(i) no forwards branching: s
a
→ s′ & s

b
→ s′′ =⇒ a = b & s′ = s′′.

S. Fröschle, S. Lasota / Electronic Notes in Theoretical Computer Science 154 (2006) 3–18 11

A morphism m : P → Q in CBranL shows how the causal branch Q can extend

the causal branch P : by additional transitions, and/or by increased concurrency.

The CBranL-open morphisms are exactly those which are zig-zag (c.f. [4]) and

additionally preserve causality; short we say they are causal zig-zag.

Definition 2.2 Let f = (σ, 1L) : C → C ′ be a morphism in CL. We say f is

causal zig-zag iff it satisfies the following two conditions:

(i) zig-zag: for all s ∈ SC , if σ(s)
a
→ s′ in C ′ then s

a
→ u in C and σ(u) = s′, for

some u ∈ SC .

(ii) causality-preserving: for all t, t′ ∈ TranC , t <C t′ =⇒ f(t) <C′ f(t′).

Lemma 2.3 The CBranL-open morphisms of CL are exactly those which are

causal zig-zag.

Proof. Let f = (σ, 1L) : C → C ′ be a morphism in CL.
‘⇒’: Suppose f is CBranL-open. To prove that f is zig-zag assume s ∈ SC

and a transition σ(s)
a
→ s′ in C ′. Every state in a causal tree is reachable. This

implies there must be a run w = sin
C

a1→ s1 · · ·
an→ s in C, and consequently a run

w′ = sin
C′

a1→ σ(s1) · · ·
an→ σ(s)

a
→ s′ in C ′. Let P be the causal branch induced by w,

and Q that induced by w′. In CL there is a morphism p : P → C mapping P to w,
and a morphism q : Q → C ′ mapping Q to w′ respectively. Furthermore, there is a
unique morphism m : P → Q, which extends P by the a-transition (and possibly by
increased concurrency). But altogether this amounts to the following commuting
diagram:

P
p� C

Q

m �

q
� C′

f�

Since f is CBranL-open we obtain a morphism p′ : Q → C such that p′ ◦ m = p
and f ◦ p′ = q:

P
p� C

Q

m �

q
�
p
′ �

C′

f�

But this implies there must be s
a
→ u in C with σ(u) = s′ for some u ∈ SC , as

required by the zig-zag condition.

To show that f preserves causality, let t, t′ ∈ TranC such that t′ <C t. To the

contrary assume f(t′) �<C′ f(t). There must be a run w = t1 . . . ti . . . tn in C with

ti = t′ and tn = t, and consequently a run w′ = f(t1) . . . f(ti) . . . f(tn) in C ′. Let

P be the causal branch induced by w and Q be that induced by w′. In CL there is

a morphism p : P → C mapping P to w, and a morphism q : Q → C ′ mapping Q

to w′ respectively. Further, there is a unique morphism m : P → Q, which at least

extends P by requiring the ith transition to be concurrent with the nth. As before,

f , p, q, and m amount to a commuting square, and since f is CBranL-open there

must be p′ : Q → C such that p′ ◦ m = p and f ◦ p′ = q. But since morphisms

preserve concurrency this contradicts our assumption t′ <C t.

S. Fröschle, S. Lasota / Electronic Notes in Theoretical Computer Science 154 (2006) 3–1812

‘⇐’: Assuming f is zig-zag and causality-preserving, we must show f is CBranL-
open. Suppose two causal branches P and Q in a commuting square:

P
p� C

Q

m �

q
� C′

f�

Clearly, p maps P to a run w = sin
C

a1→ s1 . . .
an→ sn in C, and q maps Q to a possibly

extended run w′ = sin
C′

a1→ σ(s1) . . .
an→ σ(sn)

b1→ s′1 . . .
bm→ s′m in C ′. Since f is zig-zag

there exists a suitable extension of w in C: there is we = sn
b1→ u1 . . .

bm→ um such

that σ(ui) = s′i for all i ∈ [1,m]. Let σp′ : SQ → SC be the unique function that

maps Q to wwe. It is clear that p′ = (σp′ , 1L) is a map from Q to C which satisfies

p′ ◦ m = p and f ◦ p′ = q. Further, p′ is clearly a morphism from the underlying

transition system of Q to that of C. If we additionally achieve that p′ preserves

concurrency then we can conclude: p′ is a morphism as required to establish that f

is CBranL-open.

Let t, t′ ∈ TranQ such that t ConQ t′ (this is indeed always given). Assuming

p′(t′) <C p′(t) we want to show t′ <Q t. Since f is causality-preserving we obtain

f(p′(t′)) <C′ f(p′(t)), which immediately implies q(t′) <C′ q(t). By q being a

morphism and t ConQ t′ the latter gives us t′ <Q t as required. �

It turns out that CBranL-bisimilarity coincides with the well-known hp-b. Two

systems are hp-bisimilar iff their behaviour can be bisimulated while preserving the

causal dependencies between their transitions. Technically, this can be realized by

basing hp-b on pairs of synchronous runs.

Let C1, C2 be causal trees with label sets L, r1 = t1 . . . tn ∈ Runs(C1), and

r2 = t′1 . . . t′m ∈ Runs(C2). r1 and r2 are synchronous iff n = m, ∀i ∈ [1, n], l1(ti) =

l2(t
′
i), and ∀i, j ∈ [1, n], ti < tj iff t′i < t′j . We denote the set of synchronous runs of

C1 and C2 by SRuns(C1, C2).

H ⊆ SRuns(C1, C2) is prefix-closed iff (r1t1, r2t2) ∈ H implies (r1, r2) ∈ H. We

assume hp-bisimulations to be prefix-closed; this restriction has no effect on the

induced equivalence.

Definition 2.4 Let C1 and C2 be causal trees with label sets L.

A history preserving (hp-) bisimulation relating C1 and C2 is a prefix-closed relation

H ⊆ SRuns(C1, C2) that satisfies:

(i) (ε, ε) ∈ H.

(ii) If (r1, r2) ∈ H and r1t1 ∈ Runs(C1) for some t1 ∈ Tran1, then there is t2 ∈
Tran2 such that (r1t1, r2t2) ∈ H.

(iii) Vice versa.

C1 and C2 are hp-bisimilar iff there exists a hp-bisimulation relating C1 and C2.

Given a morphism f = (σ, 1L) : C → C ′ in CL we define the image of runs

of C in C ′ inductively by: f(ε) = ε; f(r (s, a, s′)) = f(r) (σ(s), a, σ(s′)). If f is

S. Fröschle, S. Lasota / Electronic Notes in Theoretical Computer Science 154 (2006) 3–18 13

CBranL-open and thus causality-preserving, it is easy to show that a run r of C

and its image in C ′ form a pair of synchronous runs.

Proposition 2.5 Let f : C → C ′ be a CBranL-open morphism in CL. For any

r ∈ Runs(C) we have: (r, f(r)) ∈ SRuns(C,C ′).

Proof. Let f : C → C ′ be a CBranL-open morphism in CL, and suppose r =

t1 . . . tn ∈ Runs(C). Clearly, f(r) ∈ Runs(C ′). It is also clear that r and f(r) are of

equal length, and that ∀i ∈ [1, n], l(ti) = l′(f(ti)) (since the label component of f

is 1L). It remains to show that ∀i, j ∈ [1, n], ti < tj iff f(ti) <′ f(tj). One direction

follows since morphisms preserve concurrency; the other direction is a consequence

of Lemma 2.3, which implies that f preserves causality. �

Theorem 2.6 Two causal trees, with label sets L, are CBranL-bisimilar iff they

are hp-bisimilar.

Proof. ‘⇒’. Let f : C → C ′ be a CBranL-open morphism in CL. We show how

from f we obtain a hp-bisimulation relating C and C ′. By transitivity of hp-b this

will clearly establish the ‘⇒’-direction. Define H = {(r, f(r)) | r ∈ Runs(C)}. By

Prop. 2.5 and prefix-closure of Runs(C) it is clear that H is a prefix-closed subset

of SRuns(C,C ′). To prove that H is a hp-bisimulation for C and C ′ we further

need to verify that conditions (i)-(iii) of Def. 2.4 are satisfied. (i) is obvious by

ε ∈ Runs(C). (ii) follows easily from f being a morphism. (iii) can be obtained

with the zig-zag condition, which f satisfies by Lemma 2.3.

‘⇐’. Let H be a hp-bisimulation relating two causal trees C1 and C2, with label

sets L. We observe that H can be regarded as a causal tree, CH, and that there are

two morphisms f1 : CH → C1 and f2 : CH → C2 in CL.

For i ∈ {1, 2} we define a function πi : SRuns(C1, C2) → Si by: πi(ε, ε) = sin
i ,

and πi(r1t1, r2t2) = tgt(ti). Further, for i ∈ {1, 2} we define the pair of maps fi =

(πi, 1L). Given (r, a, r′) ∈ SRuns(C1, C2) × L × SRuns(C1, C2) we write fi(r, a, r′)

short for (πi(r), a, πi(r
′)).

Let CH = (H, (ε, ε), L,TranH, <H) where

TranH = {((r1, r2), a, (r′1, r
′
2)) | (r1, r2), (r

′
1, r

′
2) ∈ H, r1

a
→1 r′1 & r2

a
→2 r′2},

∀u, u′ ∈ TranH. u <H u′ ⇐⇒ f1(u) <1 f1(u
′) & f2(u) <2 f2(u

′).

Below we show that CH is indeed a causal tree, and that, with π1, π2 restricted to

H, f1 : CH → C1 and f2 : CH → C2 are indeed morphisms in CL. Furthermore, we

show that f1 and f2 are causal zig-zag. But then by Lemma 2.3 there is a span of

CBranL-open morphisms as required.

It is easily seen that TH = (H, (ε, ε), L,TranH) is a transition system: (ε, ε) ∈ H
by clause (i) of hp-bisimulation (c.f. Def. 2.4). Furthermore, TH satisfies the axioms

of synchronization trees: axioms (ii) and (iii) follow from the definition of CH; to

see that (i) holds consider that H is prefix-closed. <H is a strict order since <1 and

<2 are strict orders.

Then, it only remains to verify that CH satisfies axiom (i) of Def. 1.1. Let

u = (rs = (r1
s , r

2
s), a, rt) and u′ = (r′s, b, r

′
t) be transitions of CH such that u′ <H u.

S. Fröschle, S. Lasota / Electronic Notes in Theoretical Computer Science 154 (2006) 3–1814

By definition of CH we have fi(u
′) <i fi(u) for i = 1, and 2. This means f1(u

′)

occurs on r1
s and f2(u

′) on r2
s . Indeed, they must occur at the same position since

u′ shows they are matched against each other somewhere. Thus, r′t
v
→ rs for some

v ∈ L∗ as required.

We show that f1 is a causal zig-zag morphism; the same will follow for f2 by

the symmetric argument. First we check that f1 satisfies the axioms of transition

system morphisms. Axiom (i) is obvious by definition of π1 and CH’s initial state.

Axiom (ii) is straightforward by definition of π1 and TranH when considering that

for all (r1, r2) ∈ H, r1 is a run of C1. To verify axiom (i) of causal tree morphisms

let u, u′ ∈ TranH such that u ConH u′ and f1(u
′) <1 f1(u). Since the elements of

H are pairs of synchronous runs we also obtain f2(u
′) <2 f2(u). But this implies

u′ <H u by definition of <H.

f1 is zig-zag follows from H being a bisimulation. Let r = (r1, r2) ∈ H, and

t1 = (π1(r), a, s′) ∈ Tran1. Clearly, r1t1 ∈ Runs(C1). Then by clause (ii) of Def. 2.4

we obtain t2 ∈ Tran2 such that r′ = (r1t1, r2t2) ∈ H. But r′ is as required to prove

the zig-zag condition: clearly, π1(r
′) = s′, and r

a
→ r′ in CH.

To verify that f1 is causality-preserving assume u′ <H u. But then f1(u
′) <1

f1(u) by definition of <H. �

2.3 Relating Hp-b and Hhp-b in ET

We capture the difference between hp-b and hhp-b by characterizing them within

the category ET. We carry over hp-b to event structures and event trees. Two

event structures E1 and E2 are hp-bisimilar iff et2c(e2et(E1)) and et2c(e2et(E2))

are hp-bisimilar; this is consistent with the standard definition. Analogously, it

is natural to define: two event trees T1 and T2 are hp-bisimilar iff et2c(T1) and

et2c(T2) are hp-bisimilar.

Consider the following instantiation of P-bisimilarity for event trees: as the

path category within ETL choose the image of CBranL under the embedding

functor c2et ; for simplicity, call it CBranL as well. CBranL-bisimilarity in ETL

characterizes hp-b:

Proposition 2.7 Two event trees T1 and T2 are CBranL-bisimilar iff they are

hp-bisimilar.

Proof. Let T1 and T2 be event trees. It follows from Theorem 2.6 that et2c(T1)

and et2c(T2) are hp-bisimilar iff they are related by a CBranL-open span in CL.

By a general result of [4] for coreflections, f is CBranL-open in ETL iff et2c(f)

is CBranL-open in CL. Hence, if T1 and T2 are related by an open span in ETL,

then et2c(T1) and et2c(T2) are related by an open span in CL, as well.

For the opposite direction, we will use the fact that f is CBranL-open in CL iff

c2et(f) is CBranL-open in ETL, which was also shown in [4]. Hence, an open span

relating et2c(T1) and et2c(T2) in CL can be transformed by c2et to an open span

relating c2et(et2c(T1)) and c2et(et2c(T2)) in ETL. Now, composing it with the

counit components for T1 and T2 we get an open span for T1 and T2, since counit

S. Fröschle, S. Lasota / Electronic Notes in Theoretical Computer Science 154 (2006) 3–18 15

components are necessarily open (also proved in [4]) and open maps are closed under

composition. �

Given a span of morphisms (as depicted in Section 2.1) in ETL, we say that the

span is rooted in CL if the root object X is c2et(C) for some causal tree C, and

that it is rooted in EL if X is e2et(E) for some event structure E. We have:

Proposition 2.8 Two event trees T1 and T2 are CBranL-bisimilar iff they are

related by a CBranL-open span rooted in CL.

Proof. Given an open span relating T1 and T2, it is sufficient to compose it with

the counit component εX : c2et(et2c(X)) → X, where X is the root object of the

span; εX is open by a result of [4], hence we get an open span rooted in CL. �

By Prop. 2.7 and 2.8 it follows:

Theorem 2.9 Two event structures E1 and E2 are hp-bisimilar iff e2et(E1) and

e2et(E2) are related by a CBranL-open span in ETL rooted in CL.

Hhp-b is characterized in EL as PomL-bisimilarity [4], where PomL is the full

subcategory of finite pomsets, i.e., of finite event structures without conflict (which

means all finite subsets of events are consistent). We obtain:

Lemma 2.10 Let f : E1 → E2 be a morphism of event structures. Then f is

PomL-open in EL iff e2et(f) is CBranL-open in ETL.

Proof. A crucial observation is that PomL is an image of CBranL via et2e, in the

following sense: for each T in CBranL, et2e(T) is a pomset, and further, if f is a

morphism in CBranL then et2e(f) is in PomL; moreover, for any pomsets E1, E2

and a morphism g : E1 → E2 in PomL, there exist objects T1, T2 and a morphism

f : T1 → T2 in CBranL such that E1 = et2e(T1), E2 = et2e(T2), and g = et2e(f).
Hence, two considered openness conditions involve commuting squares of the

following related forms, in ETL and EL, respectively:

P
p� e2et(E1) et2e(P)

p#
� E1

Q

m

�

q
�

r

�

e2et(E2)

e2et(f)

�
et2e(Q)

et2e(m)

�

q#
�

r
#

�

E2

f

�

Morphism m : P → Q is in CBranL, and # denotes a bijective correspondence of

hom-sets, ETL(T, e2et(E)) ←→ EL(et2e(T), E), given by the adjunction between

fibres ETL and EL. By the general adjunction law, (e2et(f)◦r)# = f◦r#, hence the

bottom-right triangle commutes in the left-hand side diagram iff the corresponding

triangle commutes in the right-hand one. Furthermore, by the same law it follows

that (r ◦ m)# = r# ◦ et2e(m), hence also the upper-left triangle commutes in the

left-hand diagram iff the corresponding triangle commutes in the right-hand one.

Finally, combining the two mentioned equations, namely (e2et(f) ◦ p)# = f ◦ p#

and (q ◦ m)# = q# ◦ et2e(m), we verify that the left-hand square commutes iff the

S. Fröschle, S. Lasota / Electronic Notes in Theoretical Computer Science 154 (2006) 3–1816

other square does. As a conclusion, f is PomL-open iff e2et(f) is CBranL-open,

which concludes the proof. �

Theorem 2.11 Two event structures E1 and E2 are hhp-bisimilar iff e2et(E1) and

e2et(E2) are related by a CBranL-open span in ETL rooted in EL.

Proof. As shown in [4], two event structures E1 and E2 are hhp-bisimilar iff they

are PomL-bisimilar in EL. An open span relating E1 and E2 can be transformed

via e2et to a span in ETL, which is CBranL-open by Lemma 2.10. Apparently,

this span is rooted in EL.
For the opposite direction, assume that e2et(E1) and e2et(E2) are related by

a CBranL-open span, with the root object et2e(E) for some event structure E.
Functor e2et is full and faithful; hence the two arrows of the span are necessarily
obtained from some morphisms of event structures via e2et :

e2et(E)

e2et(E1)
�

e2
et(

f1)

e2et(E2)

e2et(f
2)�

such that f1 : E → E1 and f2 : E → E2. Hence, we get a span relating E1 and E2

in EL, which is PomL-open by Lemma 2.10. �

Theorems 2.9 and 2.11 indicate that C is the proper choice of model for hp-b

while E is the natural choice for hhp-b.

3 Conclusions

Altogether we have advocated causality as a non-embedding but adjoining concept

to true-concurrency. (We prefer the admittedly biased term ‘true-concurrency’ to

‘independence’ here since (in)dependence can be captured without a notion of event

in the style of causal trees, just as well.) We summarize:

(i) Causality models are more basic than truly-concurrent models in that they cap-

ture causality without a notion of event. On the other hand, they are more expres-

sive than the latter in that their possible runs can be freely specified in terms of a

tree; in contrast, truly-concurrent models and their sets of runs adhere to certain

axioms that express characteristics of independent events.

(ii) Hp-b turns out to have a straightforward open map characterization when we

take causal trees to be the model category. Our results motivate that hp-b is the

bisimilarity for causality while hhp-b remains the bisimilarity for true-concurrency.

Our work should be compared to [1], which relates causal trees to prioritized

event structures. It would also be interesting to confirm our results with respect

to models that keep the cyclic structure. A type of history-dependent automata,

called causal automata, should be examined in this context.

Our investigation has led us to the new model of event trees. We are not keen on

advertising yet another model for concurrency but event trees do arise in practice:

given a truly-concurrent system, assume we restrict our attention to a subset of its

S. Fröschle, S. Lasota / Electronic Notes in Theoretical Computer Science 154 (2006) 3–18 17

runs that is not necessarily trace-closed. This is exactly what we do during a partial

order reduction; indeed it is the intention here to lose trace-closure.

We are working on a characterization of those event structures E which corre-

spond to causal trees in that E = et2e(c2et(C)) for some causal tree C. We expect

that such event structures are optimal for partial order reduction.

References

[1] C. Bodei. Some concurrency models in a categorical framework. In ICTCS’98, pages 180–191. World
Scientific, 1998.

[2] Allan Cheng and Mogens Nielsen. Observing behaviour categorically. In FST&TCS’95, volume 1026 of
LNCS, pages 263–278, 1995.

[3] Philippe Darondeau and Pierpaolo Degano. Causal trees: interleaving + causality. In Semantics of
systems of concurrent processes, volume 469 of LNCS, pages 239–255, 1990.

[4] André Joyal, Mogens Nielsen, and Glynn Winskel. Bisimulation from open maps. Information and
Computation, 127(2):164–185, 1996.

[5] Marco Pistore. History Dependent Automata. PhD thesis, University of Pisa, 1999.

[6] Glynn Winskel and Mogens Nielsen. Models for concurrency. In Handbook of logic in computer science,
Vol. 4, pages 1–148. Oxford Univ. Press, New York, 1995.

S. Fröschle, S. Lasota / Electronic Notes in Theoretical Computer Science 154 (2006) 3–1818

	Relating Causal Trees to Other Models for Concurrency
	Bisimulation from Open Maps
	P-bisimilarity
	Hp-b via Open Maps
	Relating Hp-b and Hhp-b in ET

	Conclusions
	References

