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Abstract 
This article introduces an approach to measures of 
information granules based on rough set theory.    
Informally, an information granule is a representation of 
a multiset (or bag) of real-world objects that are 
somehow indistinguishable (e.g., water samples taken 
from the same source at approximately the same time), 
or similar (e.g., various renditions of  Chopin’s sonatas 
or various series of very high, tinkling trills common in 
the songs of winter wrens), or which cause the same 
functionality (e.g., unmanned helicopters, line-crawling 
robots).   Examples of measures of information granules 
based on rough set theory are inclusion, closeness, size, 
and enclosure.   All of these measures are based on 
rough inclusion.   This paper is limited to a 
consideration of measures of inclusion based on a 
straightforward extension of classical rough membership 
functions and closeness based on measurement of 
separation of equivalence classes in a partition of the 
universe containing information granules.    
Measurement of sensor-based information granules has 
been motivated by recent studies of sensor signals.   A 
sensor signal is a non-empty, finite set of sample sensor 
signal values temporally ordered.   Classification of 
sensor signals requires measurements of sample signal 
values over subintervals of time.  The contribution of this 
article is the introduction of a rough set approach to 
measuring information granule inclusion and closeness. 
 
Keywords:  Closeness, inclusion, indistinguishability, 
information granule, measure, rough sets, sensor. 
 
1.   Introduction 
 
Measures inclusion and closeness of information 
granules based on rough set theory are introduced in this 
article.   This research is part of rapidly growing research 
on information granulation, granular computing and 

computing with words introduced by Zadeh [26] and the 
calculus of granules [13], [18].    In this research, an 
information granule is a temporally ordered multiset (or 
bag) [24]-[25] of real-world objects (e.g., sample sensor 
signal values).   A multiset is a set where duplicates are 
counted.    Such information granules are constructed 
from vectors of real numbers using a variant of the 
traditional indiscernibility relation in rough set theory.  
These information granules are associated with 
indiscernibility classes containing sample signal values 
that occur in precisely defined temporal intervals.    The 
measure of inclusion of information granules considered 
in this paper is based on a straightforward extension of 
rough membership functions [2].   The partition of a 
universe of objects into temporally-ordered information 
granules containing equivalent objects (i.e., equivalence 
classes) provides a basis for a measure of closeness of 
information granules.   This partition of the universe is 
accomplished with an indistinguishability relation Ing 
introduced in [30].    The relation Ing is briefly presented 
in this article.    Consideration of rough measures of 
inclusion and closeness of information granules is 
motivated by an interest in the problem of determining 
the size and number of clusters of related objects.   
Granule approximation in this paper is cast in the context 
of infinite rather than finite universes.   Consideration of 
granule approximation is needed to classify a number of 
different forms of uncountable sets (e.g., analog sensor 
signals such as speech, electrocardiograms, 
electroencephalograms).   This is important in the 
context of parameterized approximation spaces used in 
designing intelligent systems [15, 18-23], especially [18].     
The rough measures described in this paper have a 
number of practical applications, e.g., data mining [28], 
performance maps [27], sensor fusion [8], signal analysis 
[9], robotics [5], and neurocomputing [5, 29].    The 
contribution of this article is the introduction of an 
approach to measuring granule inclusion and closeness 
of information granules based on rough set theory.    
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 This paper is organized as follows. Section 2 presents 
introduces the parameterized indistinguishability relation 
and approximation of sets.    This section also introduces 
a new form of rough membership set function.    A 
natural extension of these ideas is the introduction of a 
rough measure space.   Measurement of rough inclusion 
of information granules is considered in Section 3.    
Measurement of closeness of information granules is 
defined and illustrated in Section 4. 
 
2.  Indistinguishability and Information 
Granule Approximation 
 
In laying the groundwork for approximate reasoning 
about uncountable sets in the context of rough set theory 
[1]-[4], we introduce an indistinguishability relation Ing 
to partition universes of reals.   That is, consider a 
universe that is a subset of the reals, where set 
approximation and measurement can be carried out 
relative to a partition of such a universe into equivalence 
classes (subintervals that are sources of granules of 
information about the sensorial world).    This partition 
is accomplished using Ing.   To see this, let S = (U, A) be 
an information system where U is a non-empty set and A 
is a non-empty, finite set of attributes, where a: U → Va 
and Va ⊆ ℜ for every a ∈ A, so that ℜ aa A

V V
∈

⊇ =


.   

Let a(x) ≥ 0, δ > 0 and let  ( ) /a x δ  denote the greatest 
integer less than or equal to a(x)/δ (“floor” of a(x)/δ).    
In addition, let  δ/)(xa  denote the least integer bigger 
than or equal to a(x)/δ (“ceiling” of a(x)/δ) for attribute a.   
If a(x) < 0, then    δδ /|)(|/)( xaxa −= , where | • | 
denotes the absolute value of •.   The parameter δ serves 
as a means of computing a “neighborhood” size on real-
valued intervals.  Reals representing sensor 
measurements within the same subinterval bounded by 
kδ and (k+1)δ for integer k are considered 
δ−indistinguishable.    For each B ⊆ A, there is 
associated an equivalence relation IngA,δ (B) defined as 
follows: 
 

   { }2
( ) ( , ') . a(x)/ a(x')/

,
|Ing B x x a B

A
δ δ

δ
= ∈ ℜ ∀ ∈ =  

 
Remark.    In this paper, clustering is a relation defined 
on vectors of real numbers. If B = {a1,…,am}, then an 
indiscernibility relation is defined on objects (x, x1,…, 
xm) = (x(t), a1(x(t)), ..., am(x(t)) and the indiscernibility 
classes are cells.   Two vectors (x, x1,…, xm) and (y, 
y1,…, ym) are indistinguishable if, and only if,   
 
x/δ = y/δ and ai(xi)/δ = ai(yi) /δ for i = 1, …, m. 
 

If (x, x') ∈ IngA,δ (B), we say that objects x and x' are 
indistinguishable from each other relative to attributes 
from B.  A subscript Id denotes a set consisting of the 
identity sensor id(x) = x.    If, for example, attribute id 
partitions U on intervals [0, 1), [1, 2), It can be shown 
that IngA,d (B ∪ Id) is an equivalence relation.   The 

notation [ ]B Idx δ

∪  denotes equivalence classes of Ing A,δ (B 
∪ Id).  Further, partition U/ Ing A,δ (B ∪ Id) denotes the 
family of all equivalence classes of relation Ing A,δ (B ∪ 
Id) on U.    For X ⊆ U, the set X can be approximated 
only from information contained in B by constructing a 
B-lower and a B-upper approximation denoted by BX 
and BX,  respectively.    The B-lower approximation of 

X is the set { }| [ ]
B Id

BX x x X
δ

∪
= ⊆  and the B-upper 

approximation of X is the set { }| [ ] .
B Id

BX x x X
δ

∪
= ∩ ≠ ∅  

 
3.   Rough Inclusion 
 
A particular form of rough inclusion is defined with a set 
function form of the original rough membership function 
[2]. Let S = (U, A) be an information system with non-
empty set U and non-empty set of attributes A.   Further, 
let B ⊆ A and let [ ]By δ  be an equivalence class of any 
sensor reading y ∈ ℜ.   Let ρ be a measure of on℘(U), 
where ℘(U) is the powerset of U.   Then define 

( ), : [0,1]B
y Uδµ ℘ →  as in (1). 

 

( )
[ ]( )

[ ]( )
, B

B

B
y

y

y

X
X

δ

δ

δ
ρ

µ
ρ

∩
=  (1) 

 
for any X ∈℘(U).  Also, ,B

y
δµ is a measure of rough 

inclusion of X in [ ]By δ .  If )]([ δρ By =0, then )][( δρ ByX ∩  
= 0 and we define 0/0 (division by 0) to be equal to 0.    
For example, ,B

y
δµ in (1) can be computed using (2). 
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Notice that ,B

y
δµ  in (2) is a non-negative, additive set 

function.    Hence, ,B
y

δµ is a measure of X ∈℘(U).   It 

can also be shown that ,B
y

δµ in (1) is a measure on℘(U) 
for arbitrary measure ρ.  
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4. Measure of Closeness of Information 
Granules 

 
In this section, a measure of closeness of information 
granules is introduced.    The idea of a sensor signal as a 
temporally ordered multiset is discussed in this section.    
The notion of clustering temporally ordered data has 
been considered by others (see, e.g., [30]).    What is 
new in this paper is the introduction of boxes 
representing indiscernibility classes and the construction 
of clusters of temporally ordered data extracted from 
boxes that are close to each other.  
 
Proposition 3.1   Let S = (U, A) be an information 
system and let ρ and y be defined as in (2).   The 
function B,y :δµ ℘(U) →ℜ in (3) is a measure. 

∑
⊆

⋅+

∩
=

XBBy BBB

B
yB

yyyd
yX

X
δ

δδδ

δ
δ

ρ

ρ
µ

]'[

,
)]'([))][,]'([(

)]'[(
)(

1
   (3) 

where d(•) denotes a metric on the partition 
)(/ BU A δ,Ing  of U defined by equivalence relation 

)(BA δ,Ing . The formula (3) may be written as in (4) 

B

B

B B

B
B,y

[ y '] BX B B B

B B

[ y '] BXB B B B

[ y '] [ y ]

(X [y '] )
(X)

(d([y '] ,[y] ) 1) ([y] )

(X [y] ) (X [y '] ) 1

([y] ) ([y '] ) d([y '] ,[y] ) 1

δ

δ

δ δ

δ

δ

δ δ δ
⊆

δ δ

δ δ δ δ
⊆

≠





ρ ∩
µ = =

+ ⋅ ρ

ρ ∩ ρ ∩
+ ⋅

ρ ρ +

∑

∑
(4) 

It is clearly seen that B,y

δµ defined in (4) is measure (1) 
completed with a sum of analogous measures for the 
remaining equivalence classes weighted by the reverse 
of distance (plus one) between distinct class [ ]δBy  and the 
remaining equivalence classes.    The ratio 
1/ ([ '] ,[ ] ) 1B Bd y yδ δ +  serves as a weight of the sum in (4).   
To obtain values in the interval [0, 1] for the measure (3), 
the normalization coefficient α(y) in (5) is introduced. 

∑
⊆

+

=

XBBy BB yyd

y

δ
δδ

α

]'[
)][,]'([

)(

1
1

1  (5) 

As a result, the following proposition holds.   If d is a 
metric defined on the set  )(/ BU A δ,Ing  and α(y) is as in 

formula (5), then function ],[)(:, 10→ ℘ UyB
δµ  defined in 

(6) is a measure on the set ℘(U).  

B

B
B,y

[ y '] BX B B B

(X [y '] )
(X) (y)

(d([y '] ,[y] ) 1) ([y '] )δ

δ

δ

δ δ δ
⊆

ρ ∩
µ = α

+ ⋅ ρ
∑ (6) 

 
Example. Consider set X and equivalence class 

0.1

0.5
[ ]B y
y

=
defined relative to y = 0.5.   For δδ

BB yy ][,]'[   , let 

  ny B =δδ /]'[ and   my B =δδ /][  and define the distance 

metric to be )][,]'([ δδ
BB yyd = |n-m|.    Now we can 

compute coefficient α such that 
 

 3750
33050150330

150 .
....

).( =
++++

=α .    

 
Values )]'([ δρ By  and  )]'[( δρ ByX ∩  are shown in Table 1. 
 
 

Table 1.   Sample ρ Values 
Equivalence 
classes 

)]'([ δρ By  

B

(X

[y '] )δ

ρ ∩
 B

B +1

d([y '] ,

[y] )

δ

δ
 

10.'|]'[ =yBy δ  2.36 0.67 3 

30.'|]'[ =yBy δ  5.75 3.26 2 

50.'|]'[ =yBy δ  4.43 1.96 1 

60.'|]'[ =yBy δ  7.47 3.72 2 

90.'|]'[ =yBy δ  3.99 2.39 3 
 
 
Then, according to formula (6), we obtain 50

10
.

.
, | =yyBµ  (X) 

= 0.476.       
 
Consider the sample universe U = [0, 0.4)×[0, 0.3), a 
finite sample X ⊂ U as shown in Fig. 1.  The 
corresponding sample sensor values are not shown in 
Figure 1.   Only the partition of U coming from sensor 
values is shown.   The equivalence relation IngA,δ (B) 
partitions this sample universe as it is shown on Figure 1.    
Let us assume that each equivalence class consists of just 
8 points.    Every equivalence class (also called a mesh 
cell) is numbered by a pair of indices En,m.    Notice that 
two sensor values are approximately equal in E0,0, and 
are not considered duplicates.   In addition, sensor values 
in E0,0 (and every in every cell of the mesh) are time-
ordered with the relation ≤before (this relation is reflexive, 
transitive and anti-symmetric).    By definition, then,  
En,m is a partially ordered multiset.    For example, 
assume that a(x(t)) occurs before a(x(t’)).    Then we 
write a(x(t)) ≤before a(x(t’)).   In effect, E0,0  and every 
other cell in the mesh in Fig. 1 constitutes a temporally 
ordered multiset.   For such an information system and 
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the partition U/IngA, δ(B), a well-known maximum metric 
is chosen, namely, ),( ,, 2211 EE mnmnd  = max {|n1 – n2|, |m1 
– m2|}.   Finding an equivalence class with the biggest 
measure of X in sense of (6) leads to choice of  E0,0 while 
applying measure (10) gives as result class E3,1.   If we 
are interested in finding single equivalence class with the 
bigger (or least) degree of overlapping with set X, then 
measure (5) should be chosen, but when we want to find 
a group of ‘neighbour’ (in sense of “close”) equivalence 
classes  that overlap with X in the biggest (least) degree, 
then measure (9) is suggested. 
 

( )3,0 3,2d E ,E 2=

 
Fig. 1.   Distance Measurements in a δ-mesh 

 
Figure 1 shows how the maximum metric measures 
distance.  For example, d(E3,0,E3,2) = max{|3-3|,|2-0|}=2 
between equivalence classes E3,0 and E3,2 may be of 
interest in cases where measurement of the separation 
between clusters (i.e., multiset that is the union of sensor 
values in a mesh cell and in neighboring cells) of sample 
sensor values is important (e.g., separation of cells in a 
mesh covering a control system performance map that 
contains “islands” of system response values, some 
normal and some verging on chaotic behavior as in [27]). 
 
5.   Conclusion 
 
Measures of inclusion and closeness of information 
granules have been presented in the context of rough set 
theory.    Measurement of the degree of inclusion of one 
granule in another granule is made possible by the 
introduction of an indistinguishability equivalence 
relation Ing and a straightforward extension of the rough 
membership function.  The relation Ing has been 
introduced to make it possible to identify elements that 
are considered “indistinguishable” from each other 
because the elements belong to the same subinterval of 
reals.   The partition of a universe using Ing results in a 
mesh of cells (called a δ-mesh), where each cell of the 
mesh represents an equivalence class.   The 
configuration of cells in a δ-mesh yields a useful granule 
measure.   That is, a measure of closeness of a pair of 
information granules contained in cells of the δ-mesh 
results from determining the number of cells separating 
members of the pair using a distance metric.   The 
measures inclusion and closeness of information 

granules presented in this article have far-reaching 
implications.   These measures provide a basis for a new 
approach to clustering of temporally ordered objects as 
well as granular derivatives and granular integrals based 
on rough set theory, which have a number of practical 
applications, namely, design of rough processors, the 
calibration of parameters (learning) of rough neural 
networks, measures of gradients in performance maps 
for dynamical systems, signal analysis, and digital image 
processing.    The presentation of granular derivatives 
and integrals and their application is outside the scope of 
this paper. 
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