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Abstract. This paper concerns a relationship between Bayes’ inference
rule and decision rules from the rough set perspective.
In statistical inference based on the Bayes’ rule it is assumed that some
prior knowledge (prior probability) about some parameters without
knowledge about the data is given first. Next the posterior probability
is computed by employing the available data. The posterior probability
is then used to verify the prior probability.
In the rough set philosophy with every decision rule two conditional prob-
abilities, called certainty and coverage factors, are associated. These two
factors are closely related with the lower and the upper approximation
of a set, basic notions of rough set theory. Besides, it is revealed that
these two factors satisfy the Bayes’ rule. That means that we can use to
data analysis the Bayes’ rule of inference without referring to Bayesian
philosophy of prior and posterior probabilities.
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1 Introduction

This paper is an extended version of the author’s ideas presented in [5,6,7,8].
It concerns some relationships between probability, logic and rough sets and it
refers to some concepts of �Lukasiewicz presented in [3].

We will dwell in this paper upon the Bayesian philosophy of data analysis
and that proposed by rough set theory.

Statistical inference grounded on the Bayes’ rule supposes that some prior
knowledge (prior probability) about some parameters without knowledge about
the data is given first. Next the posterior probability is computed when the
data are available. The posterior probability is then used to verify the prior
probability.

In the rough set philosophy with every decision rule two conditional proba-
bilities, called certainty and coverage factors, are associated. These two factors
are closely related with the lower and the upper approximation of a set, basic
concepts of rough set theory. Besides, it turned out that these two factors satisfy
the Bayes’ rule. That means that we can use to data analysis the Bayes’ rule
of inference without referring to Bayesian philosophy, i.e., to the prior and pos-
terior probabilities. In other words, every data set with distinguished condition
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and decision attributes satisfies the Bayes’ rule. This property gives a new look
on reasoning methods about data.

2 Information System and Decision Table

Starting point of rough set based data analysis is a data set, called an information
system.

An information system is a data table, whose columns are labelled by at-
tributes, rows are labelled by objects of interest and entries of the table are
attribute values.

Formally by an information system we will understand a pair S = (U,A),
where U and A, are finite, nonempty sets called the universe, and the set of
attributes, respectively. With every attribute a ∈ A we associate a set Va, of
its values, called the domain of a. Any subset B of A determines a binary rela-
tion I(B) on U , which will be called an indiscernibility relation, and is defined
as follows: (x, y) ∈ I(B) if and only if a(x) = a(y) for every a ∈ A, where a(x)
denotes the value of attribute a for element x. Obviously I(B) is an equivalence
relation. The family of all equivalence classes of I(B), i.e., partition determined
by B, will be denoted by U/I(B), or simple U/B; an equivalence class of I(B),
i.e., block of the partition U/B, containing x will be denoted by B(x).

If (x, y) belongs to I(B) we will say that x and y are B-indiscernible or
indiscernible with respect to B. Equivalence classes of the relation I(B) (or
blocks of the partition U/B) are referred to as B-elementary sets or B-granules.

If we distinguish in an information system two classes of attributes, called
condition and decision attributes, respectively, then the system will be called a
decision table.

A simple, tutorial example of an information system (a decision table) is
shown in Table 1.

Table 1. An example of a decision table

Car F P S M

1 med. med. med. poor
2 high med. large poor
3 med. low large poor
4 low med. med. good
5 high low small poor
6 med. low large good

The table contains data about six cars, where F, P, S and M denote fuel
consumption, selling price, size and marketability, respectively.
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Attributes F, P and S are condition attributes, whereas M is the decision
attribute. Each row of the decision table determines a decision obeyed when
specified conditions are satisfied.

3 Approximations

Suppose we are given an information system (a datat set) S = (U,A), a subset X
of the universe U , and subset of attributes B. Our task is to describe the set X in
terms of attribute values from B. To this end we define two operations assigning
to every X ⊆ U two sets B∗(X) and B∗(X) called the B-lower and the B-upper
approximation of X , respectively, and defined as follows:

B∗(X) =
⋃

x∈U

{B(x) : B(x) ⊆ X},

B∗(X) =
⋃

x∈U

{B(x) : B(x) ∩X �= ∅}.

Hence, the B-lower approximation of a set is the union of all B-granules that are
included in the set, whereas the B-upper approximation of a set is the union of
all B-granules that have a nonempty intersection with the set. The set

BNB(X) = B∗(X) −B∗(X)

will be referred to as the B-boundary region of X.
If the boundary region of X is the empty set, i.e., BNB(X) = ∅, then X is

crisp (exact) with respect to B; in the opposite case, i.e., if BNB(X) �= ∅, X is
referred to as rough (inexact) with respect to B.

For example, let C = {F, P, S} be the set of all condition attributes. Then
for the set X = {1, 2, 3, 5} of cars with poor marketability we have C∗(X) =
{1, 2, 5}, C∗(X) = {1, 2, 3, 5, 6} and BNC(X) = {3, 6}.

4 Decision Rules

With every information system S = (U,A) we associate a formal language L(S),
written L when S is understood. Expressions of the language L are logical for-
mulas denoted by Φ, Ψ etc. built up from attributes and attribute-value pairs by
means of logical connectives ∧ (and), ∨ (or), ∼ (not) in the standard way. We
will denote by ||Φ||S the set of all objects x ∈ U satisfying Φ in S and refer to
as the meaning of Φ in S.

The meaning of Φ in S is defined inductively as follows:

1) ||(a, v)||S = {v ∈ U : a(v) = U} for all a ∈ A and v ∈ Va,
2) ||Φ ∨ Ψ ||S = ||Φ||S ∪ ||Ψ ||S ,
3) ||Φ ∧ Ψ ||S = ||Φ||S ∩ ||Ψ ||S ,
4) || ∼ Φ||S = U − ||Φ||S .
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A formula Φ is true in S if ||Φ||S = U.

A decision rule in L is an expression Φ → Ψ , read if Φ then Ψ ; Φ and Ψ are
referred to as conditions and decisions of the rule, respectively.

An example of a decision rule is given below

(F,med.) ∧ (P, low) ∧ (S, large) → (M,poor).

Obviously a decision rule Φ → Ψ is true in S if ||Φ||S ⊆ ||Ψ ||S .
With every decision rule Φ → Ψ we associate a conditional probability

πS(Ψ |Φ) that Ψ is true in S given Φ is true in S with the probability
πS(Φ) card(||Φ||S)

card(U) , called the certainty factor and defined as follows:

πS(Ψ |Φ) =
card(||Φ ∧ Ψ ||S)
card(||Φ||S)

,

where ||Φ||S �= 0.
This coefficient is widly used in data mining and is called “confidence coeffi-

cient”.
Obviously, πS(Ψ |Φ) = 1 if and only if Φ → Ψ is true in S.

If πS(Ψ |Φ) = 1, then Φ → Ψ will be called a certain decision rule; if
0 < πS(Ψ |Φ) < 1 the decision rule will be referred to as a possible decision rule.

Besides, we will also need a coverage factor

πS(Φ|Ψ) =
card(||Φ ∧ Ψ ||S)
card(||Ψ ||S)

,

which is the conditional probability that Φ is true in S, given Ψ is true in S with
the probability πS(Ψ).

Certainty and coverage factors for decision rules associated with Table 1 are
given in Table 2.

Table 2. Certainty and coverage factors

Car F P S M Cert. Cov.

1 med. med. med. poor 1 1/4
2 high med. large poor 1 1/4
3 med. low large poor 1/2 1/4
4 low med. med. good 1 1/2
5 high low small poor 1 1/4
6 med. low large good 1/2 1/2

More about managing uncertainty in decision rules can be found in [2].
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5 Decision Rules and Approximations

Let {Φi → Ψ}n be a set of decision rules such that:

all conditions Φi are pairwise mutally exclusive, i.e., ||Φi ∧ Φj ||S = ∅, for any
1 ≤ i, j ≤ n, i �= j, and (1)

n∑

i=1

πS(Φi|Ψ) = 1.

Let C and D be condition and decision attributes, respectively, and let
{Φi → Ψ}n be a set of decision rules satisfying (1).

Then the following relationships are valid:

a) C∗(||Ψ ||S) = ||
∨

π(Ψ |Φi)=1

Φi||S ,

b) C∗(||Ψ ||S) = ||
∨

0<π(Ψ |Φi)≤1

Φi||S ,

c) BNC(||Ψ ||S) = ||
∨

0<π(Ψ |Φi)<1

Φi||S =
n⋃

i=1

||Φi||S .

The above properties enable us to introduce the following definitions:

i) If ||Φ||S = C∗(||Ψ ||S), then formula Φ will be called the C-lower approxima-
tion of the formula Ψ and will be denoted by C∗(Ψ);

ii) If ||Φ||S = C∗(||Ψ ||S), then the formula Φ will be called the C-upper approx-
imation of the formula Φ and will be denoted by C∗(Ψ);

iii) If ||Φ||S = BNC(||Ψ ||S), then Φ will be called the C-boundary of the formula
Ψ and will be denoted by BNC(Ψ).

Let us consider the following example.
The C-lower approximation of (M, poor) is the formula

C∗(M,poor) = ((F,med.) ∧ (P,med.) ∧ (S,med.)) ∨
((F, high) ∧ (P,med.) ∧ (S, large)) ∨
((F, high) ∧ (P, low) ∧ (S, small)).

The C-upper approximation of (M, poor) is the formula

C∗(M,poor) = ((F,med.) ∧ (P,med.) ∧ (S,med.)) ∨
((F, high) ∧ (P,med.) ∧ (S, large)) ∨
((F,med.) ∧ (P, low) ∧ (S, large)) ∨
((F, high) ∧ (P, low) ∧ (S, small)).
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The C-boundary of (M, poor) is the formula

BNC(M,poor) = ((F,med.) ∧ (P, low) ∨ (S, large)).

After simplification we get the following approximations

C∗(M,poor) = ((F,med.) ∧ (P,med.)) ∨ (F, high),
C∗(M,poor) = (F,med.) ∨ (F, high).

The concepts of the lower and upper approximation of a decision allow us to
define the following decision rules:

C∗(Ψ) → Ψ,

C∗(Ψ) → Ψ,

BNC(Ψ) → Ψ.

For example, from the approximations given in the example above we get the
following decision rules:

((F,med.) ∧ (P,med.)) ∨ (F,high) → (M, poor),
(F,med.) ∨ (F,high) → (M, poor),
((F,med.) ∧ (P,low) ∧ (S,large)) → (M,poor).

From these definitions it follows that any decision Ψ can be uniquely discribed
by the following two decision rules:

C∗(Ψ) → Ψ,

BNC(Ψ) → Ψ.

From the above calculations we can get two decision rules

((F,med.) ∧ (P,med.)) ∨ (F, high) → (M,poor),
((F,med.) ∧ (P,low.) ∧ (S,large)) → (M,poor),

which are associated with the lower approximation and the boudary region
of the decision (M, poor), respectively and describe decision (M, poor).

Obviously we can get similar decision rules for the decision (M, good) which
are as follows:

(F,low) → (M,good),
((F,med.) ∧ (P,low.) ∧ (S,large)) → (M,good).

This coincides with the idea given by Ziarko [15] to represent decision tables
by means of three decision rules corresponding to positive region the boundary
region, and the negative region of a decision.
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6 Decision Rules and Bayes’ Rules

If {Φi → Ψ}n is a set of decision rules satisfying condition (1), then the well
known formula for total probability holds:

πS(Ψ) =
n∑

i=1

πS(Ψ |Φi) · πS(Φi). (2)

Moreover for any decision rule Φ → Ψ the following Bayes’ rule is valid:

πS(Φj |Ψ) =
πS(Ψ |Φj) · πS(Φj)∑n
i=1 πS(Ψ |Φi) · πS(Φi)

. (3)

That is, any decision table or any set of implications satisfying condition (1)
satisfies the Bayes’ rule, without referring to prior and posterior probablities –
fundamental in Baysian data analysis philosophy. Bayes’ rule in our case says
that: if an implication Φ → Ψ is true to the degree πS(Ψ |Φ) then the implication
Ψ → Φ is true to the degree πS(Φ|Ψ).

This idea can be seen as a generalization of a modus tollens inference rule,
which says that if the implication Φ → Ψ is true so is the implication ∼ Ψ →∼ Φ.

For example, for the set of decision rules

((F,med.) ∧ (P,med.)) ∨ (F, high) → (M,poor),
((F,med.) ∧ (P,low) ∧ (S,large)) → (M,poor),
(F,low) → (M,good),
((F,med.) ∧ (P,low) ∧ (S,large)) → (M,good),

we get the values of ceratinty and coverage factors shown in Table 3.

Table 3. Initial decision rules

Rule Decision Certainty Coverage

certain poor 1 3/4
boundary poor 1/2 1/4
certain good 1 1/2

boundary good 1/2 1/2

The above set of decison rules can be “reversed” as

(M,poor) → ((F,med.) ∧ (P,med.)) ∨ (F, high),
(M,poor) → ((F,med.) ∧ (P,low) ∧ (S,large)),
(M,good) → (F,low),
(M,good) → ((F,med.) ∧ (P,low) ∧ (S,large)).
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Due to Bayes’ rule the certainty and coverage factors for inverted decision
rules are mutually exchanged as shown in Table 4 below.

Table 4. Reversed decision rules

Rule Decision Certainty Coverage

certain poor 3/4 1
boundary poor 1/4 1/2
certain good 1/2 1

boundary good 1/2 1/2

This property can be used to reason about data in the way similar to that
allowed by modus tollens inference rule in classical logic.

7 Conclusions

It is shown in this paper that any decision table satisfies Bayes’ rule. This en-
ables to apply Bayes’ rule of inference without referring to prior and posterior
probabilities, inherently associated with “classical” Bayesian inference philoso-
phy. From data tables one can extract decision rules – implications labelled by
certainty factors expressing their degree of truth. The factors can be computed
from data. Moreover, one can compute from data the coverage degrees expressing
the truth degrees of “reverse” implications. This can be treated as generalization
of modus tollens inference rule.
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