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Abstract. A decision network is a finite, directed acyclic graph, nodes
of which represent logical formulas, whereas branches - are interpreted
as decision rules. Every path in the graph represents a chain of decision
rules, which describe compound decision.

Some properties of decision networks will be given and a simple example
will illustrate the presented ideas and show possible applications.
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1 Introduction

The main problem in data mining consists in discovering patterns in data. The
patterns are usually expressed in form of decision rules, which are logical expres-
sions in the form “if @ then W”, where ¢ and ¥ are logical formulas (propo-
sitional functions) used to express properties of objects of interest. Any set of
decision rules is called a decision algorithm. Thus knowledge discovery from data
consists in representing hidden relationships between data in a form of decision
algorithms. However, for some applications, it is not enough to give only set of
decision rules describing relationships in the database. Sometimes also knowl-
edge of relationship between decision rules is necessary in order to understand
better data structures. To this end we propose to employ a decision algorithm in
which also relationship between decision rules is pointed out, called a decision
network.

The decision network is a finite, directed acyclic graph, nodes of which repre-
sent logical formulas, whereas branches — are interpreted as decision rules. Thus
every path in the graph represents a chain of decisions rules, which will be used
to describe compound decisions.

Some properties of decision networks will be given and a simple example will
be used to illustrate the presented ideas and show possible applications.

2 Decision Networks and Decision Rules

Let U be a non empty finite set, called the universe and let & , ¥ be logical
formulas. The meaning of @ in U, denoted by |®|, is the set of all elements
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of U, that satisfies @ in U. The truth value of ¢ denoted val(®) is defined as
card|®|/card(U), where card(X) denotes cardinaity of X.

By decision network over S = (U,F) we mean a pair N = (F,R), where
R C F x F is a binary relation, called a consequence relation and F is a set of
logical formulas.

Any pair (9,¥) € R, P # V¥ is referred to as a decision rule (in N).

We assume that S is known and we will not refer to it in what follows.

A decision rule (®,¥) will be also presented as an expression ¢ — ¥, read if
& then ¥, where @ and ¥ are referred to as predesessor (conditions) and successor
(decisions) of the rule, respectively.

The number supp(P,¥) = card(|® A ¥|) will be called a support of the
rule @ — ¥. We will consider nonvoid decision rules only, i.e., rules such that
supp(P,¥) # 0.

With every decision rule @ — ¥ we associate its strength defined as

supp(P,¥)

str(®,¥) = card(U)

(1)

Moreover, with every decision rule @ — ¥ we associate the certainty factor
defined as

_ str(,¥)
cer(®,¥) = “oal(@) (2)
and the coverage factor of & — W
_ str(9,¥)
COU(@,W) = W, (3)

where val(®) # 0 and val(¥) # 0.
The coeflicients can be computed from data or can be a subjective assessment.
We assume that
val(®@) = > str(d,0) (4)

weSuc(P)

and

val(¥) = Z str(d, W), (5)

PEPre(¥)

where Suc(®) and Pre(¥) are sets of all succesors and predecessors of the cor-
responding formulas, respectively.
Consequently we have

Z cer(p,¥) = Z cov(P,¥) = 1. (6)

Suc(P) Pre(¥)

If a decision rule @ — ¥ uniquely determines decisions in terms of conditions,
i.e., if cer(®,¥) = 1, then the rule is certain, otherwise the rule is uncertain.

If a decision rule & — ¥ covers all decisions, i.e., if cov(®,¥) = 1 then the
decision rule is total, otherwise the decision rule is partial.
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Immediate consequences of (2) and (3) are:

cov(P,¥)val(¥)

cer(P,W) = val(D) , (7)
_cer(D,¥)val(P)
cov(P, W) = @) (8)

Note, that (7) and (8) are Bayes’ formulas. This relationship first was observed
by Lukasiewicz [1].

Any sequence of formulas &4, ...,®,, &; € F and for every i, 1 <i<n—1,
(Pi,Pi11) € R will be called a path from @, to @, and will be denoted by
(@1 ...D,).

We define

n—1
cer(®y ... 9, = H cer|®;, @i, (9)
i=1
n—1
cov[®y ... D] = [ ] covl®s, i), (10)
i=1
str|®@y ... 9] = val(Py)cer[Py ... P, = val(Py)cov[Py ... Py]. (11)

The set of all paths form @ to ¥, denoted < @, ¥ >, will be called a connection
from @ to V.
For connection we have

cer < Q¥ >= Z cer(®... V], (12)
[@..W]e<PW>

cov < O, ¥ >= Z cov[®... ], (13)
(0. W]e<P,¥>

str < W > = Z stri®...¥] =
(.. 0]e<d,¥>
= val(P)cer < P, ¥ >= val(¥)cov < P,V > . (14)

With every decision network we can associate a flow graph [2, 3]. Formulas of
the network are interpreted as nodes of the graph, and decision rules — as directed
branches of the flow graph, whereas strength of a decision rule is interpreted as
flow of the corresponding branch.

3 Independence of Formulas

Independency of logical formulas considered in this section first was proposed
by Lukasiewicz [1].
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Let & — ¥ be a decision rule. Formulas ¢ and ¥ are independent on each
other if

str(@,¥) = val(P)val (¥). (15)
Consequently
str(P,¥) B
“oal(@) cer(P,¥) = val(¥) (16)
and
str(9,¥) B
oal(@) cov(P,¥) = val(P). (17)
If
cer(P,¥) > val(¥) (18)
cov(P,¥) > val(P), (19)

then @ and ¥ depend positively on each other. Similarly, if

cer(P,¥) < val(¥) (20)
or

cov(P,¥) < val(P), (21)

then @ and ¥ depend negatively on each other.

Let us observe that relations of independency and dependency are symmetric
ones, and are analogous to that used in statistics.

For every decision rule & — ¥ we define a dependency factor n(®,¥) defined
as

_cer(P,¥) —val(¥)  cov(P,¥) — val(P)
n(@.¥) = cer(@, W) +val(¥)  cov(®,¥) + val(®) (22)

It is easy to check that if n(®,¥) = 0, then ¢ and ¥ are independent on
each other, if —1 < n(®,¥) < 0, then & and ¥ are negatively dependent and
it 0 < n(P,¥) < 1 then & and ¥ are positively dependent on each other. Thus
the dependency factor expresses a degree of dependency, and can be seen as a
counterpart of correlation coefficient used in statistics.

Another dependency factor has been proposed in [4].
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Social class Age group Party

:KP\ cer=0.70

1

val(®,) = 0.20

Fig. 1. Initial votes distribution.

4 An Example

Consider three disjoint age groups of voters ¥y (old), W2 (middle aged) and s
(young) — belonging to three social classes @1 (high), @2 (middle) and ®3 (low).
The voters voted for four political parties ©, (Conservatives), ©2 (Labor), O
(Liberal Democrats) and ©4 (others).

Social class and age group votes distribution is shown in Fig. 1.

First, we compute, employing formula (2), strength of each branch joining
Social class and Age group. Having done this we can compute coverage factors
for each Age group and using formula (5) we compute val(¥;).Repeating this
procedure for Age group and Party we get results shown in Fig.2.

From the decision network presented in Fig. 2 we can see that, e.g., party
©; obtained 19% of total votes, all of them from age group ¥;; party Oy — 44%
votes, which 82% are from age group ¥, and 18% — from age group ¥s, etc.

Social class Age group Party
©
val(®,)=0.10 00 ° =027, val(®,) = 0.19
< Y

Y val(®;) = 0.32
)
cer=0.40  str=0.05 cov=1.00 >®
4
val(®,) =0.20 val(¥,) =0.13 val(®,) = 0.05

Fig. 2. Final votes distribution.
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Social class

WSS val®))=0.18

val(®,) = 0.05

Fig. 3. Simplified decision network.

If we want to know how votes are distributed between parties with respects
to social classes we have to eliminate age groups from the decision network.
Employing formulas (9),...,(14) we get results shown in Fig. 3.

From the decision network presented in Fig. 3 we can see that party ©;
obtained 22% votes from social class @ and 78% from social class @-, etc.

We can also present the obtained results employing decision algorithms. For
simplicity we present only some decision rules of the decision algorithm. For ex-
ample, from Fig.2 we obtain decision rules:

If Party (©1) then Age group (¥1) (0.19)
If Party (©3) then Age group (¥2) (0.36)
If Party (©3) then Age group (¥s3) (0.08), etc.

The number at the end of each decision rule denotes strength of the rule.
Similarly, from Fig.3 we get:

If Party (©1) then Soc. class (P1) (0.04)
If Party (©1) then Soc. class (P2) (0.14), etc.
We can also invert decision rules and, e.g., from Fig. 3 we have:

If Soc. class ($1) then Party (©1) (0.04)
If Soc. class (91) then Party (©2) (0.02)
If Soc. class ($1) then Party (©3) (0.04), etc
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In Fig. 3 values of dependency factors are also shown. It can be seen from
the diagram that e.g., &1 and ©; are positively dependent ( = 0.40), whereas
@3 and O3 are negatively dependent (n = —0.07). That means that there is
relatively strong positive dependency between high social class and Conserva-
tives, whereas there is very low negative dependency between low social class
and Liberal Democrats.

5 Conclusion

In this paper a concept of decision network is introduced and examined. Basic
properties of decision networks are given and their application to decision analy-
sis is shown. Simple tutorial example at the end of the paper shows the possible
application of the introduced ideas.
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