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Abstract

A rapid growth of interest in rough set theory [290] and its applications
can be lately seen in the number of international workshops, conferences and
seminars that are either directly dedicated to rough sets, include the subject
in their programs, or simply accept papers that use this approach to solve
problems at hand. A large number of high quality papers on various aspects
of rough sets and their applications have been published in recent years as a
result of this attention. The theory has been followed by the development of
several software systems that implement rough set operations. In Section 12 we
present a list of software systems based on rough sets. Some of the toolkits, pro-
vide advanced graphical environments that support the process of developing
and validating rough set classifiers. Rough sets are applied in many domains,
such as, for instance, medicine, finance, telecommunication, vibration analy-
sis, conflict resolution, intelligent agents, image analysis, pattern recognition,
control theory, process industry, marketing, etc.

Several applications have revealed the need to extend the traditional rough
set approach. A special place among various extensions is taken by the ap-
proach that replaces indiscernibility relation based on equivalence with a tol-
erance relation.

In view of many generalizations, variants and extensions of rough sets a
uniform presentation of the theory and methodology is in place. This tutorial
paper is intended to fullfill these needs. It introduces basic notions and illus-
trates them with simple examples. It discusses methodologies for analysing
data and surveys applications. It also presents and introduction to logical, al-
gebraic and topological aspects, major extensions to standard rough sets, and
it finally glances at future research.

Keywords: approximate reasoning, soft computing, indiscernibility, lower and
upper approximations, rough sets, boundary region, positive region, rough mem-



2 Komorowski, Pawlak, Polkowski, Skowron

bership function, decision rules, dependencies in degree, patterns, feature extrac-
tion and selection, rough mereology.

Introduction

Rough set theory was developed by Zdzistaw Pawlak [285, 290, 203] in the early
1980’s. It deals with the classificatory analysis of data tables. The data can
be acquired from measurements or from human experts; although in principle
it must be discrete, there exist today methods that allow processing features
with continuous values. The main goal of the rough set analysis is to synthesize
approximation of concepts from the acquired data. We show that first in the
traditional approach and later how it evolves towards “information granules”
under tolerance relation.

The purpose of developing such definitions may be twofold. In some instances,
the aim may be to gain insight into the problem at hand by analyzing the
constructed model, i.e. the structure of the model is itself of interest. In other
applications, the transparency and explainability features of the model is of
secondary importance, and the main objective is to construct a classifier that
classifies unseen objects well. A logical calculus on approximate notions is equally
important. It is based on the concept of “being a part to a degree” and is known
as rough mereology (see e.g. [327, 329, 330, 331, 332, 339, 397, 334, 335]).

The overall modelling process typically consists of a sequence of several sub-
steps that all require various degrees of tuning and fine-adjustments. In order
to perform these functions, an environment to interactively manage and process
data is required. An important feature of rough sets is that the theory is fol-
lowed by practical implementations of toolkits that support interactive model
development. Several software systems based on rough sets exist. For a list of
these systems see Sect. 12.

The article consists of two parts. In Part I we discuss:

— classical rough set theory (Sections 1 to 5),

— the modelling process using rough sets which includes feature selection, fea-
ture extraction (by discretization, symbolic attribute value grouping, search-
ing for relevant hyperplanes), rule synthesis and validation, (Section 7)

— some extensions to classical rough set approach (Section 8),

— some introductory information on algebraic and logical aspects of rough sets
(Section 9),

— some relationships with other approaches (Section 10),

— a list of applications of rough sets (Section 11)

— a list of software systems that implement rough set methods (Section 12),

— and, finally, some conslusions including also considerations on future re-
search.
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In Part II we overview of rough mereology developed as a tool for synthe-
sis of objects satisfying a given specification in satisfactory degree. The main
goal of this approach is to develop methodology for construction of calculus on
approximate concepts.

The tutorial attempts to address the needs of a broad readership. By com-
bining informal introductions of each topic with simple examples, it should be
accessible to all readers with interest in data analysis: from undergraduate stu-
dents in computer science, to engineers, medical informatics scientists, to finan-
cial analysts, to social science researchers, etc. Since every informal exposition
is followed by precise definitions, the tutorial is also an authorative source for
graduate students and researchers in the subject.

Partl

Rough sets

1 Information Systems

A data set is represented as a table, where each row represents a case, an event,
a patient, or simply an object. Every column represents an attribute (a variable,
an observation, a property, etc.) that can be measured for each object; it can
also be supplied by a human expert or user. This table is called an information
system. More formally, it is a pair A = (U, A), where U is a non-empty finite set
of objects called the universe and A is a non-empty finite set of attributes such
that a : U — V, for every a € A. The set V, is called the value set of a.

Example 1.1 A very simple information system is shown in Tab. 1. There are
seven cases or objects, and two attributes (Age and Lower Extremity Motor
Score, LEMS).

|| Age |LEMS
x1|[16-30| 50
2([16-30| 0
x3(31-45| 1-25
T4|31-45| 1-25
T5|[46-60| 26-49
z¢|[16-30| 26-49
x7|[46-60| 26-49

Table 1. An example information system.

The reader will easily notice that cases z3 and x4, as well as x5 and z7; have
exactly the same values of conditions. The cases are (pairwise) indiscernible
using the available attributes. o



In many applications, there is an outcome of classification that is known. This
a posteriori knowledge is expressed by one distinguished attribute called decision
attribute; the process is known as supervised learning. Information systems of
this kind are called decision systems. A decision system is any information system
of the form A = (U, AU{d}), where d ¢ A is the decision attribute. The elements
of A are called conditional attributes or simply conditions. The decision attribute
may take several values, though binary outcomes are rather frequent.

Example 1.2 A small example decision table can be found in Tab. 2. The table
has the same seven cases as in the previous example, but one decision attribute
(Walk) with two possible outcomes has been added.

|| Age |LEMS|Walk

z11(/16-30] 50 Yes
r2(/16-30] O No
x3||31-45| 1-25 | No
124||31-45| 1-25 | Yes
x5|/46-60| 26-49 | No
6(/16-30] 26-49 | Yes
x7(46-60| 26-49 | No

Table 2. Walk: An example decision table

The careful reader may again notice that cases x3 and x4 as well as x5 and x7
still have exactly the same values of conditions, but the first pair has a different
outcome (different value of the decision attribute) while the second pair also has
the same outcome. a

The definitions to be synthesized from decision tables will be of the rule
form “if Age is 16-30 and LEMS is 50 then Walk is Yes”. Among the possible
properties of the constructed rule sets, minimality (of the left hand side lengths
of rules) is one of the important issues. This is studied in the next section.

2 Indiscernibility

A decision system (i.e. a decision table) expresses all the knowledge about the
model. This table may be unnecessarily large, in part because it is redundant in
at least two ways. The same or indiscernible objects may be represented several
times, or some of the attributes may be superfluous. We shall look into these
issues now.

The notion of equivalence is recalled first. A binary relation R C X x X which
is reflexive (i.e. an object is in relation with itself z Rx), symmetric (if zRy then
yRz) and transitive (if xRy and yRz then zRz) is called an equivalence relation.



The equivalence class of an element & € X consists of all objects y € X such
that zRy.

Let A = (U, A) be an information system, then with any B C A there is
associated an equivalence relation IN D 4(B):

IND4(B) = {(x,2') € U? |Va € B a(z) = a(2')}

IND(B) is called the B-indiscernibility relation. If (z,z') € IND 4(B), then
objects z and ' are indiscernible from each other by attributes from B. The
equivalence classes of the B-indiscernibility relation are denoted [z]g. The sub-
script A in the indiscernibility relation is usually omitted if it is clear which
information system is meant.

Some extensions of standard rough sets do not require transitivity to hold.
See, for instance, [398]. Such a relation is called tolerance or similarity. We will
discuss this case later (see Section 8).

Example 2.1 Let us illustrate how a decision table such as Tab. 2 defines an
indiscernibility relation. The non-empty subsets of the conditional attributes are
{Age}, {LEMS} and {Age, LEMS}.

If we consider, for instance, {LEMS}, objects x3 and x4 belong to the same
equivalence class and are indiscernible. (By the same token, x5, 4 and z7 belong
to another indiscernibility class.) The relation IND defines three partitions of
the universe.

IND({Age}) = {{z1, 22, 6}, {3, w4}, {w5, 27 }}
INDH{LEMS}) = {{z1}, {2}, {23, 24}, {25, w6, 27 }}
]ND({Age,LEMS}) = {{w1}= {x2}7 {:133,334}, {:135,1177}, {wﬁ}}

3 Set Approximation

An equivalence relation induces a partitioning of the universe (the set of cases
in our example). These partitions can be used to build new subsets of the uni-
verse. Subsets that are most often of interest have the same value of the outcome
attribute. It may happen, however, that a concept such as “Walk” cannot be de-
fined in a crisp manner. For instance, the set of patients with a positive outcome
cannot be defined crisply using the attributes available in Tab. 2. The “problem-
atic” patients are objects x3 and z4. In other words, it is not possible to induce
a crisp (precise) description of such patients from the table. It is here that the
notion of rough set emerges. Although we cannot define those patients crisply,
it is possible to delineate the patients that certainly have a positive outcome,
the patients that certainly do not have a positive outcome and, finally, the pa-
tients that belong to a boundary between the certain cases. If this boundary is
non-empty, the set is rough. These notions are formally expressed as follows.
Let A = (U, A) be an information system and let B C A and X C U. We can
approximate X using only the information contained in B by constructing the
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B-lower and B-upper approzimations of X, denoted BX and BX respectively,
where BX = {z | [z]p C X} and BX = {z | [z]g N X # 0}.

The objects in BX can be with certainty classified as members of X on the
basis of knowledge in B, while the objects in BX can be only classified as possible
members of X on the basis of knowledge in B. The set BNg(X) = BX — BX is
called the B-boundary region of X, and thus consists of those objects that we
cannot decisively classify into X on the basis of knowledge in B. The set U — BX
is called the B-outside region of X and consists of those objects which can be
with certainly classified as do not belonging to X (on the basis of knowledge
in B). A set is said to be rough (respectively crisp) if the boundary region is
non-empty (respectively empty)®.

Example 3.1 The most common case is to synthesize definitions of the out-
come (or decision classes) in terms of the conditional attributes. Let W =
{z | Walk(z) = Yes}, as given by Tab. 2. We then obtain the approxima-
tion regions AW = {x1,26}, AW = {x1,23,24,76}, BNA(W) = {23,724} and
U~ AW = {x9,x5,27}. It follows that the outcome Walk is rough since the
boundary region is not empty. This is shown in Fig. 1. O

{{x2}, {x5, x7}}

{{x3, x4}}

Yes

{{x1}, {x6}} Yes/No

No

Fig. 1. Approximating the set of walking patients, using the two conditional
attributes Age and LEMS. Equivalence classes contained in the corresponding
regions are shown.

One can easily show the following properties of approximations:

(1) B(X) C X C B(X),
(2) B(0) = B(®) = 0, B(U) = BU) = U,
(3) B(XUY)=B(X)UB(Y),

6 The letter B refers to the subset B of the attributes A. If another subset were chosen,
e.g. FF C A, the corresponding names of the relations would have been F-boundary
region, F-lower- and F-upper approximations.
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It is easily seen that the lower and the upper approximations of a set, are
respectively, the interior and the closure of this set in the topology generated by
the indiscernibility relation.

One can define the following four basic classes of rough sets, i.e., four cate-
gories of vagueness:

EEEEE@
mn,og |

a) X is roughly B-definable, iff B(X) # () and B(X) # U,

b) X is internally B-indefinable, iff B(X) = () and B(X) ;é
¢) X is externally B-indefinable, iff B(X) # 0 and B(X) =
d) X is totally B-indefinable, iff B(X) = () and B(X) = U.

The intuitive meaning of this classification is the following.

If X is roughly B-definable, this means that we are able to decide for some
elements of U that they belong to X and for some elements of U that they belong
to — X, using B.

If X is internally B-indefinable, this means that we are able to decide for
some elements of U that they belong to —X, but we are unable to decide for
any element of U, whether it belongs to X, using B.

If X is externally B-indefinable, this means that we are able to decide for
some elements of U that they belong to X, but we are unable to decide, for any
element of U whether it belongs to —X, using B.

If X is totally B-indefinable, we are unable to decide for any element of U
whether it belongs to X or —X, using B.

Rough set can be also characterized numerically by the following coefficient

B(X)|
|B(X)|

called the accuracy of approxzimation, where | X | denotes the cardinality of X # (.
Obviously 0 < ag(X) < 1. If ag(X) = 1, X is crisp with respect to B (X is
precise with respect to B), and otherwise, if ag(X) < 1, X is rough with respect
to B (X is vague with respect to B).

aB(X) =

4 Reducts

In the previous section we investigated one natural dimension of reducing data
which is to identify equivalence classes, i.e. objects that are indiscernible using



the available attributes. Savings are to be made since only one element of the
equivalence class is needed to represent the entire class. The other dimension
in reduction is to keep only those attributes that preserve the indiscernibility
relation and, consequently, set approximation. The remaining attributes are re-
dundant since their removal does not worsen the classification. There is usually
several such subsets of attributes and those which are minimal are called reducts.
Computing equivalence classes is straightforward. Finding e.g. minimal reduct
(i.e. reduct with minimal cardinality among all reducts) is NP-hard [399]. One
can also show that the number of reducts of an information system with m

al,l,riblll,es can be (—‘:qllal to
< m, >
|_ ‘/QJ

It means that computing reducts it is a non-trivial task that cannot be solved
by a simple minded increase of computational resources. It is, in fact, one of the
bottlenecks of the rough set methodology. Fortunately, there exist good heuris-
tics e.g. [520, 521] based on genetic algorithms that compute sufficiently many
reducts in often acceptable time, unless the number of attributes is very high.

Example 4.1 Consider the following decision system (defined in Tab. 3): A’ =
(U, { Diploma, Experience, French, Reference}U{ Decision}). Let us consider only
the conditional attributes i.e. an information system

A = (U, {Diploma, Ezperience, French, Reference}.

For simplicity, each equivalence class contains one element. It appears that there
is a minimal set of attributes {Ezperience, Reference} which discerns objects
in the same way as the full set of considered objects. The reader may check
that the indiscernibility relation using the full set of attributes and the set
{Ezperience,Reference} is the same. The actual construction of minimal sets
of attributes with such property will be soon revealed. O

||Diploma | Ezperience | French | Reference | Decision

z1|| MBA | Medium | Yes |Excellent| Accept
|| MBA Low Yes | Neutral | Reject
z3|| MCE Low Yes Good Reject
z4|| MSc High Yes | Neutral | Accept
z5|| MSc Medium | Yes | Neutral | Reject
zgll MSc High Yes |Excellent| Accept
z7|| MBA High No Good | Accept
zg|| MCE Low No |Excellent| Reject

Table 3. Hiring: An example of an unreduced decision table.

Given an information system A = (U, A) the definitions of these notions
are as follows. A reduct of A is a minimal set of attributes B C A such that



IND 4(B) = IND 4(A). In other words, a reduct is a minimal set of attributes
from A that preserves the partitioning of the universe, and hence the ability to
perform classifications as the whole attribute set A does.

Let A be an information system with n objects. The discernibility matriz of
A is a symmetric n x n matrix with entries ¢;; as given below. Each entry thus
consists of the set of attributes upon which objects z; and z; differ.

cij={a€Ala(z;) #alz;)} for i,j=1,...,n

A discernibility function f 4 for an information system A is a Boolean function

*

of m Boolean variables af,...,a% (corresponding to the attributes ay, ..., am)

defined as below, where cj; = {a* | a € ¢;;}.

fataisan) = AN\ ey 11<5 <i<n, ey £ 0}
The set of all prime implicants” of f4 determines the set of all reducts of A.

Example 4.2 The discernibility function for the information system A defined
in Tab. 3 is:

fald e, f,r) = (evr)(dvevr)(dveVvr)(dvr)(dVve)(eV fVvr)(dveVf)

= (
(dvr)(dve)(dve)(dvevr)(eV fVr)(dV fvr)
(dvevr)(dvevr)(dvevr)(dveVf)(fvr)
(e)(r)(dV fVvr)(dveV fvr)
(evr)(dveV fvr)(dveV fvr)
(v fvr)(dvevf)
(dvevr)

where each parenthesized tuple is a conjunction in the Boolean expression, and
where the one-letter Boolean variables correspond to the attribute names in an
obvious way. After simplification, the function is f4(d, e, f,7) = er. The notation
er is a shorthand for e A r.

Let us also notice that each row in the above discernibility function corre-
sponds to one column in the discernibility matrix. This matrix is symmetrical
with the empty diagonal. So, for instance, the last but one row says that the
sixth object (more precisely, the sixth equivalence class) can be discerned from
the seventh one by any of the attributes Diploma, French or Reference and by
any of Diploma, Ezxperience or French from the eight one. O

" An implicant of a Boolean function f is any conjunction of literals (variables or
their negations) such that if the values of these literals are true under an arbitrary
valuation v of variables then the value of the function f under v is also true. A prime
implicant is a minimal implicant. Here we are interested in implicants of monotone
Boolean functions only i.e. functions constructed without negation.
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If we instead construct a Boolean function by restricting the conjunction to
only run over column £ in the discernibility matrix (instead of over all columns),
we obtain the k-relative discernibility function. The set of all prime implicants
of this function determines the set of all k-relative reducts of A. These reducts
reveal the minimum amount of information needed to discern z; € U (or, more
precisely, [z] C U) from all other objects.

Using the notions introduced above, the problem of supervised learning, i.e.,
where the outcome of classification is known, is to find the value of the de-
cision d that should be assigned to a new object which is described with the
help of the conditional attributes. We often require the set of attributes used
to define the object to be minimal. For the example Tab. 3 it appears that
{Ezperience, Reference} and {Diploma, Experience} are two minimal sets of at-
tributes that uniquely define to which decision class an object belongs. The
corresponding discernibility function is relative to the decision. The notions are
now formalized.

Let A = (U, AU{d}) be given. The cardinality of the image d(U) = {k | d(z) =
k,z € U} is called the rank of d and is denoted by r(d). Let us further assume
that the set V of values of decision d is equal to {v},...,v " }.

Example 4.3 Quite often the rank is two, e.g., {Yes, No} or {Accept, Reject}.
It can be an arbitrary number, however. For instance in the Hiring example, we
could have rank three if the decision had values in the set {Accept, Hold, Reject }.

O

The decision d determines a partition CLASS 4(d) = {X,..., X;‘(d)} of the
universe U, where X% = {z € U | d(z) = vk} for 1 < k < r(d). CLASS 4(d)
is called the classification of objects in A determined by the decision d. The set
X' is called the i-th decision class of A. By X 4(u) we denote the decision class
{z €U | d(z) =d(u)}, for any u € U.

Example 4.4 There are two decision classes in each of the running example
decision systems, i.e., {Yes,No} and {Accept, Reject}, respectively. The parti-
tioning of the universe for the Walk table is U = XY U XN° where X Y* =

{z1,74,26} and XN° = {x5, 23,25, 27}. For the Hiring table we have U =
X Accepty Y Reject where XACPt — [ 2y, 26, 77} and X Rt = Lo g0 25, 25}
The notation X Y and X™N° is shorthand for X' and X?, respectively. O

If XY, ..., X;\(d) are the decision classes of A, then the set BX;U...UBX, 4
is called the B-positive region of A and is denoted by POS g(d).

Example 4.5 A quick check, left to the reader, reveals that AXYSUAXNe £ U
while AXAccept |y 4 XRelect — 7 This is related to the fact that for the decision
system in Tab. 2 a unique decision cannot be made for objects x3 and x4 while
in case of the other table all decisions are unique. O

This important property of decision systems is formalized as follows. Let A =
(U, AU {d}) be a decision system. The generalized decision in A is the function
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04 : U — P(Vy) defined by 04(z) = {i | 3z’ € U 2’ IND(A) z and d(x) =i}. A
decision table A is called consistent (deterministic) if |04(z)| = 1 for any z € U,
otherwise A is inconsistent (non-deterministic).

It is easy to see that a decision table A is consistent if, and only if, POS 4(d) =
U. Moreover, if g = dp/, then POSg(d) = POS p/(d) for any pair of non-empty
sets B, B' C A.

Example 4.6 The A-positive region of A in the Walk decision system is a
proper subset of U, while in the Hiring decision system the corresponding set is
equal to the universe U. The first system is non-deterministic, the second one -
deterministic. |

We have introduced above the notion of k-relative discernibility function.
Since the decision attribute is so significant, it is useful to introduce a spe-
cial definition for its case. Let A = (U, A U {d}) be a consistent decision table
and let M(A) = (c;;) be its discernibility matrix. We construct a new matrix
Ma(A) = (c?j) assuming c;ij =0 if d(z;) = d(z;) and c?j = ¢;; — {d}, otherwise.
Matrix M?(A) is called the decision-relative discernibility matriz of A. Con-
struction of the decision-relative discernibility function from this matrix follows
the construction of the discernibility function from the discernibility matrix. It
has been shown [399] that the set of prime implicants of fi,(A) defines the set
of all decision-relative reducts of A.

Example 4.7 The Hiring decision table in Tab. 4 is now used to illustrate
the construction of the corresponding decision-relative discernibility matrix and
function. The rows are reordered for convenience putting the accepted objects in
the top rows. The corresponding discernibility matrix in Tab. 5 is symmetrical

||Diploma | Ezperience | French | Reference | Decision

z1|| MBA | Medium | Yes |Excellent| Accept
z4|| MSc High Yes | Neutral | Accept
zgl| MSc High Yes |Excellent| Accept
z7|| MBA High No Good | Accept
|| MBA Low Yes | Neutral | Reject
z3|| MCE Low Yes Good Reject
5| MSc Medium | Yes | Neutral | Reject
zg|| MCE Low No |Excellent| Reject

Table 4. Hiring: The reordered decision table.

and the diagonal is empty, and so are all the entries for which the decisions are
equal.

The resulting simplified decision-relative discernibility function is f{,(A) =
ed V er. From the definition of the decision-relative matrix it follows that se-
lecting one column of the indiscernibility matrix, e.g., corresponding to [z1]
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| [o1] | [wa] | [we] | [z7] |[]|[za]|[ws]|[2s]

LSS SIS

0
0
0
e,r | de e,f.r| 0
de,r| d,e,r |d,e,r| de,f| 0

) 0
d,r e e,r |d,e, f,r| 0 | 0
d7e7fd7e7f7rd:e:f d7€7T @ @

0
0
e
e

D=

d,e,r
d,e,r
0
0|0

Table 5. Hiring: The decision-relative discernibility matrix.

and simplifying it gives a minimal function that discerns [z;] from objects
belonging to the corresponding decision class from objects belonging to the
other decision classes. For example, the first column gives a Boolean function
(evr)(dvevr)(dvr)(dveV f) which after simplification becomes edVrdVreVrf.
The reader can check that, for instance, “if Reference is Excellent and French is
Yes then Decision is Accept” is indeed the case for z;. It is rather illuminating
to notice that if there is any other object for which “Reference is Excellent” and
“French is Yes” holds, then the decision will also be “Accept”. Indeed, this is
the case for xg. O

If we construct a Boolean function like in case of k-relative discernibility
function by restricting the conjunction to only run over these entries of the
column corresponding to objects with decision different from the decision on zy,
then we obtain (k,d)-relative discernibility function. From prime implicants of
these functions one constructs decision rules with minimal descriptions of their
left hand sides (see Section 7.3).

Example 4.8
Figures 2 to 5 graphically display these four types of indiscernibiltiy. One can
consider some other kinds of reducts e.g. preserving positive region and again
use the presented above Boolean reasoning method to compute these reducts.
O

5 Rough Membership

In classical set theory, either an element belongs to a set or it does not. The
corresponding membership function is the characteristic function for the set, i.e.
the function takes values 1 and 0, respectively. In the case of rough sets, the
notion of membership is different. The rough membership function quantifies
the degree of relative overlap between the set X and the equivalence [z] class to
which x belongs. It is defined as follows:

[z]p N X]|

PR U — (0.1 and pif () = =
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Fig. 2. Not relative to a particular case (or object) and not relative to the decision at-
tribute. The full indiscernibility relation is preserved. Reducts of this type are minimal
attribute subsets that enable us to discern all cases from each other, up to the same
degree as the full set of attributes does.

Fig. 3. Not relative to a particular case (or object) but relative to the decision attribute.
All regions with the same value of the generalized decision 04 are preserved. Reducts
of this type are minimal conditional attribute subsets B C A that for all cases enable
us to make the same classifications as the full set of attributes does, i.e. 04 = 0p.

Fig. 4. Relative to case (or object) x but not relative to the decision attribute. Reducts
of this type are minimal conditional attribute subsets that enable us to discern case z
from all other cases up to the same degree as the full set of conditional attributes does.

Fig. 5. Relative to case (or object) x and relative to the decision attribute. Our ability
to discern case = from cases with different generalized decision than z is preserved.
Reducts B of this type are minimal conditional attribute subsets that enable us to
determine the outcome of case x, up to the same degree as the full set of attributes
does, i.e. da(z) = 0B(x).
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The rough membership function can be interpreted as a frequency-based estimate
of Pr(z € X | z, B), the conditional probability that object = belongs to set X,
given knowledge of the information signature of z with respect to attributes B
(see e.g. [518], [304], [302], [528]).

The formulae for the lower and upper set approximations can be generalized
to some arbitrary level of precision 7 € (]5 1] by means of the rough membership
function [535], as shown below.

B.X = {z| u¥ () > 7}
B.X = {a|uf(2) > 1 -7}

Note that the lower and upper approximations as originally formulated are ob-
tained as a special case with 7 = 1.0.

Approximations of concepts are constructed on the basis of background know-
ledge. Obviously, concepts are also related to unseen so far objects. Hence it is
very useful to define parameterized approximations with parameters tuned in
the searching process for approximations of concepts. This idea is crucial for
construction of concept approximations using rough set methods.

Rough sets can thus approximately describe sets of patients, events, out-
comes, etc. that may be otherwise difficult to circumscribe.

6 Dependency of Attributes

Another important issue in data analysis is discovering dependencies between
attributes. Intuitively, a set of attributes D depends totally on a set of attributes
C, denoted C' = D, if all values of attributes from D are uniquely determined
by values of attributes from C. In other words, D depends totally on C| if there
exists a functional dependency between values of D and C.

Formally dependency can be defined in the following way. Let D and C be
subsets of A.

We will say that D depends on C'in a degree k (0 < k < 1), denoted C =, D,
if
b= (0.0) = 205D

where

POSc(D)= | C(X),

XeU/D
called a positive region of the partition U/D with respect to C, is the set of all
elements of U that can be uniquely classified to blocks of the partition U/D, by
means of C.
Obviously
c(xX
o= 3 2
XeU/D

If £ = 1 we say that D depends totally on C, and if k < 1, we say that D depends
partially (in a degree k) on C.
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The coefficient k expresses the ratio of all elements of the universe, which
can be properly classified to blocks of the partition U/D, employing attributes
C and will be called the degree of the dependency.

It can be easily seen that if D depends totally on C' then IND(C) C
IND(D). That means that the partition generated by C is finer than the par-
tition generated by D. Notice, that the concept of dependency discussed above
corresponds to that considered in relational databases.

Summing up: D is totally (partially) dependent on C, if all (may be some)
elements of the universe U can be uniquely classified to blocks of the partition
U/D, employing C.

7 Concept Approximation Construction: The Modelling
Process

One of the main goal of machine learning, pattern recognition, knowledge dis-
covery and data mining as well as fuzzy sets and rough sets is to synthesize
approximations of target concepts (e.g. decision classes) from the background
knowledge reprersented (e.g. in the form of decision tables). Usually one can
search only for approximate descriptions of target concepts because of inclom-
plete knowledge about theses concepts (e.g. represented by positive and negative
examples of comcepts).

The approximate descriptions of concepts are constructed from some primi-
tive concepts. It is well known that often the target concept descriptions defined
directly by e.g. by Boolean combinations of descriptors of the form a = v (when
a is and attribute and a € V, can not be treated as approximations of good qual-
ity. Searching for relevant primitive concepts is well known in machine learning,
KDD and other areas as feature selection problem and feature extraction prob-
lem (see, e.g. [145, 207, 91]).

In case of feature selection problem we search for relevant features among
the given features e.g. for descriptors a = v whre a is a relevant attribute. In
Subsection 7.1 we discuss shortly rough set based methods for feature selection.

Solving the feature extraction problem is implemented as a searching for
some new, more relevant for classification, features defined (in some language)
from existing ones. These new features can be e.g. of the form a € [0.5,1)
or 2a + 3b > 0.75. Their values on a given object are computed from given
values of conditional attributes on this object. The new features are often bi-
nary taking value 1 on a given object iff the specified condition is true on
this object. In case of symbolic value attributes we look for new features like
a € {French, English, Polish} with value 1 iff a person is speaks any of these
languages. The important cases of feature extraction problems are problems of
discretization of real value attributes, grouping of symbolic (nominal) value at-
tributes, searching for new features defined by hyperplanes or more complex
surfaces defined over existing attributes. In Subsection 7.2 we discuss an idea
of a discretization based on rough set and Boolean reasoning approach. We
also mention some approaches based on Boolean reasoning for other mentioned
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above feature extraction problems. All mentioned above cases of feature extrac-
tion problem can be described as searching for relevant features in a particular
language of features.

We point, out for the crucial role of Boolean reasoning as an inference engine
for feature selection problems.

Usually feature extraction and feature selection problems are implemented
in preprocessing stage of the whole modelling process. There are some other
aspects related to this stage of modelling like noise elimination from data or
missing value treatment. The reader can find more information related to these
problems e.g. in [336, 337] and in the bibliography included in these books.

In the next stage of construction process of target concept approximations
the description of target concepts are constructed using extracted relevant fea-
tures (relevant primitive concepts) by applying some operations. In the simplest
case when Boolean connectives V and A are chosen thes descriptions are con-
structed in the form of so called decision rules. In Subsection 7.3 we give short
introduction to methods of decision rule synthesis based on rough set methods
and Boolean reasoning. There are two main cases of decision rules discussed,
namely exact (deterministic) and approximate (non-deterministic). More infor-
mation on decision rule synthesis and using rough set approach the reader can
find e.g. in [336, 337] and in the bibliography included in these books.

Finally, it is necessary to estimate the quality of constructed approximations
of target concepts. Let us observe that the ”building blocks” from which dif-
ferent approximations of target concepts are constructed can be inconsistent on
new, unseen so far objects (e.g. some objects can be classified as belonging to
disjoint concepts). This causes the necessity to develop some methods for these
inconsistencies resolving. The quality of target concept approximations can be
treated as acceptable if the inconsistencies can be resolved by using these meth-
ods. In Subsection 7.4 we present some introductory comments on this problem
and we give some references to rough set methods for resolving conflicts between
different decision rules voting for the final decision.

7.1 Significance of Attributes and Approximate Reducts

A problem of relevant features selection is one of the important problems studied
in Machine Learning and Pattern Recognition (see e.g. [207]). There are also
several attempts to this problem based on rough sets.

One of the first idea [290] was to consider as relevant features those in core
of the information system A i.e. the intersection of all reducts of information
systems. One can check that several definitions of relevant features used by
machine learning community can be interpreted in this way by choosing relevant,
decision system corresponding to the information system.

Another approach is related to dynamic reducts (see e.g. [18]) i.e. conditional
attribute sets appearing ”sufficiently often” as reducts of samples of the original
decision table. The attributes belonging to the "most” of dynamic reducts are
defined as relevant. The value tresholds for ”sufficiently often” and ”most” should
be tuned for a given data. The reported experiments are showing that the set
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of decision rules based on such attributes is much smaller than the set of all
decision rules and the quality of classification of new objects is increasing or not
significantly decreasing if one considers only rules constructed over such relevant
features.

One can also consider as relevant features those from some approximate
reducts of sufficiently high quality. As it follows from considerations concerning
reduction of attributes, they can be not equally important, and some of them can
be eliminated from an information table without loosing information contained
in the table. The idea of attribute reduction can be generalized by introduction of
the concept of significance of attributes, which enables us to evaluate of attributes
not only by two-valued scale, dispensable — indispensable, but by assigning to an
attribute a real number from the closed interval [0,1], expressing how important
an attribute in an information table is.

Significance of an attribute a in a decision table A = (U,C U D) (with the
decision set D) can be evaluated by measuring the effect of removing of an
attribute a € C from the attribute set C' on the positive region defined by
the table A. As shown previously, the number v(C, D) expresses the degree
of dependency between attributes C' and D, or accuracy of approximation of
U/D by C. We can ask how the coefficient v(C, D) changes when removing an
attribute a, i.e., what is the difference between v(C, D) and v((C — {a}, D). We
can normalize the difference and define the significance of an attribute a as

e (a) = LGP (€ {a} D) _ | §(C {a},D)
(@n) ~(C. D) +C,D)

Thus the coefficient o(a) can be understood as the error of classification
which occurs when attribute a is dropped. The significance coefficient can be
extended to the set of attributes as follows:

o) (B) = (v(C,D) (€ - B,D)) _, (€~ B,D)
(C,D) +(C, D) C.D)

denoted by o(B), if C and D are understood, where B is a subset of C.

If Bis areduct of C, then 6(C—B) = 0, i.e., removing any reduct complement
from the set of conditional attributes unables to make decisions with certainty,
whatsoever.

Any subset B of C can be treated as an approzimate reduct of C, and the
number

oy (B) = HED) =ABD) | (B.D)
K 7(C, D) 7(C, D)
denoted simply as e(B), will be called an error of reduct approzimation. It ex-
presses how exactly the set of attributes B approximates the set of condition
attributes C (relativelt to D).

The concept of an approximate reduct (with respect to the positive region)
is a generalization of the concept of a reduct considered previously. A minimal
subset B of condition attributes C', such that v(C, D) = (B, D), or g(¢,py(B) =
0 is a reduct in the previous sense. The idea of an approximate reduct can
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be useful in cases when a smaller number of condition attributes is preferred
over accuracy of classification on training data. This can allow to increase the
classification accuracy on testing data. The error level of reduct approximation
should be tuned for a given data set to achieve this effect.

We will mention in Section 7.3 several other methods of reduct approximation
based on measures different than positive region. Performed experiments are
showing that by tuning of the approximation level one can, in most cases, increase
the classification quality of new objects. It is important to note that one can
again use Boolean reasoning for computing these different types of reducts and
next extract from them relevant approximations (see e.g. [410].

7.2 Discretization and Some Other Feature Extraction Methods

The discretization step determines how coarsely we want to view the world.
For instance, temperature, which is usually measured in real numbers, can be
discretized into two, three or more, but finitely many, intervals. Another example
could be heart-beat rate at rest. Although the parameter is already expressed as
discrete value (i.e. a natural number), medical doctors will usually not distinguish
among, say 68 or 72 beats per minute, and classify it as normal. On the other
hand, 48 to 56 beats per second is considered low, (but normal for a trained long-
distance runner) while 120 to 140 beats will be very fast and abnormal unless
it is the rate for a fetus in a certain digestional stage. One can easily see that
the selection of appropriate intervals and partitioning of symbolic attributes is
a complex problem that grows exponentially in the number of attributes to be
discretized. Discretization is a step that is not specific to the rough set approach
but that most rule or tree induction algorithms currently require for them to
perform well.

A number of successful approaches to the problem of finding effective methods
for real value attributes quantization (discretization) has been proposed [45, 67,
90, 228, 280, 346] by machine learning, pattern recognition and KDD researchers.

The rough set community has been also committed to constructing efficient
algorithms for new feature extraction, in particular for discretization or/and
symbolic attribute value grouping (see e.g. [177], [178], [45], [240], [180], [241],
[243], [233]).

Several successful applications of rough set methods combined with Boolean
reasoning [27] have been developed for new feature extraction from data tables
assuming that these features belong to a predefined set.

The most successful among these methods are:

— discretization techniques (see e.g. [240, 241, 233, 242, 234, 243]),

— methods of partitionining (grouping) of nominal (symbolic) attribute value
sets (see e.g. [233, 243, 237, 238, 239]) and

— combinations of the above methods (see e.g. [237, 238, 239]).

Searching for new features expressed by multi-modal formulas (see e.g. [14
15, 16]) can also be mentioned here as a method for feature extraction.
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The results reported in the above cited papers are showing that the discretiza-
tion problems and symbolic value partition problems are of high computational
complexity (i.e. NP-complete or NP-hard) which clearly justifies the importance
of designing efficient heuristics.

We will concentrate on the basic discretization methods based on rough set
and Boolean reasoning approaches. In the discretization of a decision table A4 =
(U, AU{d}), where V, = [v,,w,) is an interval of reals, we search for a partition
P, of V, for any a € A. Any partition of V, is defined by a sequence of so called
cuts v; < vy < ... < vy, from V,. Hence, any family of partifions {P,},c can be
identified with a set of cuts. In the discretization process we search for a set of
cuts satisfying some natural conditions. Let us start from a simple example.

Example 7.1 Let us consider a (consistent) decision system (Tab. 6 (a)) with
two conditional attributes a and b, and seven objects uq, ..., u7. The values of
attributes on these objects and the values of the decision d are presented in
Tab. 6. Geometrical interpretation of objects and decision classes are shown in
Fig.6.

T
":1

Ala b [ld AF[a"p"[d
u1(0.8{2 |[1 up |0 (2 |1
u2|1 (0.5]|0 us (1 (0 [|0
u3(1.3|3 |0 N ug |1 (2 |0
uq|1.4|1 (|1 us |1 |1 |1
us(1.4|12 |0 us |1 (2 |0
ug|1.6(3 |[1 ug 2 (2 (|1
uw7|1.3|1 ||1 o) ur |1 (1 |1 o)

Table 6. The discretization process: (a) The original decision system A. (b) The
P-discretization of A, where P = {(a,0.9), (a,1.5), (b,0.75), (b,1.5)}

The sets of possible values of a and b are defined by:
Va=10,2);V, =[0,4).
The sets of values of a and b on objects from U are given by

a(U) = {0.8,1,1.3,1.4,1.6};
b(U) ={0.5,1,2,3},

respectively.

We will describe a discretization process returning a partition into intervals
of the value sets of conditional attributes in such a way that if one will substitute
for any object instead its original value in A the unique name of the interval
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containing it we obtain also consistent decision system. In this way we can reduce
the size of value attribute sets in decision system.

In our example we obtain the following intervals for condition attributes:

[0.8.1); [1,1.3); [1.3,1.4); [1.4,1.6) for a;

[0.5,1); [1,2); [2,3) for b
defined by objects in decision system. The reader can observe that we do not
consider intervals [0,0.5), [1.6,2) for a and [0,0.5), [3,4) for b. The reason for
that will be clear later.

Now one can use an idea of cuts. These are pairs (a, c) where ¢ € V,. We will
restrict our considerations for cuts defined by the middle points of the above
defined intervals. In our example we obtain the following cuts (see Fig. 7):

(a,0.9); (a,1.15); (a,1.35); (a,1.5);
(b,0.75); (b,1.5); (b,2.5).

Any cut defines a new conditional attribute with binary values. For example
the attribute corresponding to the cut (a,1.2) is equal to 0 if a(x) < 1.2, other-
wise is equal to 1. Hence, objects positioned on different sides of the stright line
a = 1.2 are discerned by this cut.

Similarly, any set P of cuts defines a new conditional attribute ap for any
a. One should consider a partition of the value set of a by cuts from P and put
the unique names for the elements of these partition. Lets take the set of cuts:
P ={(a,0.9), (a,1.5), (h,0.75), (b, 1.5) }. This set of cuts is gluing values of a less
then 0.9, all values in the interval [0.9,1.5) and all values on [1.5,4). Analogously
for b. The values of the new attributes ap and bp are shown in Table 6 (b).

The reader can now observe why we have eliminated from our considerations
some mentioned above intervals: cuts positioned in these intervals will not discern
objects from the table.

Now a question arises: How to construct a set of cuts with the minimal
number of elements?

We will show that this can be done using Boolean reasoning approach.

We start by introducing for any attribute a and any interval determined by a
the corresponding Boolean variable. In our example the set of Boolean variables
defined by A is equal to

VB (A) = {p{,p5.p5. 05,0}, 05, 05} :

where p{ ~ [0.8;1) of a (i.e. p§ corresponds to the interval [0.8;1) of attribute
a); p& ~ [1;1.3) of a; p? ~ [1.3;1.4) of a; p} ~ [1.4;1.6) of a; pi ~ [0.5;1) of b;
ph ~ [1;2) of b; pb ~ [2;3) of b (see Fig. 7).

Let us recall that a valuation of propositional variables is any function from
the set of propositional variables into {0,1}. Now one can easily observe that
there is a one-to-one correspondence between the set of valuations of proposi-
tional variables defined above for a given A and the set of cuts in A. The rule
is given by (i) for any cut choose the interval containing it and next the propo-
sitional variable corresponding to it; (ii) for any propositional variable choose
a cut in the interval corresponding to the variable. For example the set of cuts
P = {(a,0.9),(a,1.5), (b,0.75), (b,1.5)} corresponds to the valuation assigning 1
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Fig. 6. A geometrical representation of data and cuts.

to the propositional variables: p?, p$, p%, p only. Having this correspondence,
we will say that the Boolean formula built from the propositional variables is
satisfied by a given set of cuts iff it is satisfied by the valuation corresponding
to that set (i.e. taking value 1 only on variables corresponding to cuts from this
set).

Now, using our example, we will show how to built a Boolean formula ¢4 |
called the discernibility formula, for a given A with the following property: the
set of prime implicants of &4 defines uniquely the family of all minimal set of
cuts discerning objects in A.

Having in mind the discernibility matrix for 4, one can see that we should
choose at least one cut on one of the attributes appearing in the entry (z;, ;) of
the discernibility matrix of A for any objects z; and z; discernible by conditional
attributes which have different decisions.

The discernibility formulas 1 (i,j) for different pairs (u;,u;) of discernible
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Fig. 7. The set of cuts (a,c1), (a,c2), (a,c3),(a,cs) on a, the set of propositional vari-
ables pf, p3, p%, pi and the set of intervals corresponding to these variables in A (see
Example 7.1)

objects from U x U with different decisions have the following form:

¥ (2,1) = pi v pi Vph; ¥ (2,4) = py v sV ph;
¥ (2,6) =p3 Vg Vp§ Vel vph vk (2,7) = ps Vv ph;

¥ (3,1) =pf Vp§ V ph; ¥ (3,4) = p3 vV ph V ph;
¥ (3,6) = p§ v ps: Y (3,7) = ph v ph;

¢ (5,1) = pi Vp3 Vps; ¥ (5,4) = pb;

¥ (5,6) = p§ v ph Y (5,7) = p§ v ph;

For example, the formula v (5,6) is true on the set of cuts if there exists a
cut p; = (a,c¢) on V, in this set such that ¢ € [1.4,1.6) or a cut p2 = (b,¢) on V},
that ¢ € [2,3).

The discernibility formula ¢ in C NF form is given by taking all the above
conditions, so

A = (pi Vb Vph) A (pf Vs VEh) A(pE VsV ps) A (p3V sV ph)
AP A (P ViV ) A (ps vV ps v ps v pb v ph v ph) A (p§ V ps)
A(pi v ph) A (psvpl) A (P5 v ph) A (p§Vph).

Transforming the formula #4 to the DNF form we obtain four prime impli-

cants:
A = (ps Ap§ ADY) V (pS A DS AP ADE)
V(0§ APy Aph ADE) V(P A DS A DY A D).

If we decide to take e.g. the last prime implicant S = {p?,pip’{,pé} we
obtain the following set of cuts

P(S) = {(a,0.9), (a,1.5), (b,0.75), (b, 1.5)}.

The new decision system AP(S) is represented in Table 6 (b). |
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Below we present more formal description of the discretiztion problem dis-
cussed above.

Let A = (U, AU{d}) be a decision system where U = {z1,2s,...,z,}; A =
{a1,..,;ar} and d : U — {1,....,r}. We assume V, = [l,,r,) C R to be a real
interval for any a € A and A to be a consistent decision system. Any pair (a, ¢)
where a € A and ¢ € R will be called a cut on V,. Let P, be a partition on
Vu (for a € A) into subintervals i.e. P, = {[c§,c}), [cf,¢8), ..., [c} ,ch 1)} for
some integer k,, where [, = cf < cf <c§j < ... < Ch, < Chi1 = Ta and V, =
[cg,cf) Ulet,e5) U...U[eg s ¢ o). Hence any partition P, is uniquely defined
and often identified as the set of cuts: {(a,c7), (a,¢3),...,(a,cf )} C A xR

Any set of cuts P = J,. 4 P, defines from A = (U, AU{d}) a new decision
system AP = (U, APU {d}) called P-discretization of A, where A¥ = {a¥ :a ¢
A} and aP () =i & a(z) € [¢f,¢f,,) for z € U and i € {0, .., ko }.

Two sets of cuts P', P are equivalent, i.e. P'= 4P, iff A¥ = AP". The equiv-
alence relation =4 has a finite number of equivalence classes. In the sequel we
will not discern between equivalent families of partitions.

We say that the set of cuts P is A-consistent if 04 = J ,p, where 94 and 0 ,p
are generalized decisions of A and AP, respectively. The .A-consistent set of cuts
P is A-irreducible if P is not A-consistent for any P C P*"". The A-consistent
set of cuts P°P* is A-optimal if card (P°P') < card (P) for any A-consistent set
of cuts P.

One can show [240] that the decision problem of checking if for a given
decision system A and an integer k there exists an irreducible set of cuts P in A
such that card(P) < k is N P-complete. The problem of searching for an optimal
set of cuts P in a given decision system A4 is N P-hard.

However, one can construct efficient heuristics returning semi-minimal sets
of cuts [240, 241, 244, 233, 237, 238, 239, 318]. Here we discuss the simplest
one based on the Johnson strategy. Using this strategy one can look for a cut
discerning the maximal number of object pairs, next one can eliminate all already
discerned object pairs and repeat the procedure until all object pairs to be
discerned are discerned. It is intersecting to note that this can be realized by
computing the minimal relative reduct of the corresponding decision system.

Again we will explain this idea using our example.

From a given decision system one can construct a new decision system A*
having as objects all pairs of objects from A with different decision values, so
all object pairs to be discerned. We are adding one more object new on which
all constructed new conditional attributes have value 0 and on which the deci-
sion value is also 0. The new decision is equal to 1 on all other objects in the
new decision system. The set of condition attributes in the new decision system
A* is equal to the set of all attributes defined by all cuts (or all propositional
variables considered above). These attributes are binary. The value of the new
attribute corresponding to a cut (a,c) on the pair (u;,u;) is equal to 1 iff this
cut is discerning objects (u;,u;) (i.e. min(a(u;),a(u;))< ¢ <maz(a(u;), a(u;)))
and 0 otherwise. One can formulate this condition in another way. The value
of the new attribute corresponding to the propositional variable p? on the
pair (u;,u;) is equal to 1 iff the interval corresponding to p? is included in
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[min(a(u;), a(u;)), maz(a(u;), a(u;))] and 0 otherwise.

The resulting new decision system A* is shown in Tab. 7.

Objects in A* are all pairs (z;, ;) discernible by the decision d. One more
object is included, namely new with all values of attributes equal to 0. This allows
formally to keep the condition: ”at least one occurrence of 1 (for conditional
attributes) appears in any row for any subset of columns corresponding to any
prime implicant”.

The relative reducts of this table correspond exactly to the prime implicants
of the function ¢4 (for the proof see e.g. [233]).

Our "MD heuristic” is based on searching for a cut with maximal number
of object pairs discerned by this cut [240], [237]. The idea is analogous to the

Johnson approximation algorithm and can be formulated as follows:
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Table 7. Decision system A" constructed from A

ALGORITHM MD-heuristic (Semi-optimal family of partitions)

Step 1. Construct the table A* from A and erase the last row (i.e. a "new” element)
from A*; set B :=A%;

Step 2. Choose a column from B with the mazimal number of occurrences of 1’s;

Step 3. Delete from B the column chosen in Step 2 and all rows marked in this
column by 1;

Step 4. If B is non-empty then go to Step 2 else Stop.

In our example the algorithm is choosing first p} next p? and finally p§. Hence
S = {ps,ps,p5} and the resulting set of cuts P = {(a,1.15), (a, 1.5), (b,1.5)}. Fig
8 is showing the constructed set of cuts (marked by bold lines).

The algorithm based on Johnson’s strategy described above is searching for
a cut which discerns the largest number of pairs of objects (MD-heuristic). Then
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Fig. 8. The minimal set of cuts of A

we move the cut ¢ from A* to the resulting set of cuts P and remove from U* all
pairs of objects discerned by c. Our algorithm is continued until U* = {new}.
Let n be the number of objects and let & be the number of attributes of decision
system A. Then card (A*) < (n—1)k and card (U*) < @ It is easy to
observe that for any cut ¢ € A* we need O (nQ) steps to find the number of
all pairs of objects discerned by c. Hence the straightforward realization of this
algorithm requires O (knz) of memory space and O(kn3) steps to determine
one cut, so it is not feasible in practice. The MD-heuristic presented in [236]
determines the best cut in O (kn) steps using O (kn) space only. This heuristic
is very efficient with respect to the time necessary for decision rules generation
as well as with respect to the quality of unseen object classification. (see e.g
233, 241, 237)).

Let us observe that the new features in the considered case of discretization
are of the form a € V, where V C V, and V, is the set of values of attribute a.

One can extend the presented approach (see e.g. [243], [237], [238], [23§],) to
the case of symbolic (nominal, qualitative) attributes as well as to the case when
in a given decision system nominal and numeric attribute appear. The received

heuristics are of very good quality.

Experiments for classification methods (see [238]) have been carried over
decision systems using two techniques called "train-and-test” and “n-fold-cross-
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validation”. In Table 8 some results of experiments obtained by testing the pro-
posed methods MD and MD-G for classification quality on well known data
tables from the "UC Irvine repository” are shown. The results reported in [95]
are summarized in columns labeled by S-ID3 and C4.5 in Table 8). It is interest-
ing to compare those results with regard both to the classification quality. Let
us note that the heuristics MD and MD-G are also very efficient with respect to
the time complexity.

Names of | Classification accuracies
Tables [S-ID3[C4.5] MD [MD-G

Australian |78.26 |85.36(83.69| 84.49
Breast (L)[62.07|71.00/69.95| 69.95
Diabetes |66.23|70.84|71.09| 76.17
Glass [62.79(65.89(66.41| 69.79
Heart |77.78|77.04|77.04| 81.11
Iris 96.67194.67(95.33| 96.67
Lympho |73.33|77.01|71.93| 82.02
Monk-1 |81.25(75.70| 100 | 93.05
Monk-2 |69.9165.00{99.07| 99.07
Monk-3 |90.2897.20{93.51| 94.00
Soybean | 100 |95.56| 100 | 100
TicTacToe|84.38|84.02| 97.7 | 97.70

| Average [78.58]79.94]85.48] 87.00 |

Table 8. The quality comparison between decision tree methods. MD: MD-heuristics;
MD-G: MD-heuristics with symbolic value partition

In case of real value attributes one can search for features in the feature set
containing the characteristic functions of half-spaced determined by hyperplanes
or parts of spaces defined by more complex surfaces in multidimensional spaces.
In [241], [233], [239] genetic algorithms have been applied in searching for semi-
optimal hyperplanes or second order surfaces. The reported results are showing
substantial increase in the quality of classification of unseen objects but we pay
for that spending more time in searching for the semi-optimal hyperplanes.

In all of these cases one can use a general "board game” determined by the
corresponding discernibility matrix in searching for optimal, in a sense, features
and apply the following general scheme. For each entry of the discernibility ma-
trix for discernable objects x and y one should consider the set of all formulas
(from a considered language of features) discerning these objects. From the dis-
cernibility matrix the Boolean function(s) is (are) constructed, in a standard way
[399], with the following property: the prime implicants of these functions deter-
mine the problem solutions. Using this general scheme one can invent much easier
efficient heuristics searching for semi-prime implicants, and hence semi-optimal
solutions, because they can be extracted by manipulation on Boolean formu-
las with a simple structure. The experimental results are supporting this claim
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(see e.g. [237], [238]). One of the possible strategy in searching for semi-optimal
solutions is to search for short prime implicants because from the minimum de-
scription length principle, one can expect that from the corresponding solutions
the decision algorithms with high quality of unseen object classification can be
built.

Boolean reasoning can also be used as a tool to measure the complexity of
approximate solution of a given problem. As a complexity measure of a given
problem one can consider the complexity of the corresponding to that problem
Boolean function (represented by the number of variables, number of clauses,
etc.).

7.3 Decision Rule Synthesis

The reader has certainly realized that the reducts (of all the various types)
can be used to synthesize minimal decision rules. Once the reducts have been
computed, the rules are easily constructed by overlaying the reducts over the
originating decision table and reading off the values.

Example 7.2 Given the reduct {Diploma, Experience} in the Tab. 4, the rule
read off the first object is “if Diploma is MBA and Ezperience is Medium then
Decision is Accept”. |

We shall make these notions precise. The rules are defined inductively in the
usual manner.

Let A = (U, AU {d}) be a decision system and let V = [J{V, |a € A}UV,.
Atomic formulae over B C AU{d} and V are expressions of the form a = v; they
are called descriptors over B and V, where a € B and v € V,,. The set F(B,V)
of formulae over B and V' is the least set containing all atomic formulae over B
and V and closed with respect to the propositional connectives A (conjunction)
V (disjunction) and — (negation).

The semantics (meaning) of the formulae is also defined recursively. Let ¢ €
F(B,V). |¢| 4 denotes the meaning of ¢ in the decision table A which is the set
of all objects in U with the property . These sets are defined as follows:

3

1. if @ is of the form a = v then |p| 4= {z € U | a(z) = v}
2. lp Ap'la=lela N l@'|as o V e'la=lpla Ule'|las [mela=U—lola

The set F(B,V) is called the set of conditional formulae of A and is denoted
C(B,V).

A decision rule for A is any expression of the form ¢ = d = v, where
p €C(B,V), v € Vg and |¢|4# 0. Formulae ¢ and d = v are referred to as the
predecessor and the successor of decision rule ¢ = d = v.

Decision rule ¢ = d = v is true in A if, and only if, || 4Cld = v| 4.

Example 7.3 Looking again at Tab. 4, some of the rules are, for example:

Diploma = MBA A Experience = Medium = Decision = Accept
Ezperience = Low A Reference = Good = Decision = Reject
Diploma = MSc A Ezperience = Medium = Decision = Accept
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The first two rules are true in Tab. 4 while the third one is not true in that table.
O

Let us assume that our decision table is consistent. One can observe that by
computing (k, d)-relative reducts for € U it is possible to obtain the decision
rules with minimal number of descriptors on their left hand sides among rules
true in A. It is enough for any such prime implicant to create the left hand side
of the rule as follows: construct a conjunction of all descriptors a = v where a is
in prime implicant and v is the value on a on zy.

Several numerical factors can be associated with a synthesized rule. For ex-
ample, the support of a decision rule is the number of objects that match the
predecessor of the rule. Various frequency-related numerical quantities may be
computed from such counts.

The main challenge in inducing rules from decision tables lies in determin-
ing which attributes that should be included in the conditional part of the rule.
Although we can compute minimal decision rules, this approach results in rules
that may contain noise or other peculiarities of the data set. Such detailed rules
will be overfit and will poorly classify unseen cases. More general, i.e. shorter
rules should be rather synthesized which are not perfect on known cases (in-
fluenced by noise) but can be of high quality on new cases. Several strategies
implementing this idea have been implemented. They are based on different
measures like boundary region thinning (see e.g. [535], [393]), preserving up to a
given threshold the positive region (see e.g. [393]), entropy (see [410], [407]). One
can also search for reduct approximations need to be found instead, i.e. attribute
subsets that in a sense “almost” preserve e.g. the indiscernibility relation. One
way of computing approximations is first to compute reducts for some random
subsets of the universe of a given decision system and next to select the most
stable reducts, i.e. reducts that occur in most of the subsystems. These reducts,
called dynamic reducts, are usually inconsistent for the original table, but the
rules synthesized from them are more tolerant to noise and other abnormalities;
they perform better on unseen cases since they cover the most general patterns
in the data [13], [18]. Another approach is related to searching for patterns al-
most included in the decision classes combined with decomposition of decision
tables into regular domains (see e.g. [235, 238, 244, 246, 247, 521]). One can
also search for default rules. For a presentation of generating default rules see
[215, 213, 214] and [135] who investigate synthesis of default rules or normalcy
rules and some implementations of heuristics that search for such reducts.

One particularly successful method based on the resampling approach is
called dynamic reducts. It is implemented in the ROSETTA system [276].

For a systematic overview of rule synthesis see e.g. [434], [13], [108], [393].

3 3

7.4 Rule Application

When a set of rules have been induced from a decision table containing a set of
training examples, they can be inspected to see if they reveal any novel relation-
ships between attributes that are worth pursuing for further research. Further-
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more, the rules can be applied to a set of unseen cases in order to estimate their
classificatory power.

Several application schemes can be envisioned. Let us consider one of the
simplest which has shown to be useful in practice.

1. When a rough set classifier is presented with a new case, the rule set is
scanned to find applicable rules, i.e. rules whose predecessors match the
case.

2. If no rule is found (i.e. no rule “fires”), the most frequent outcome in the
training data is chosen.

3. If more than one rule fires, these may in turn indicate more than one possible
outcome.

4. A voting process is then performed among the rules that fire in order to
resolve conflicts and to rank the predicted outcomes. A rule casts as many
votes in favour of its outcome as its associated support count. The votes
from all the rules are then accumulated and divided by the total number
of votes cast in order to arrive at a numerical measure of certainty for each
outcome. This measure of certainty is not really a probability, but may be
interpreted as an approximation to such, if the model is well calibrated.

For a systematic overview of rule application methods see e.g. [420], [13]
108, 109].

3

8 Rough Sets and Tolerance Relations

We discuss in this section extensions of rough sets based on tolerance relations
but we would like to mention that many other generalizations have been stud-
ied like abstract approximation spaces [40], [205], [402], (see also Section 9);

nondeterministic information systems (see e.g. [198], [284], [272], [342], [271]);
recently developed extensions of rough set approach to deal with preferential
ordering on attributes (criteria) in multicriteria decision making [105], [103],
[104]; an extenstion based on reflexive relations as models for object closeness,
only [427]; extensions of rough set methods for incomplete information systems
[174], [175]; formal languages approximations [144], [282], [283]; neighboorhood
systems [182], [183], [184]; extensions of rough sets for distributed systems and
multi agent systems (see e.g. [348], [349], [348], [335]). For discussion of other
possible extensions see [335].

Tolerance relations provide an attractive and general tool for studying indis-
cernibility phenomena. The importance of those phenomena had been noticed
by Poincare and Carnap. Studies have led to the emergence of such approaches
to indiscernibility in rough set community.

We present only some examples of problems related to an extension of rough
sets by using tolerance relations instead of equivalence relations as a model for
indiscernibility. More details the reader can find e.g. in [29, 39, 40, 98, 123,
139, 149, 262, 263, 268, 269, 270, 164, 165, 166, 182, 189, 201, 247, 246, 251,
340, 336, 337, 341, 295, 342, 393, 398, 396, 402, 426, 427, 437, 438, 465, 492,
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493, 522, 524, 526, 525, 528, 541, 542]. Let us also note that there are many
interesting results on relationships between similarity and fuzzy sets (see e.g.
[529, 71, 72, 74, 75, 76, 86, 87, 122, 376, 385, 386, 491]). Problems of similarity
relations are also related to problems of clustering (see e.g. [62, 511]).

We call a relation 7 C X x U a tolerance relation on U if (i) 7 is reflexive: xTx
for any x € U (ii) 7 is symmetric: xTy implies yTx for any pair z,y of elements
of U.

The pair (U, 1) is called a tolerance space. It leads to a metric space with the
distance function

d:-(z,y) =min{k : 320 2, 2.F0 = T Az = yA(ziTzi0q for i =0,1,...,k—1)}

Sets of the form 7(z) = {y € U : z7 y} are called tolerance sets.

One can easily generalize the definitions of the lower and upper approxima-
tions of sets by substituting tolerance classes for abstract classes of the indis-
cernibility relation. We obtain the following formulas for the 7- approximations
of a given subset X of the universe U:

I X={zeU: () CX}and7X ={z €U : 7(x)NX # 0}

However, one can observe that when we are dealing with tolerances we have
a larger class of definable sets than in case of equivalence relations as well as the
presented above definition of the set approximations is not unique. For example
one could take as primitive definable sets the tolerance classes of some iterations
of tolerance relations or the equivalence classes of the relation defined from
the tolerance relation 7 by: IND .y iff dom.(z) = dom,(y) where dom,(z) =
N{7(z) : © € 7(2)}. In case of approximations we would like to refer to [40] where
approximations of sets have been defined which are more close in a sense to X
than the classical ones. They can be defined as follows:

X ={zx eU: Fylzry&r(y) C X)}
and
"X ={xeU: Yylzry=1(y)NX #0)}.

One can check that 7TX C 7, X C X C7* X CTX

This approximations are closely related to the Brouwerian orthocomplemen-
tation (see [40]). One can take for any set X as its orthocomplementation the
set X# ={z €U : Vh e X(=(zrh))} C X¢ where X¢ = U — X and to find
formulas (see [40]) expressing the new approximations using this kind of comple-
mentation. Let us observe that the condition —(xz7h) inside of the above formula
can be interpreted as the discernibility condition for z, h.

Hence we can see that in the process of learning of the proper concept ap-
proximations by tuning approximations or by choosing the primitive definable
sets we have more possibilities dealing with tolerance relations than in case of
equivalence relations. However, we pay for this because it is harder from compu-
tational point of view to search for relevant approximations in this larger space.
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There has been made a great effort to study properties of logical systems
based on similarity relations (see e.g. [529, 72, 74, 76, 87, 251, 262, 263, 149,
269, 270, 342, 385, 386, 438, 492, 493, 495, 525].

Despite of many interesting mathematical properties of these logical sys-
tems there is a great need for algorithmic tools suitable for relevant toler-
ance relation discovery from data, to tune the parameters of these relations
or set approximations to obtain approximations of analysed concepts of satis-
factory quality. Recently, results in this direction have been reported (see e.g.
[98, 247, 246, 426, 427, 165]) with promising experimental results for extracting
patterns from data. Tolerance relations can be interpreted as graphs and several
problems of searching for relevant patterns in data are strongly related to graph
problems (see e.g. [247, 246]. These problems are NP-complete or NP-hard how-
ever several efficient heuristics have been developed to extract relevant patterns
from data. The logical systems developed so far can not help us to infer relevant
tolerance relations. Practitioners will look very much for such logical systems
and this is a challenge for logicians.

Let us summarize previous observations related to concept approximations.

The lower and upper approximations are only examples of the possible ap-
proximations. In terminology of machine learning they are approximations of
subsets of objects known from training sample. However, when one would like
to deal with approximations of subsets of all objects (including also new i.e.
unseen so far objects) some techniques have been proposed to construct set
approximations suitable for such applications. The best known among them is
the technique called the boundary region thinning related to the variable pre-
cision rough set approach [535]; another technique is used in tuning of decision
rules. For instance, achieving better quality on new objects classification by in-
troducing some degree of inconsistency on training objects. This technique is
analogous to the well known techniques for decision tree pruning. The discussed
approaches can be characterized in the following way: parameterized approxima-
tions of sets are defined and by tuning these parameters better approximations
of sets or decision rules are obtained. Some of the reported above methods can
also be interpreted as tuning concept approximations defined by tolerance re-
lations. Further research in this direction will certainly lead to new interesting
results.

One extension of rough set approach is based on recently developed rough
mereology ([327, 329, 330, 331, 332, 329, 333, 334, 335]). The relations to be a
part in a degree (discovered from data) are defining tolerance relations (defin-
ing so called rough inclusions) used to measure the closeness of approximated
concepts. Tolerance relations play an important role in the process of schemes
construction defining approximations of target concepts by some primitive ones.
Contrary to classical approaches these schemes are ”derived” from data by ap-
plying some algorithmic methods. The reader can look for more details in the
section of the paper on rough mereological approach.

Tolerance relations can be defined from information systems or decision ta-
bles. Hence the reduction problems of information necessary to define tolerances
relations arise (see e.g. [401, 402, 437, 438, 396]). We will briefly present an idea
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of this approach. By a tolerance information system [402] we understand a triple
A" = (U, A, 1) where A" = (U, A) is an information system and 7 is a tolerance
relation on information vectors Infg(z) = {(a,a(x)) : a € B} where z € U,
B C A. In particular, a tolerance information system can be realized as a pair
(A, D) where A = (U, A) is an information system, while D = (Dg)pca and
Dp C INF(B) x INF(B) is a relation, called the discernibility relation, satisfying
the following conditions:

(i) INF(B) x INF(B) — Dg is a tolerance relation;

(i) ((v—v)U (w —u) C (ug —wvo) U (vg —ug)) & uDpv — ugDpuvy for any
u, v, ug,vg € INF(B) i.e. Dp is monotonic with respect to the discernibility
property;

(i) mon(uDcw) implies non(u|BDpgv|B) for any B C C and u,v € INF(C)

where INF(B) = {Infp(z) : 2 € U} and if u € INF(C) and B C C C A then
u|B = {(a,w) € u : a € B} i.e. u|B is the restriction of u to B. A (B, Dp)-
tolerance 7 is defined by

yrpr iff  non(Infp(z)DpInfgp(y)).

A (B, Dg)-tolerance function I[B,Dg]: U — P(U) is defined by I[B, Dg|(x)
= 7p(z) for any z € U.

The set I[B,Dg](z) is called the tolerance set of x. The relation INF(B) x
INF(B) — Dp expresses similarity of objects in terms of accessible information
about them. The set RED(A, D) is defined by

{BCA:I[A, D4y =1[B,Dg] and I[A,D4]#I[C,D¢] forany C C B}

Elements of RED(A, D) are called tolerance reducts of (A, D) (or, tolerance
reducts, in short). It follows from the definition that the tolerance reducts are
minimal attribute sets preserving (A, D4) - tolerance function. The tolerance
reducts of (A, D) can be constructed in an analogous way as reducts of informa-
tion systems. The problem of minimal tolerance reduct computing NP-hard [402].
However again some efficient heuristics for computing semi-minimal reducts can
be constructed. The method can be extended for computing so called relative
tolerance reducts and other objects [438]. It is possible to apply Boolean reason-
ing to the object set reduction in tolerance information systems. This is based
on the notion of an absorbent [465]. A subset Y C X is an absorbent for a
tolerance relation 7 (7-absorbent, in short) if and only if for each # € X there
exists y € Y such that z7y. The problem of minimal absorbent construction for
a given tolerance information system can be easily transformed to the problem
of minimal prime implicant finding for a Boolean function corresponding to this
system. hence, again the problem of minimal absorbent construction is NP-hard
so efficient heuristics have been constructed to find sub-minimal absorbents for
tolerance information systems.

The presented methods of information reduction in tolerance information
systems create some step toward practical applications. However, more research
on foundations of this problem should still be done.
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Further progress in investigations on tolerance information systems will have
impact on applications of rough sets in many areas like granular computing, case
based reasoning, process control, scaling continuous decisions etc.

We have discussed in this section some problems related to rough set ap-
proach based on tolerance approach. We have pointed out some interesting prob-
lems to be investigated.

9 Algebraic and Logical Aspects of Rough Sets

One of the basic algebraic problem related to rough sets can be characterized as
follows.

Let X' be a class of information systems, I" a class of algebraic structures
and e — a mapping form X into I'. We say that X is e-dense in I' if for any
algebra A from I' there exists and information system A4 in X such that A is
isomorphic to e(.A) (or a subalgebra of e(A)). If X' is e-dense in I' then we say
that the representation theorem for X (relatively to e and I") holds.

From this definition it follows that to formulate the representation theorem
first one should choose the mapping e and the class I'. They should be chosen
as "natural” for the considered class of informations systems. The mapping e
endows the information systems with a natural algebraic structure. We will show
some examples of natural algebraic structures for information systems to give
the reader some flavour of the research going on. The reader interested in study
of algebraic characterizations of rough sets should refer to [270, 269, 278, 79]
and papers cited in these articles.

Let us recall that a definable set in an information system A is any union of
discernibility classes of IND(A). The first observation is that the set DE(A) of
all definable sets in A endowed with set theoretical operations: union, intersec-
tion and complementation forms a Boolean algebra with the empty set as 0 and
the universe U as 1. The equivalence classes of the indiscernibility relation are
the only atoms of this Boolean algebra. Let us note that definability of sets in
incomplete information systems (i.e. attributes are partial functions on objects)
has also been investigated [33].

For any information system A = (U, A) one can define the family RS(A) of
rough sets i.e. pairs (AX, AX) where X C U. Hence two questions arise. How to
characterize the set of all rough sets in a given infromation system? What are
the "natural” algebraic operations on rough sets?

To answer the first question let us assign to any rough set (4X, AX) the pair
(AX, BN, X). One can easily see that the boundary region BNy X = AX — AX
does not contain any singleton discernibility class. Let us consider in the P(U) x
P(U) the set Z of all pairs (Y, Z) such that for some X C U we have Y = AX
and Z = BN4X. One can observe that the set Z can be characterized as the
set of all pairs of definable sets in 4 which are disjoint and the second element
of any pair does not contain any singleton indiscernibility class of IND(A).

From the point of view of algebraic operations one can choose another repre-
sentation of rough sets. Let us recall that the lower approximation of a given set
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X is the set of all objects which can be with certainty classified as belonging to
X on the basis of knowledge encoded in A and the set theoretical complement
of the upper approximation of X is the set of all objects in U which can be with
certainty rejected as belonging to X on the basis of knowledge encoded in A.
Hence to any rough set (AX,AX) in A one can assign a pair (AX,U — AX).
It happens that one can define some ”natural” oprations on such pairs of sets.
First one easily will guess that (#,U) corresponds to the smallest rough set and
(U, D) corresponds to the largest rough set. To define operations on such repre-
sentations of rough sets let us imagine that we have two experts able to deliver
answers about objects (observed through ”glasses” of A) if they belong to some
concepts i.e. subsets of U. Can we now define an approximate fusion of this
concepts? There are several possibilities. We can treat as the lower approxima-
tion of the concept (representing concepts of two agents) the intersection of the
lower approximations of two concepts using a rule: if both experts classify with
certainty the observed object to their concepts we will treat this object as be-
longing with certainty to a concept being a fusion of those two. We will reject
the observed object as belonging to the upper approximation of the concept be-
ing the fusion of two concepts if at least one of the experts will reject it with
certainty as belonging to the corresponding concept. Hence we obtain the follow-
ing definition of the algebraic operation on considered representations of rough
sets: (X1, X2) A (Y1,Ys) = (X1 NYy, Xo UY,). The reader can immediately find
interpretation for another operation: (Xi, X2) V (Y1,Y2) = (X5 UY:, Xo NYs).
Let us consider one more example. How we can built a model for the comple-
mentation of a concept observed by an expert on the basis of his judgements?
We again have several possibilities. The first model is the following: if the ex-
pert is classifying with certainty an observed object as belonging to a concept
then we are rejecting it with certainty as belonging to the concept but if the
expert is rejecting with certainty an observed object as belonging to a concept
we are classifying it with certainty to the concept. Hence we have the follow-
ing definition of one argument negation operation ~: ~ (X, Xy) = (Xq, X1).
However, now the reader will observe that there are some other possibilities to
build a model for the complement of the concept to which the expert is referring
e.g. by assuming —(X;, Xs) = (U — X1, X;) or +(X1, X)) = (Xo,U — X3). The
defined operations are not random operations. We are now very close (still the
operation corresponding to implication should be defined properly!) to examples
of known abstract algebras, like Nelson or Heyting algebras, intensively studied
in connection with different logical systems. The reader can find formal analysis
of relationships of rough sets with Nelson, Heyting, Lukasiewicz, Post or double
Stone algebras e.g. in [278] and in particular, the representation theorems for
rough sets in different classes of algebras. Let us also note that the properties
of defined negation operations are showing that they correspond to well known
negations studied in logic: strong (constructive) negation or weak (intuitionistic)
negation.

Algebraic structures relevant for construction of generalized approximation
spaces are also discussed in e.g. [40]. In [40] it is shown that the general struc-
ture of posets augmented with two subposets consisting of ”inner definable”
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elements and ”outer definable” elements is sufficient to define inner and outer
approximation maps producing the best approximation from the bottom (lower
approximation) and from the top (upper approximation) of any element with re-
spect to the poset. By imposing De Morgan law it is received a duality between
inner approximation space and outer approximation space. This class of De Mor-
gan structures includes degenerate and quasi Brouwer-Zadeh posets, which are
generalizations of topological spaces and preclusivity spaces, respectively. In the
former case the approximable concepts are described as points of posets whereas
in the later case the approximable concepts are described by subsets of a given
universe. The classical, Pawlak approach coincides with the class of all clopen
topologies or with the class of all preclusivity spaces induced from equivalence
relations.

There is another research direction based on information systems [270]. The
aim is to study information algebras and information logics corresponding to
information systems. First, so called information frames are defined. They are
relational structures consisting parameterized familes of binary relations over the
universe of objects. These relations are e.g indiscernibility relations correspond-
ing to different subsets of attributes. Many other interesting frames can be found
e.g. in [270]. If a frame is extended by adding e.g. set theoretical operations new
algebraic structure called (concrete) information algebra is received. The infor-
mation algebras in the abstract form are Boolean algebras augmented with some
parameterized families of operations reflecting relevant properties of frames and
in consequence of information systems. The main problems studied are related
to the representation therems for information algebras as well as to construction
and properties of logical systems with semantics defined by information algebras
[270].

An attempt to define rough algebras derived from rough equality is presented
e.g. in [10].

For more readings on algebraic aspects of (generalized) approximation spaces
the reader is referred to [106], [127], [356], [361], [362], [360], [128], [47], [494],
[508], [39], [506].

There is a number of results on logics reflecting rough set aspects (for the bib-
liography see [337], [270]). Among these logics there are propositional as well as
predicate logics. They have some new connectives (usually modal ones) reflect-
ing different aspects of approximations. On semantical level they are allowing to
express e.g. how the indiscernibility classes (or tolerance classes) interact with
interpretations of formulas in a given model M. For example, in case of neces-
sity connective the meaning (da)y of the formula « in the model M is the
lower approximation of «ys, in case of possibility connective ({}a)as it is the
upper approximation of ays, i.e. the interpretation of @ in M. Many other con-
nectives have been introduced and logical systems with these connectives have
been characterized. For example in predicate logic one can consider also rough
quantifiers [168]. The results related to the completeness of axiomatization, de-
cidability as well as expressibility of these logical systems are typical results.
More information on rough logic the reader can find in [270], in particular in

[11] a review of predicate rough logic is presented. Many results on information
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logics, in particular characterization theorems, can be found e.g. in [495].

Some relationships of rough algebras with many-valued logics have been
shown e.g. in [10], [261]. For example in [10] soundness and completeness of 3-
valued Lukasiewicz logic with respect to rough semantics has been proven. The
rough semantics is defined by rough algebras [10] being a special kind of topolog-
ical quasi-Boolean algebra [507]. Relationships of rough sets with 4-valued logic

are shown in [261] and with quantum logic in [40].

We would like to mention several attempts to use rough set logics for reason-
ing about knowledge (see e.g. [363], [359], [364], [370], [371], [372], [297]).

Properties of dependencies in information systems have been studied by many
researchers see e.g. [256], [257], [32], [82], [129], [258], [368], [369], [259], [504],
[366], [367].

Finally we would like to mention a research direction related to so called
rough mereological approach for approximate synthesis of objects satisfying a
given specification in satisfactory degree. We will discuss some aspects of this
approach in Part II of this tutorial. Let us note here that one of the perspective
for applied logic is to look for algorithmic methods of extracting logical structures
from data e.g. relational structures corresponding to relevant feature extraction
[403], default rules (approximate decision rules see e.g. [215]), connectives for
uncertainty coefficients propagation and schemes of approximate reasoning. This
point of view is very much related to rough mereological approach and in many
applications, in particular in knowledge discovery and data mining [91], calculi
on information granules and computing with words [530], [531].

For more readings on logical aspects of rough sets the reader is referred to
[270], [65], [11], [232], [79], [8], [278], [335], [495], [78], [148], [339], [303], [64],
[193], [231], [331], [494],[230], [400], [492], [493], [358], [266], [267], [265], [356],
[89], [355], [365], [88], [262], [264], [272].

10 Relationships with Other Approaches

Some interesting results on relationships of rough sets with other approaches to
reasoning under uncertainty have been reported. In this section we point out
on applications of rough sets in decision analysis, data mining and knowledge
discovery, we present a comparison of some experimental results received by
applying some machine learning techniques and rough set methods, we discuss
some relationships of rough sets and fuzzy sets, we present some consequences of
relationships of rough set approach with the Dempster-Shafer theory of evidence
and finally we overiview some hybrid methods and system:s.

There have been studied also relationships of rough sets with other ap-
proaches e.g. with mathematical morphology (see e.g. [333, 322, 323, 324, 326]),
statistical and probabilistic methods (see e.g. [286], [518], [439], [167], [314],[320]

[527], [80], [81], [83]), concept analysis (see e.g. [100], [141], [277], [279)]).
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10.1 Decision analysis

Decision analysis is a discipline providing various tools for modelling decision sit-
uation in view of explaining them or prescribing actions increasing the coherence
between the possibilities offered by the situation, and goals and value systems of
the agents involved. Mathematical decision analysis consists in building a func-
tional or a relational model. The functional model has been extensively used
within the framework of multi attribute utility theory. The relational is known
e.g. in the form of an outranking relation or a fuzzy relation (see [301], [377],
[378], [379], [380], [9]).

Both modelling and explanation/prescription stages are also crucial oper-
ations et elaboration of a systematic and rational approach to modelling and
solving complex decision problems [2], [301].

Rough set approach proved to be a useful tool for solving problems in decision
analysis in particular in the analysis of multi—criteria decision problems related
to:

(i) multi—criteria sorting problems;
(ii) multi—criteria, multi-sorting problems;
(iii) multi criteria description of objects.

The case (i) can be described as decision problems related to the decision
table with one decision. One can expect the following results from the rough set
analysis of decision table: (i) evaluation of importance of particular attributes;
(ii) construction of minimal subsets of independent attributes which can not be
eliminated without disturbing the ability of approximating the sorting decisions;
(iii) computing the relevant attributes i.e. core of the attribute set; (iv) elimi-
nation of redundant attributes from the decision table; (v) generation of sorting
rules from the reduced decision table; they involve the relevant attributes only
and explain a decision policy of the agent (decision maker or expret) in partic-
ular how to solve conflicts between decision rules voting for different decision
when new objects are matched by these rules (see e.g. [420], see also 7.4). The
multi criteria sorting problems represents the largest class of decision problems
to which the rough set approach has been successfuly used. The applications
concern many domains (see Section 11).

In the case (ii) we deal with decision tables with more than one decision
(received from different agents). Using rough set methods one can measure the
degree of consistency of agents, detect and explain discordant and concordant
parts of agent’s decision policies, evaluate the degree of conflict among the agents,
and construct the preference models (sorting rules) expressed in common terms
(conditional attributes) in order to facilitate a mutual understanding of the
agents [301].

In the case (iii) the primary objective is to describe a decision situation.
The rough set approach to the decision situation description is especially well
suited when minimal descriptions in terms of attributes is of primary concern.
Another important problem analysed by rough set methods is conflict analysis
[295]. If agents are not explicitely represented in the information system one can
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look for discovery of dependencies among conditional attributes interpreted as
consequences of descisions represented by objects. Again, rough set methodology
can be used to solve this type of problems [301].

For more readings on rough set approach to decision analysis see e.g. [420],
[423], [424], [422], [293], [296], [300], [301].

Let us also note that some extensions of rough set approach have been pro-
posed for dealing with preferential ordering of attributes (criteria) (see e.g. [103]).

10.2 Rough Sets and Data Mining

Rough set theory has proved to be useful in Data Mining and Knowledge Discov-
ery. It constitues a sound basis for data mining applications. The theory offers
mathematical tools to discover hidden patterns in data. It identifies partial or
total dependencies (i.e. cause—effect relations) in data bases, eliminates redun-
dant data, gives approach to null values, missing data, dynamic data and others.
The methods of data mining in very large data bases using rough sets recently
have been proposed and investigated.

There are some important steps in the synthesis of approximations of con-
cepts related to the construction of: (i) relevant primitive concepts from which
approximations of more complex concepts will be constructed: (ii) (closeness)
similarity measures between concepts; (iii) operations for construction of more
complex concepts from primitive ones.

These problems can be solved by combining the classical rough set approach
and recent extensions of rough set theory. Methods for solving problems arising
in the realization of these steps are crucial for knowledge discovery and data
mining (KDD) [91] as well.

There have been done in last years a substantial progress in developing rough
set methods for data mining and knowledge discovery (see the cited in Section
11 cases and e.g. [238], [237], [246], [247], [235], [538], [46], [160], [161], [317],
[319],[214], [336], [337], [239], [162], [521], [409], [434], [276], [189], [125], [66],
[190], [124], [209], [147], [163], [243], [248], [249], [384], [241], [242], [188]), [480],
[245], [52], [159], [158], [244], [398], [408], [391], [405], [240], [478], [479], [536],
[393], [537], [533]).

In particular new methods for extracting patterns from data (see e.g. [165],
[247], [214], [235]), decomposition of decision tables (see e.g. [245], [408], [249],
[247], [409]) as well as a new methodology for data mining in distributed and
multiagent systems (see e.g. [335]) have been developed.

In Section 11 there are reported many successful case studies of data mining
and knowledge discovery based on rough set methods and the reader can find
more references to papers on data mining.

10.3 Comparison with Some Results in Machine Learning

Recently several comparison studies have been reported showing that the results
received by using software systems based on rough set methods are fully compa-
rable with those obtained by using other systems (see e.g. [108], [115], [109], [13],
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[238], [434], [161]) for object classifying. Let us consider one of a method recently
reported in [238]. Table 8 presents the results of some experiments obtained by
using the proposed methods and the methods reported in [95]. One can compare
those results with regard to the classification qualities. MD and MD-G heuristics
are developed using rough set methods and Boolean reasoning.

Several papers are comparing the results received by applying statistical
methods and comparing them with the results received by rough set methods (see
e.g. [233], [34], [497]). In the future more research should be done to recognize

proper areas for application of these methods separately and in hybridization.

10.4 Rough Sets and Fuzzy Sets

Rough set theory and fuzzy set theory are complementary. It is natural to com-
bine the two models of uncertainty (vagueness for fuzzy sets and coarseness for
rough sets) in order to get a more accurate account of imperfect information
[71]. The results concerning relationships between rough sets and fuzzy sets are
presented e.g. in [71], [76], [22], [302], [36], [37], [38], [41], [42], [43], [185], [187],
[206], [288], [292], [294], [505], [306], [343], [344], [387], [189], [523].

Rough set methods provide approximate descriptions of concepts and they
can be used to construct approximate description of fuzzy concepts as well.
This is very important for more compressed representation of concepts, rules,
patterns in KDD because using fuzzy concepts one can describe these items in
a more compact way. These descriptions, moreover, can be more suitable for
communication with human being.

In rough set theory approximations of sets are defined relatively to a given
background knowledge represented by data tables (information systems, decision
tables) with the set of attributes A.

The rough membership function u% where X C U and B C A can be used
to define approximations and the boundary region of a set, as shown below:

B(X)={z e U: pk(z) =1},
B(X)={z €U : px(x) >0},
BNp(X)={z €U :0< uk(x) <1}.

The rough membership function has the following properties [302]:
ph(z) =1iff z € B(X),

)

) pB(z) =0iff z € —-B(X),

) 0 < uB(z) <1iff » € BNg(X),

) ¥ IND(B) = {(z,z) : x € U} , then p%(z) is the characteristic function of
X,

e) If zIND(B)y, then u%(z) = pu¥ (y),

£) uB_(@) =1 - pB(z) for any v € U,

&) txov (z) > max(ul (z), uf (x) for any x € U,

h) 18y (2) < min(uf (z), 5 (z)) for any « € U,

i) If X is a family of pairwise disjoint sets of U, then pflx(z) = 3 v ox n% ()

for any z € U,
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The above properties show clearly the difference between fuzzy and rough mem-
berships. In particular properties g) and h) show that the rough membership
can be regarded formally as a generalization of fuzzy membership, for the max
and the min operations for union and intersection of sets respectively for fuzzy
sets are special cases of that for rough sets. But let us recall that the ”"rough
membership”, in contrast to the ”fuzzy membership”, has probabilistic flavor.

It has been shown [302] that the formulae received from inequalities g) and
h) by changing them into equalities are not true in general. This important
observation is a simple consequence of the properties of set approximation: the
calculus of set approximations in rough set theory is intensional. Namely, it is
impossible to find a function independent from a given background knowledge
that will allow to compute the values of the rough membership function for the
intersection of sets (or union of sets) having only the values of the membership
function for the argument sets. This property is showing some more differences
between rough membership functions and fuzzy membership functions.

Rough set and fuzzy set approaches create many possibilities for hybridiza-
tion. The number of reported results in this direction are continuously increasing.
Let us mention some of them.

Combining rough sets and fuzzy sets allows to obtain rough approximations
of fuzzy sets as well as approximations of sets by means of fuzzy similarity
relations [DP4]. Let us consider the second case. Fuzzy rough sets (see e.g. [76])
are defined by membership function on the universe of objects U by

15 x) (2) = supuexps(z,w)

ps(x) () = infugx (1 — ps(z,w))

where S is a fuzzy indistinguishibility relation (fuzzy similarity relation) [76]
and z € U.

In this case we consider the fuzzy similarity relations instead of the (crisp) in-
discernibility relations. In case of crisp indiscernibility (i.e. equivalence relation)
relation we obtain

,ug(x)(:n) =1iff 2 € S(X);

ns(x) (@) = 1iff o € S(X);

where S(X) and S(X) denote the upper and the lower approximations of X
with respect to the indiscernibility relation S.

There are other interesting relationships of rough set with fuzzy sets (see e.g.
[69], [70], [76]). For example, Ruspini’s entailment can be understood in terms
of rough deduction. In the rough set approach the indistinguishability notion
is basic, while in Ruspini’s fuzzy logic, it is the idea od closeness. It has been
shown [71] that by introducing lower and upper approximations of fuzzy sets we
come close to Caianiello’s C-calculus [71]. Fuzzy rough sets are allowing to put
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together fuzzy sets and modal logic (see e.g. graded extensions of S5 system by
Nakamura [76]). Rough aspects of fuzzy sets are also discussed in [12].

Rough—fuzzy hybridizaton methods give a tool for KDD. In the sequel we
will describe examples some tools and some research problems related to this
topic.

The classical rough set approach is based on crisp sets. A generalization
of rough set approach for handling different types of uncertainty has been pro-
posed e.g. in [421]. It has been observed that the synthesized (extracted) features
e.g. cuts [248], hyperplanes [233] can be tuned into more relevant features for
classification when they are substituted by fuzzy cuts and fuzzy hyperplanes,
respectively. This is related to the following property: points which are close
to a cut or to a hyperplane can be hardly classified to a specific side of this
cut or hyperplane because of expected noise influencing the position of points.
The same idea can be extended to decision rules or pattern description [247].
Further investigations of techniques transforming crisp concepts (features) into
fuzzy ones will certainly show more interesting results.

Let us mention another source for rough fuzzy hybridization. These ap-
proaches can be characterized in the following way: parameterized approxima-
tions of sets are defined and by tuning these parameters approximations of fuzzy
sets are received. Recently proposed proposed shadowed sets for fuzzy sets [305]
use this technique. Fuzzy membership function is substituted by a family of pa-
rameterized functions with the same domain but only with three possible values.
They correspond to the parameterized lower, upper and boundary region by a
threshold determining the size of shadowed region. The size of this region can
be tuned up in the process of learning.

One of the main problems in soft computing is to find methods allowing to
measure the closeness of concept extensions. Rough set methods can also be used
to measure the closeness of (fuzzy) concepts.

In classical rough set approach sets are represented by definable sets, i.e.
unions of indiscernibility classes. Extension of this approach have been proposed
by several researchers (for references see e.g. [164], [247]). Instead of taking an
equivalence relations as the indiscerniblity relations the tolerance relation (or
even more arbitrary binary relation [105]) is considered. This leads to a richer
family of definable sets but it is harder (from computational complexity point of
view) to construct ”good” approximations of concepts. Searching problems for
optimal tolerance relations are NP-complete or NP-hard [247]. However, it has
been possible to develop efficient heuristics searching for relevant tolerance re-
lation(s) that allow to extract interesting patterns in data (see e.g. [164], [247]).
The reported results are promising. A successful realization of this approach is
possible because in the rough set approach relevant tolerance relations deter-
mining patterns can be extracted from the background knowledge represented
in the form of data tables. The extracted patterns can be further fuzzified and
applied in constructing approximated concepts [235].

Rough set methods can be used to define fuzzy concepts approximately. In
this case one should look for relevant a-cuts of the fuzzy set and to treat these
cuts as decision classes to find their approximations with respect to known con-
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ditional features. Once again problem of choosing relevant cuts is analogous to
the problem of relevant feature extraction. From computational complexity point
of view it is a hard problem and can be solved approximately by discovery of
learning strategies. One can observe that the relevant cuts should be ”well” ap-
proximated (i.e. new objects with high chance should be properly classified to
them) as well as they should give together ”good” approximation of the target
fuzzy set.

The most general case is related to methods for approximate description
of fuzzy concepts by fuzzy concepts. One can look at this issue as the search-
ing problem for an approximate calculus on approximate concepts (information
granules) [530], [531]. This calculus should allow to construct approximate de-
scriptions of fuzzy concepts from approximate descriptions of known ones. One
possible approach to solve this problem is to use fuzzy set methods based on t-
norms and co-norms to define closeness of fuzzy concepts and to perform fusion of
fuzzy concepts [68]. In practical applications there is a need look for constructive
methods returing approximations of target concepts satisfying to a satisfactory
degree given specifications (constraints) from approximations of some primitive
(known) concepts. An approach to solve this problem has been recently pro-
posed as rough mereology (see e.g. [331], [397], [335]). In this approach rules
for propagation of uncertainty coefficients have to be learned form the available
background knowledge represented by data tables. Another interesting property
of this approach is that the construction of schemes for approximate descrip-
tion of the target concepts should be stable. This means that ”small” changes
in approximation quality of primitive concepts should give sufficiently ”small”
changes in approximation quality of constructed approximation of the target
concepts. In [247] there are mentioned possible applications of this approach e.g.
to the decomposition of large data tables.

Rough set approach combined with rough mereology can be treated as an
inference engine for computing with words and granular computing [530], [531].
For example, the construction of satisfactory target fuzzy concept approxima-
tions from approximations of the input (primitive) fuzzy concepts can be realized
in the following stages:

— first the fuzzy primitive (input) and the target (output) concept are repre-
sented by relevant families of cuts;

next by using rough set methods the appropriate approximations of cuts
are constructed in terms of available (conditions) measurable features (at-
tributes) related to concepts;

— the approximations of input cuts obtained in stage 2 are used to construct
schemes defining to a satisfactory degree the approximations of output cuts
from approximated input cuts (and other sources of background knowledge)
[331], [397], [335];

the constructed family of schemes represents satisfactory approximation of
the target concept by the input concepts; (in this step more compact de-
scriptions of the constructed family of schemes can be created, if needed).

Progress in this direction seems to be crucial for further developments in soft
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computing and KDD.

10.5 Rough Sets and the Dempster-Shafer Theory of Evidence

We only present one example of applications for the decision rule synthesis im-
plied by the relationships between rough set methods and Dempster-Shafer’s
theory of evidence [390]. More details on the relationships between rough sets
and Dempster-Shafer’s theory the reader can find in [394]. In particular an in-
terpretation of the Dempster-Shafer rule of combination by a simple operation
on decision tables can be found in [394]. Some other aspects of relationships of
rough sets and evidence theory are discussed in [517], [516], [524], [192], [191],
[143].

In [394] it has been shown that one can compute a basic probability assign-
ment (bpa) m 4 for any decision table .4 assuming

ma(@) =0 and my(f) = zeU ?JA|(T) =0

where ) 60 C @4 = {i: d(z) =i for some z € U}.
Hence some relationships between belief functions Bel 4 and Pl 4 related to the
decision table A can be shown [394]:
|AU1160 Xi‘ ‘AUiGS XZ|
Bel 4(0) = U] and Ply(0) = U]

for any 8 C @ 4.

The belief functions related to decision tables can be applied to generate
strong approximate decision rules. One of the possible approach is to search for
solutions of the following problem:

APPROXIMATION PROBLEM (AP)
INPUT: A decision table A= (U,AU{d}), 0 C O4
and rational numbers ¢, tr € (0, 1].
OUTPUT: Minimal (with respect to the inclusion) sets B C A satisfying
two conditions:
(i) \PLyp(9) — Belyn(0)] <
(ii) Bel 4 p(6) > tr.
where A|B = (U, BU {d}).

We are interseted to find ”small” sets with the above property.
The above conditions (i) and (ii) are equivalent to

B Xi-B|JXi| <elU] and [B|]Xi|>tr|U]
ich ico ico
respectively. Hence (i) means that the boundary region (with respect to B)
corresponding to U;eg X; is “small” (less than €|U]) and the lower approximation
of Ujep X; is “sufficiently large” (greater than #r|U]|) so one can expect that the
rules for this region will be strong. The solution for the above problem can be
obtained by developing efficient heuristics.
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10.6 Hybrid Methods and Systems

It is an experience of soft computing community that hybrid systems combin-
ing different soft computing techniques into one system can often improve the
quality of the constructed system. This has also been claimed in case of rough
set methods that combined with neural networks, genetic algorithms and evo-
lutionary programming, statistical inference tools or Petri nets may give better
solutions. A number of papers on hybrid systems showing the results which bear
out this claim have been published. To be specific: adding statistical tools can
improve the quality of decision rules induced by rough set methods (see e.g. [28]).
Rough set based data reduction can be very useful in preprocessing of data input
to neural networks. Several other methods for hybridization of rough sets and
neural networks have been developed (see e.g. in [132], [133], [134], [452], [210],
[455], [456], [461]). Decision algorithms synthesized by rough set methods can be
used in designing neural networks (see e.g. [248], [250], [411], [459], [460], [461]).
Rough set ideas can lead to new models of neurons (see e.g. [195], [196], [197],
[461]). Optimization heuristics based on evolutionary programs can efficiently
generate rough set constructs like reducts, patterns in data, decision rules (see
e.g. [520], [249], [521]). Rough set methods can be useful in specifying concurrent
systems from which corresponding Petri nets can be automatically generated (see
e.g. [404], [405], [443]). Rough sets combined with fuzzy sets and Petri nets give
an efficient method for designing clock information systems (see e.g. [310], [311]).
Rough set approach to mathematical morphology leads to a generalization called
analytical morphology ([328], [395], [333]), mathematical morphology of rough
sets ([322], [323], [323], [326]) as well as to an idea of approximate compression
of data ([325], [326]).

Moreover hybridization of rough set methods with classical methods like
principal component analysis, bayesian methods, 2D FFT (see e.g. [448], [447],

[450], [451]) or wavelets (see e.g. [512]) leads to classifiers of better quality .

11 Applications and Case Studies

We have been developed different software systems based on rough set methods
(see e.g. [337], [472] and Section 12). There are numerous areas of successful
applications of rough set software systems. Many interesting case studies are
reported. Let us mention some of them:

— MEDICINE:
e Treatment of duodenal ulcer by HSV ([299], [93], [94], [425], [419]);

e Analysis of data from peritoneal lavage in acute pancreatitis ([412]
[413));

e Supporting of therapeutic decisions ([435]);

3

e Knowledge acquisition in nursing ([30], [513], [109]);

e Diagnosis of pneumonia patients ([312]);
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Medical databases (e.g. headache, meningitis, CVD) analysis ([475], [477]

[478], [490], [480], [481], [482], [483], [484], [488], [485], [486], [466], [467],

[468], [469], [470], [471]);
Image analysis for medical applications ([219], [132], [134];)

Surgical wound infection ([138]);

Classification of histological pictures ([132]);

Preterm birth prediction ([514], [116], [515], [110], [111], [109]);
Medical decision making on board space station Freedom (NASA John-
son Space Center) ([109]);

Verification of indications for treatment of urinary stones by extracor-
poreal shock wave lithotripsy (ESWL) ([416));

Analysis of factors affecting the occurrence of breast cancer among women
tereated in US military facilities (reported by W. Ziarko);

Anlysis of factors affecting the differential diagnosis between viral and
bacterial menengitis ([489], [538]);

Developing an emergency room for diagnostic check list A case study
of appendicitis([382]);

Analysis of medical experience with urolithiasis patients treated by ex-
tracorporeal shock wave lithotripsy ([414]);

Diagnosing in progressive encephalopathy ([281], [501], [500]);
Automatic detection of speech disorders ([61]);

Rough set-based filtration of sound applicable to hearing prostheses ([57];
Classification of tooth surfaces ([159], the EUFIT’96 competition);
Discovery of attribute dependencies in experience with multiple injured
patients ([417]);

Modelling cardiac patient set residuals ([273]);

Multistage analysis of therapeutic experience with acute pancreatitis

([415]);

e Brest cancer detection using electro-potentials ([451]);
e Analysis od medical data of patients with suspected acute appendicitis

([34]);

Attribute reduction in a database for hepatic diseases ([463]);
EEG signal analysis ([512]);

— ECONOMICS, FINANCE AND BUSINESS:

Evaluation of bankruptcy risk ([429], [428], [104]);

Company evaluation ([222]);

Bank credit policy ([222]);

Prediction of behaviour of credit card holders ([509]);

Drafting and advertising budget of a company ([222]);

Customer behaviour patterns ([319], [538]);

Response modeling in database marketing ([497]);

Analysis of factors affecting customer’s income level ([538] also reported
by Tu Bao Ho);

Analysis of factors affecting stock price fluctuation ([102]);
Discovery of strong predictive rules for stock market ([539], [17]);
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Purchase prediction in database marketing ([496]);
Modeling customer retention ([163], [84]);
Temporal patterns ([158]);

Analysis of business databases ([315], [162], [317]);

Rupture prediction in a highly automated production system ([455]);

— ENVIRONMENTAL CASES:

Analysis of a large multispecies toxicity database ([140]);

Drawing premonitory factors for earthquakes by emphasing gas geochem-
istry ([464]);

Control conditions on a polder ([375]);

Environmental protection ([107], [109]);

Global warming: influence of different variables on the earth global tem-
perature ([112]);

Global temperature stability ([117], [109]);

Programming water supply systems ([5], [381], [105]);

Predicting water demands in Regina ([6], [5]);

Prediction of oceanic upwelling off the Mauretanian cost using sea surface
temperature images, and real and model meteorological data (reported
by I. Duentsch);

Prediction of slope-failure danger level from cases ([99]);

— ENGINEERING:

Control: The design and implementation of rough and rough fuzzy con-
trollers ([217], [540], [534], [218], [462], [220], [223], [321], [225], [226],

298], [227]), [498], [309], [221)):;

Signal and image analysis:

* Noise and distortion reduction in digital audio signal ([52], [53], [54]
[57]) [55));

Filtration and coding of audio ([59]);

Audio signal enhancement ([60]);

Recognition of musical sounds ([153]);

Detection and interpolation of impulsive distortions in old audio
recordings ([50], [58]);

Subjective assessment of sound quality ([151], [152]);

Assessment of concert hall acoustics ([154]);

Classification of musical timbres and phrases ([150], [155], [156];
Mining musical databases ([157]);

Image analysis ([219], [132], [134]);

Converting a continuous tone image into a halftone image using error
difussion and rough set methods ([458]);

Texture analysis ([250], [446], [448], [457], [450], [453]);

3 3

Voice recognition ([19], [56], [51], [61], [55]);

Classification of animal voices ([159], EUFIT’96 competition);
Handwiritten digit recognition ([444], [15], [121], [16], [449]);
Optical character recognition ([49]);

Circuits synthesis and fault detection ([211], [212]);

* K X K
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* Vibroacoustic technical diagnostics ([252], [253], [254], [255], [199)]);
* Intelligent scheduling ([137]);

Others:

Preliminary wind-bracing in steel skeleton structure ([7]);
Technical diagnostics of mechanical objects ([436]);

Decision supporting for highly automated production system ([456]);
Estimation of important highway parameters ([195], [196]);

Time series analysis of highway traffic volumes ([195], [196]);

Real time decision making ([406], [308]);

Material analysis ([130], [316]);

Power system security analysis ([176]);

¥ ¥ X X X X X ¥

— INFORMATION SCIENCE:

Software engineering:

Qualitative analysis of software engineering data ([383]);
Assessing software quality ([310]);
Software deployability ([307]);

ES
ES
ES
*x Knowledge discovery form software engineering data([384]);

Information retrieval ([430], [431], [432], [98));

Data mining from musical databases ([157]);

Analysis and synthesis of concurrent systems ([404], [405], [440], [441],
[443));

Integration RDMS and data mining tools using rough sets ([97],[249],
[244));

Rough set model of relational databases ([373], [20], [21], [188], [190]);

3 3

Cooperative knowledge base systems ([348], [349], [350], [351]);

Natural language processing ([114], [216], [115], [113], [109]);

Cooperative information system re engineering ([440], [442]);

— DECISION ANALYSIS: (see cases and applications in this section);
— SOCIAL SCIENCES, OTHERS:

Conflict analysis ([287], [291], [295], [63]);

3 3

Social choice functions ([96], [260]);

Rough sets in librarian science ([389]);

Rough sets based study of voter preference ([118]);
Analysis of test profile performance ([352]);

On line prediction of volleyball game progress ([445], [454]);

— MOLECULAR BIOLOGY: Discovery of functional components of pro-
teins from amino—acid sequences ([479], [487]);

— CHEMISTRY: PHARMACY Analysis of relationship between structure
and activity of substances ([169], [170], [171], [172], [173]);

3
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12 Software Systems

We enclose the list of software systems based on rough sets. The reader can find
more details in [337]. It was possble to identify the following rough set systems
for data analysis:

— Datalogic/R, http://ourworld.compuserve.com/homepages/reduct

— Grobian (Roughian), e-mail: I.Duentsch@ulst.ac.uk, ggediga@luce.psycho.Uni-
Osnabrueck.DE

— KDD-R: Rough Sets-Based Data Mining System, e-mail: ziarko@cs.uregina.ca

— LERS—A Knowledge Discovery System , e-mail: jerzy @eecs.ukans.edu

— PRIMEROSE, e-mail: tsumoto@computer.org

— ProbRough — A System for Probabilistic Rough Classifiers Generation, e-
mail: {zpiasta,lenarcik}@sabat.tu.kielce.pl

— Rosetta Software System, http://www.idi.ntnu.no/~aleks/rosetta/

— Rough Family - Software Implementation of the Rough Set Theory, e-mail:
Roman.Slowinski@cs.put.poznan.pl, Jerzy.Stefanowski@cs.put.poznan.pl

— RSDM: Rough Sets Data Miner, e-mail: {cfbaizan, emenasalvas}@.fi.upm.es

— RoughFuzzyLab - a System for Data Mining and Rough and Fuzzy Sets
Based Classification, e-mail: rswiniar@saturn.sdsu.edu

— RSL  The Rough Set Library, ftp://ftp.ii.pw.edu.pl/pub/Rough/

— TAS: Tools for Analysis and Synthesis of Concurrent Processes using Rough
Set Methods, e-mail: zsuraj@univ.rzeszow.pl

— Trance: a Tool for Rough Data Analysis, Classification, and Clustering, e-
mail:wojtek@cs.vu.nl

Partll
Rough Mereology: Approximate
Synthesis of Objects

We would like to give here a brief account of the rough mereological approach to
approximate reasoning [327, 329, 330, 331, 332, 339, 397, 334, 335]. We propose
this formalization as a tool for solving multi-agent or distributed applications
related to approximate reasoning and to calculi on information granules [531]
[530].

3

13 Rough Mereology

Rough mereology offers the general formalism for the treatment of partial con-
tainment. Rough mereology can be regarded as a far - reaching generalization
of mereology of Lesniewski [181]: it does replace the relation of being a (proper)
part with a hierarchy of relations of being a part in a degree. The basic notion
is the notion of a rough inclusion.
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A real function p(X,Y’) on a universe of objects U with values in the interval
[0,1] is called a rough inclusion when it satisfies the following conditions:

(A) p(z,z) =1 for any x (meaning normalization);
(B) p(z,y) = 1 implies that u(z,y) > u(z,z) for any triple z,y, 2 (meaning
monotonicity);

(C) u(z,y) = 1 and p(y,z) = 1 imply u(z,z) > u(y,z) for any triple z,y, z
(meaning monotonicity);

(D) there is n such that u(n,z) = 1 for any z. An object n satisfying (D) is a
u-null object.
Welet z =, y iff p(z,y) = 1= p(y,z) and = #, y iff non(z =, y).

We introduce other conditions for rough inclusion:

(E) if objects z,y have the property :
if z #, n and p(z,z) =1
then there is t #, n with u(t,z) =1 = p(t,y)
then it follows that: u(z,y) = 1.
(E) is an inference rule: it is applied to infer the relation of being a part from
the relation of being a subpart.
(F) For any collection I" of objects there is an object = with the properties:

(i) if z #, n and p(z,z) = 1 then there are t #, n, w € I' such that
ult, ) = pltw) = p(w, 7) = 1;

(i) if w € I" then p(w,z) = 1;

(iii) if y satisfies the above two conditions then u(z,y) = 1.

Any z satisfying F(i) is called a set of objects in I'; if, in addition, x satis-
representations of collections of objects as objects.

We interpret the formula: p(z,y) = r as the statement: x is a part of y in
degree at least r.

The formula = = class(uy){z1,z2,..., 21} is interpreted as the statement
that the object z is composed (designed, synthesized) from parts x1,z2, ..., Tg.
In mereology of Lesniewski the notions of a part, an element, and a subset are
all equivalent: one can thus interpret the formula pu(z,y) = r as the statement:
x is an element (a subset) of y in degree r; if y = class(u) [, then p(z,y) =r
means that z is a member of the collection I" in degree r.

A standard choice of an appropriate measure can be based on the frequency
count; the formal rendering of this idea is the standard rough inclusion function
defined for two sets X,Y C U by the formula

card(X NY)

X, Y) = card(X)

when X is non-empty, 1 otherwise. This function satisfies all of the above axioms
for rough inclusion.
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Relations to fuzzy containment:
Fuzzy containment may be defined in a fuzzy universe U endowed with fuzzy
membership functions px, pwy by the formula :

o(X CY) = f{l(ux(Z), nv (Z))}

for a many - valued implication I. We quote a result in [331] which shows that
rough inclusions generate a class of fuzzy containments stable under residual
implications of the form T where T is a continuous #norm [73] viz.: for any
rough inclusion g on U , the function

o(X,Y) = inf{ T (u(Z, X), u(Z,Y))}.

is also a rough inclusion. The impact of this is that in models of rough mereology
which implement ¢ as the model rough inclusion, we have the composition rule
of the form:

if o(z,y,r) and o(y, 2, s) then o(z,2, T(r,s)).

Hence we can develop an associative calculus of partial containment.

13.1 Rough inclusions from information systems

Rough inclusions can be generated from a given information system A; for in-
stance, for a given partition P = {4y, ..., Ay} of the set A of attributes into non-
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empty sets Ay,..., Ay, and a given set W = {wy,...,wy} of weights, w; € [0, 1]

fori=1,2,...,k and Zlewi =1 we let

k
IND;(z,1
MM@MZZWJ_M%M
(2

i=1

where IND;(z,y) = {a € A; : a(x) = a(y)}. We call p, pw a pre-rough inclu-
sion.

The function p, pw is rough-invariant i.e. if a(z) = a(z') and a(y) = a(y’)
for each a € A then po pw(z,y) = po,p,w(z',y"). po,p,w can be extended to
a rough inclusion on the set 2V [331] e.g. via the formula: u(X,Y) = T{—
{to.pw(z,y) 1y €Y} :2 € X} where T is a tnorm and — is a #-conorm.

An advantage of having rough inclusions in this form is that we can optimize
weights w; in the learning stage.

Example 13.1 Consider an information system H

The table below shows values of the initial rough inclusion p, pw(z,y) =

w i.e. we consider the simplest case when k=1, w; = 1.

O



51

hat |ker |pig
2| 0 [0 |1
xqe| 1 [ 1]0

Table 9. The information system H

X1 | X2 | X3 | Xa
x| 1 10.33]/0.33]0.66
x2(0.33| 1 |0.33{0.00
x3(0.33|0.33| 1 |0.66
x4(0.66(0.00|0.66] 1

Table 10. Initial rough inclusion for H

Example 13.2 In addition to the information system (agent) H from Example
1 we consider agents B and H B. Together with H they form the string ag =
(H)(B)(HB) i.e. HB takes objects: = sent by H and y sent by B and assembles
a complex object zy.

The values of the initial rough inclusion p = p, pw are calculated for (B)
and (BH) by the same procedure as in Example 13.1. |

13.2 Approximate mereological connectives

An important ingredient in our scheme is related to the problem of rough mere-
ological connectives: given information systems A B, C,... we will say that A
results from B, C, ... if there exists a (partial) mapping (an operation) oa :
Ug X Ugc X ... = Ua with rng 04 = Ua ie. any £ € Up is of the form
oa(y,z,...) where y € Ug and z € Ug,... . In the case when pre - rough in-
clusions pa, upB, o, ... are defined in respective universes Ua,Un, Ug, ... there
arises the problem of uncertainty propagation i.e. we have to decide in what way
is the measure pu4 related to measures ug, uc, -... Formally, we have to find an
(approximation) to a function f satisfying the following property:

for any €, ¢€9,¢€3,... € [0,1] :
for any z,21 € U, y,y1 € Uc, ... :
if ug(z,z1) > €1, pc(y,y1) > €2 and ...
then ua (oa(z,y,...),0a(x1,91,...)) > f(e1, €9, ...)

In practice, it is unrealistic to expect the existence of a function f satisfying
the above condition globally; therefore, we localize this notion. To this end, let
us select a subset S4 C Uy of objects which we will call standard objects; we will
use the symbol zyz... to denote the object oa(x,y,...) € Us. Given a standard
s = xyz..., we will call a function f an (approximation to) rough mereological
connective relative to o4 and s in case it satisfies the condition:
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pis|cut|kni|cr
yi|1[1]1]1
y201 (0] 010
ya| 0] 0] 1]0
ya| 11110
Table 11. The information system B
har|lar|of f tar
ri1Y1 1 O 1 0
r1Ys3 0 1 0 0
21 1 0 0 0

Table 12. The information system HB

for any €, €s,¢€3,... € [0,1] :
for any z, € Ug,y1 € Uc,.... :

if pug(z1,2) > €1, pc(yr,y) > e and ...
then pa(oa(xi,y1,...),8) > f(e1,€a,...)

We outline an algorithm which may be used to extract from information sys-
tems approximations to uncertainty functions (rough mereological connectives).

Example 13.3 We will determine an approximation to the mereological con-
nective at the standard x;y; in Table 12 of Example 13.2 i.e. a function f such

that (for simplicity of notation we omit subscripts of u):

if p(z,21) > e and p(y,y) > e
then u(zy,z1y1) > f(e1,€2), for any pair €, €.

The following tables show conditions which f is to fulfill.

z |z, z1)|y |p(y, y1)|u(ry, z1y1)
Tr1 1 Y1 1 1

z1|1 y2[025 |05

x|l y4|0.75 1

22033 |yl 0.75
£2]0.33 |y2]0.25  [0.25
£2(0.33  [y3[0.25  [0.00
£5|0.33 |ya|0.75 0.5

Table 13. The conditions for f (first part)
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z |z, 21)|y [y, y1)|u(ry, 21y1)
25)0.33 |yi|1 0.75

251033 |y2|0.25  |0.25
73033 |y3/0.25  |0.25
230.33 |9a[0.75  |0.75
24]0.66  |yi|1 1
24]0.66  |y2{0.25  |0.5

74]0.66  |ys/0.25  |0.25
24]0.66  |ya|0.75 |1

Table 14. The conditions for f (second part)

O

This full set Ty of conditions can be reduced: we can find a minimal set T" of
vectors of the form (e, €5, €) such that if f satisfies the condition f(e;,e,) =€
for each (gq,e,,€) € T then f extends by the formula (1), below.

The following algorithm produces a minimal set T' of conditions.

Algorithm
Input : table Ty of vectors

(1, 1), p(y, y1), u(zy, T1y1));

Step 1. For each pair (u(z,z1) = &1, u(y,y1) = €2), find £(e1,€2) = min{e : ] >
€1, > eq, (e},eh,€) € To}. Let Th be the table of vectors (e1,€2,£(€1,€2)).

Step 2. For each £* such that (e1,eq,e(e1,62) = €*) € Th, find: row(e*) =
(e7,e3,€*) where (e7,e5,e*) € Ty and if (g,,e,,¢*) € Ty then g, > €},e, >
5.

Output: table T of vectors of the form row(e) .

One can check that Table 15 shows a minimal set T of vectors for the case
of Tables 13, 14.

E1 €9 €
0.66{0.75(1
0.33]0.75(0.5

0.66{0.25(0.25
0.33{0.25(0.00

Table 15. A minimal set T of vectors

One can extract from the algorithm the synthesis formula of f from conditions
T(] .

fler,e2) =min {e : (e],69,8 ) €To A (] > 1) A (g5 > £2)} (1)
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14 Reasoning in Multi-Agent Systems

We outline here basic ideas of reasoning under uncertainty by intelligent units
(agents) in multi - agent systems. Schemes based on these ideas may be - in our
opinion - applied in the following areas of application, important for development
of automated techniques [4]:

— computer-aided manufacturing or computer-aided design [4], [48],[126] where
a complex object=a final artifact (assembly) is produced (designed) from
inventory (elementary) parts by a dedicated team of agents.

— logistics [77] where complex structures are organized from existing elemen-
tary structures (units) to perform a task according to a given specification.

— adaptive control of complex systems [200], [397] where the task consists
in maintaining a given constraint (specification) by adaptive adjustment of
behaviour of some parts (organs, physiological processes etc.).

— business re-engineering [77], [433] where the task is to adaptively modify
a complex object (structure, organization, resources, etc.) according to the
current economic situation (specification).

— cooperative/distributed problem solving including planning, dynamic task
assignment etc. [77], [85], [433] where the task is to organize a system of
agents into a scheme of local teams for solving a problem (specification).

— automated fabrication [31] where the task is to build complex objects (e.g.
mechanisms) by layer-after -layer synthesis.

— preliminary stage of design process [347] where the approximate reasoning
about objects and processes is crucial as it is carried out in an informal,
often natural, language.

The general scheme for approximate reasoning can be represented by the
following tuple

Appr_Reas = (Ag, Link, U, St, Dec_Sch, O, Inv,Unc_mes, Unc_prop)

where

(i) The symbol Ag denotes the set of agent names.

(ii) The symbol Link denotes a set of non-empty strings over the alphabet Ag;
for v(ag) = agiags...agrag € Link, we say that v(ag) defines an elementary
synthesis scheme with the root ag and the leaf agents agy,ags, ...,agr. The
intended meaning of v(ag) is that the agents ag;, ags,..,agx are the children
of the agent ag which can send to ag some simpler constructs for assembling
a more complex artifact. The relation < defined via ag < ag’ iff ag is a leaf
agent in v(ag') for some v(ag'), is usually assumed to be at least an ordering
of Ag into a type of an acyclic graph; we assume for simplicity that (Ag, <)
is a tree with the root root(Ag) and leaf agents in the set Leaf(Ag).

(iii) The symbol U denotes the set {U(ag) : ag € Ag} of universes of agents.

(iv) The symbol St denotes the set {St(ag) : ag € Ag} where St(ag) C U(ag)
is the set of standard objects at the agent ag.
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(v) The symbol O denotes the set {O(ag) : ag € Ag} of operations where
O(ag) = {oi(ag)} is the set of operations at ag.

(vi) The symbol Dec_Sch denotes the set of decomposition schemes; a particular
decomposition scheme dec_sch; is a tuple

({st(ag); : ag € Ag},{oj(ag) : ag € Ag})

which satisfies the property that if v(ag) = agi1ags...agrag € Link then

oj(ag)(st(agr);. st(agz);. .., stlagk);) = st(ag);

for each j.

The intended meaning of dec_sch; is that when any child ag; of ag submits
the standard construct st(ag;); then the agent ag assembles from st(ag1);,
st(aga)j, ..., st(agr); the standard construct st(ag); by means of the opera-
tion o0j(ag).

The rule dec_sch; establishes therefore a decomposition scheme of any stan-
dard construct at the agent root (Ag) into a set of consecutively simpler
standards at all other agents. The standard constructs of leaf agents are
primitive (inventory) standards. We can regard the set of decomposition
schemes as a skeleton about which the approximate reasoning is organized.
Any rule dec_sch; conveys a certain knowledge that standard constructs are
synthesized from specified simpler standard constructs by means of specified
operations. This ideal knowledge is a reference point for real synthesis pro-
cesses in which we deal as a rule with constructs which are not standard: in
adaptive tasks, for instance, we process new, unseen yet, constructs (objects,
signals).

(vii) The symbol Inv denotes the inventory set of primitive constructs. We have
Inv =U{U(ag) : ag € Leaf(Ag)}.

(viii) The symbol Unc_mes denotes the set {Unc_mes(ag) : ag € Ag} of un-
certainty measures of agents, where Unc_mes(ag) = {u;j(ag)} and p;(ag)
C U(ag) x U(ag) x V(ag) is a relation (possibly function) which deter-
mines a distance between constructs in U (ag) valued in a set V (ag); usually,
V(ag) = [0, 1], the unit interval.

(ix) The symbol Unc_prop denotes the set of uncertainty propagation rules
{Unc_prop(v(ag)) : v(ag) € Link}; for v(ag) = agiags...agrag € Link,
the set Unc_prop(v(ag)) consists of functions f; :V(ag1) x V(aga) x ... x
V(agr) — V(ag) such that

if pj(agi)(z;, st(ag;);) =¢e; fori=1,2,..k
then p;(ag)(oj(z1, 22, .., x1), st(ag);) =€ > fij(e1,€2,..,€x).

The functions f; relate values of uncertainty measures at the children of ag
and at ag.

This general scheme may be adapted to the particular cases.
As an example, we will interpret this scheme in the case of a fuzzy controller.
In its version due to Mamdani [200] in its simplest form, we have two agents:
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input, output, and standards of agents are expressed in terms of linguistic labels
like positively small, negative, zero etc. Operations of the agent output express
the control rules of the controller e.g. the symbol o(positively small, negative) =
zero is equivalent to the control rule of the form if st(input); is positively small
and st(input); is negative then st(output), is zero. Uncertainty measures of
agents are introduced as fuzzy membership functions corresponding to fuzzy sets
representing standards i.e. linguistic labels. An input construct (signal) z(input)
is fuzzified i.e. its distances from input standards are calculated and then the
fuzzy logic rules are applied. By means of these rules uncertainty propagating
functions are defined which allow for calculating the distances of the output
construct z(output) from the output standards. On the basis of these distances
the construct z(output) is evaluated by the defuzzification procedure.

The process of synthesis by a scheme of agents of a complex object x which is
an approximate solution to a requirement @ consists in our approach of the two
communication stages viz. the top - down communication/negotiation process
and the bottom - up synthesis process. We outline the two stages here.

In the process of top - down communication, a requirement @ received by the
scheme from an external source is decomposed into approximate specifications
of the form

(¢(ag),£(ag))

for any agent ag of the scheme. The intended meaning of the approximate spec-
ification (®(ag),e(ag)) is that a construct z € U(ag) satisfies (®(ag),e(ag)) iff
there exists a standard st(ag) with the properties that st(ag) satisfies the pred-
icate ®#(ag) and

1(ag)(z, st(ag)) = &(ag).

The uncertainty bounds of the form e(ag) are defined by the agents viz. the
root agent root(Ag) chooses e(root(Ag)) and &(root(Ag)) as such that according
to it any construct z satisfying (@(root(Ag), e(root(Ag)) should satisfy the exter-
nal requirement @ in an acceptable degree. The choice of (®(root(Ag), e(root(Ag))
can be based on the previous learning process; the other agents choose their ap-
proximate specifications in negotiations within each elementary scheme v(ag)
€ Link. The result of the negotiations is succesful when there exists a de-
composition scheme dec_sch; such that for any v(ag) € Link, where v(ag) =
agiags...agrag, from the conditions p(ag;)(z;, st(ag;);) > e(ag;) and st(ag;);
satisfies ®(ag;) for i = 1,2, .., k, it follows that u(ag)(oj(z122,..,z1), st(ag);) >
e(ag) and st(ag); satisfies P(ag).

The uncertainty bounds e(ag) are evaluated on the basis of uncertainty prop-
agating functions whose approximations are extracted from information systems
of agents.

The synthesis of a complex object z is initiated at the leaf agents: they select
primitive constructs (objects) and calculate their distances from their respec-
tive standards; then, the selected constructs are sent to the parent nodes of
leaf agents along with vectors of distance values. The parent nodes synthesize
complex constructs from the sent primitives and calculate the new vectors of dis-
tances from their respective standards. Finally, the root agent root(Ag) receives
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from its children the constructs from which it assembles the final construct and
calculates the distances of this construct from the root standards. On the basis
of the found values, the root agent classifies the final construct z with respect
to the root standards as eventually satisfying (®(root(Ag), e(root(Ag)).

Our approach is analytic: all logical components ( uncertainty measures, un-
certainty functions etc.) necessary for the synthesis process are extracted from
the empirical knowledge of agents represented in their information systems; it
is also intensional in the sense that rules for propagating uncertainty are local
as they depend on a particular elementary synthesis scheme and on a particular
local standard.

We will now give a more detailed account of the process of synthesis.

15 Synthesis Schemes

Synthesis agents.

We start with the set Ag of synthesis agents and the set Inv of inventory objects.
Any synthesis agent ag has assigned a label lab(ag) = {U(ag), A(ag), St(ag),
L(ag), uo(ag), F(ag)} where: U(ag) is the universe of objects at ag, A(ag) =
{U(ag), A(ag),V (ag)} is the information system of ag, St(ag) C U(ag) is the
set of standard objects (standards) at ag, L(ag) is a set of unary predicates at ag
(specifying properties of objects in U(ag)). Predicates of L(ag) are constructed
as formulas in C(A(ag),V) (i.e. Boolean combinations of descriptors over A(ag)
and V); po(ag) C U(ag) x U(ag) x [0,1] is a pre-rough inclusion at ag generated
from A(ag); F(ag) is a set of functions at ag called mereological connectives (cf.
below, the notion of a (C,®,e)— scheme). Synthesis agents reason about objects
by means of the approximate logic of synthesis.

Approximate logic of synthesis.

Consider a synthesis agent ag. The symbol b,, will denote the variable which
runs over objects in Ugg. A waluation vx where X is a set of synthesis agents is
a function which assigns to any be, for ag € X an element vx (byy) € Uyy. The
symbol v, denotes vy4g) With viugy(bag) = .

We now define approxzimate specifications at ag as formulas of the form
(st(ag),P(ag),e(ag)) where st(ag) € St(ag),P(ag) € L(ag) and e(ag) € [0,1].
We say that v = wy,gy satisfies a formula o = (st(ag), ®(ag),e(ag)), sym-
bolically v |= «a, in case u(ag)(v(byy),st(ag)) > € and st(ag) = P(ag). We
write z [= (st(ag), ®(ag),e(ag)) iff vi, = (st(ag),®(ag),e(ag)). The meaning
of a = (st(ag), P(ag),e(ag)) is thus the set [a],, of objects z satisfactorily (as
determined by e(ag)) close to a standard (viz. st(ag)) satistying ¢(ag). How the
agents cooperate is determined by a chosen scheme; selection of a scheme is itself

an adaptive process of design [397].

The synthesis language
Link. The synthesis agents are organized into a hierarchy (which may be an
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empty relation in case of autonomous agents system). We describe this hierarchy
in a language Link over the alphabet Ag. The agents agi,ago, .., agx,ago in
Ag form the string ag =agiags...agrage € Link if and only if there exist a
mapping p(ag) :U(ag1) X ... x U(agy) — U(ago) (meaning: the agent ago can
assemble by means of p(ag) the object p(ag) (z1,...,zx) € U(ago) from any
tuple (z1 € U(ag1), ..., zr € Ulagr)).

Elementary constructions.
If ag =agiags...agrage € Link, then the pair

c = (ag, {(st(ag;), P(ag;),e(ag;)) : i =0,1,..,k})

will be called an elementary construction. We write: Ag(c) = {ago, agi, ..., agy },
Root(c) = ago, Leaf(c) = Ag(c) — {ago}.

Constructions.

For elementary constructions ¢, ¢’ with Ag(c) N Ag(¢’) = {ag} where ag =
Root(c) € Leaf(c'), we define the ag-composition ¢ I, ¢' of ¢ and ¢’ with
Root(cIyyc') = Root(c'), Leaf(cIy,c') = (Leaf(c)—{ag})U(Leaf(c'), Ag(cIy,
') = Ag(c)UAg(c'). A construction is any expression C obtained from a set of
elementary constructions by applying the composition operation a finite number
of times.

(C,®d,e)-schemes.
For an elementary construction ¢ = ¢(ag) as above, we define a (¢, ®,¢) — schemne
as

(ag, {(st(ag;), ®(ag:),e(ag;)) :i =0,1,..,k}

where f(ago) € F(ago) satisfies the condition:

if ,Lt(agl)(él?“ St(a’gz)) 2 E(agi) for i = 1: 27 ey k
then

1o(ag)(x, st(ago)) > (e(agn),e(ags), - e(agr))

>
> e(ago)-

A construction C' composed of elementary constructions ¢y, .., ¢y, ¢, with
Root(C) = Root(c,) = ag, is the support of a (C,®,e)—scheme when each ¢; is
the support of a (¢;, @;,e;)—scheme, where ®; = (Root(c;)), ; = e(Root(c;)),
é = d(agy) and € = e(ago). The (C, P, e)-scheme ¢ defines a function F, called
the output function of ¢ given by Fe(vieqpc)) = = where z € U(ago) is the
unique object produced by C' from vy, f(c). The following statement expresses
the sufficiency criterium of synthesis by a scheme of an object satisfying the
approximate requirement (st(ag,), ¥(ag,),e(ag,)).
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Theorem 15.1 (the sufficiency criterium of synthesis). For any valuation vx
on the set X of leaf agents ag(1),.. .,ag(m) of the (C, ®,¢)—scheme with ag, =
Root(C) such that

(bag(i)) = (stlag(i)), P(ag(i)),e(ag(i)))

fori=1,2,...,m, we have

Fe(vx) = (stago), ®(ag,), e(ago))

Let us emphasize the fact that the functions f(ag), called mereological con-
nectives above, are expected to be extracted from experiments with samples
of objects (see Example 3, above). The above property allows for an easy to
justify correctness criterium of a given (C, @, €)-scheme provided that all param-
eters in this scheme have been chosen properly. The searching process for these
parameters and synthesis of an uncertainty propagation scheme satisfying the
formulated conditions constitutes the main and not easy part of synthesis (and
design as well).

16 Mereological Controllers

The approximate specification (@, ) can be regarded as an invariant to be kept
over the universe of global states (complex objects) of the distributed system. A
mereological controller generalizes the notion of a fuzzy controller. The control
problems can be divided into several classes depending on the model of controlled
object. In this work we deal with the simplest case. In this case, the model of
a controlled object is the (C,®,e)-scheme ¢ which can be treated as a model
of the unperturbed by noise controlled object whose states are satisfying the
approximate specification (@, ).

We assume the leaf agents of the (C, ®,¢e)-scheme ¢ are partitioned into two
disjoint sets, namely the set Un_control(c) of uncontrollable (noise) agents and
the set Control(c) of controllable agents.

We present now two examples of a control problem for a given (C,®,¢) -
scheme.

(OCP) OPTIMAL CONTROL PROBLEM:

Input: (C,®,e)-scheme c; information about actual valuation v of leaf agents
i.e. the values v(byy) for any ag € Control(c) and a value €' such that
Fe(v) = (st(age), ®,€").

Output: A new valuation v’ such that v'(bsy) = v(bag) for ag € Un_control(c)
and Fe(v') = (st(age), P,e0) where g9 = sup{d : Fe(w) |= (st(age), P, d) for
some w such that w(bgsy) = v(by,) for ag € Un_control(c)}.
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These requirements can hardly be satisfied directly. A relaxation of (OCP)

(CP) V-CONTROL PROBLEM

Input: (C, @, ¢)-scheme c; information about actual valuation v of leaf agents
(i.e. the values v(byy) for any ag € Control(c)) and a value €' such that
Fe(v) [= (st(age), ®,£").

Output: A new valuation v’ such that v'(bag) = v(bs,) for ag € Un_control(c)
and Fc(v') = (st(age), @,e0) where g9)e’ + V for some given threshold V.

We will now describe the basic idea on which our controllers of complex
dynamic objects represented by distributed systems of intelligent agents are
built. The main component of the controller are A - incremental rules.

A-rules have the form:

(A(ag)) (Ae(ay,,), ..., Ae(ag;,))
= h(e(ag), — Ae(ag),e(agr), ..., e(agr))

where ag, ,...,ag;, are all controllable children of ag (i.e. children of ag having

descendents in Control(c)), h : R¥*?2 — R" and R is the set of reals.

Approximations to the function h are extracted from experimental data.

The meaning of A(ag) is : if 2’ | (st(ag),®(ag),e'(ag)) for © € U(ag)
where ¢'(ag) = €(ag) + Ae(ag) then if the controllable children ag, ,...,ag;, of ag
will issue objects y;, , ..., y;, with y;, |= (st(ag;,), ®(agi;),e(ag;;) + As(ag;;)) for
j=1,...,r where (Ae(ag,, ), ..., Ae(agi,)) = h(e(ag), —Ae(ag),e(agr), .-, €(agr))
then the agent ag will construct an object y such that y = (st(ag), P(ag),e)
where € > £(ag).

In the above formula, we assume Ae(ag) < 0 and Ae(ag, ) > 0, ..., Ae(ag;,) >
0. The above semantics covers the case when A - rules allow to compensate in
one step the influence of noise.

A-— rules can be composed in an obvious sense. A(aglag') denotes the com-
position of A(ag) and A(ag) over ag I'ag'. The variable A(c) will run over
compositions of A— rules over c. We can sum up the above discussion in a coun-
terpart of Theorem 15.1 which formulates a goodness - of - controller criterium.

Theorem 16.1 (the sufficiency criterium of correctness of the controller). Let
F.(v) |E (st(age),®,e) where v is the valuation of leaf agents of the (C,®,¢)
-scheme ¢ and let F¢(v') = (st(age), P,e') where v’ is a valuation of leaf agents
of ¢ such that v'(b,y) = v(bag) for ag € Control(c), e’ < e. If {enew(ag)} is a
new assignment to agents defined by a composition A(c) of some A-rules such
that epew(ag) = e(ag) for ag € Un_control(c), epew(age) = € and {z4, : ag €
Control(c)} is the set of control parameters (inventory objects) satisfying ., |=
(st(ag), ®(ag),enew(ag)) for ag € Control(c) then for the object Zpew = Fe(v1)
constructed over the valuation v; of leaf agents in ¢ such that vy (bag) = v'(bay)
for ag € Un_control(c) and v1(bgy) = x44 for ag € Control(c) it holds that @,
= (st(age), P, ¢). [ |
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The meaning of Theorem 16.1 is that the controllable agents are able to
compensate of noise which perturbs the state (st(age), ®, ) to (st(ag.), P, ') in
case the search in the space of A - rules results in finding a composition of them
which defines new, better uncertainty coefficients €,..,(ag) for ag € Control(c);
the new valuation v; defined by {€pew(ag) : ag € Control(c)} satisfies the state
(st(age), D, €) .

The above approach can be treated as a first step towards modelling complex
distributed dynamical systems. We expect that it can be extended to solve con-
trol problem for complex dynamical systems i.e. dynamical systems which are
distributed, highly nonlinear, with vague concepts involved in their description.
One can hardly expect that classical methods of control theory can be success-
fully applied to such complex systems.

17 Adaptive Calculus of Granules

Within paradigm of rough mereology one may formalize adaptive calculus of
granules [334]. The metaphor of a granule, already present in rough set theory,
has been recently advocated as a central notion of soft computing [531], [530].

17.1 Information Granules

We would like to present a general view on the problem of information granule
construction and information granule calculus. Our main claims are :

— granules can be identified with finite relational structures (finite models);

— composition operations of granules (knowledge fusion) can be represented
by operations on finite models;

— granules are fused, transformed and converted into decision by intelligent
computing units (agents) or their schemes;

— schemes of agents are seen as decision classifiers and may be regarded as
terms over granules and operations on them whose values are decisions;

— structure of granules and composition operations as well as the agent scheme
and conversion operations on granules should be adaptively learned from
data (the accessible information about objects).

We propose to realize this program on the basis of rough mereology. Let us
mention that fuzzy set approach can be treated as a particular case of this
methodology. One can consider also this approach as a basis for feature ex-
traction in pattern recognition and machine learning. In the feature extraction
process for instance we would like to develop learning strategies extracting from
initial accessible information Inf4(z;) about object z; and decision d(z;) on
x; (for i = 1,...,n where n is the number of objects in data table) appropriate
granules (finite structures) in the form of e.g. a finite model M and valuations
v; as well as formulas a; for i = 1, ..., k expressible in a language of the signature
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the same as M (and such that total size of these formulas is as small as possible)
for which the following conditions hold

d(z;) # d(z;) implies {ap : M,v; = ap} # {ap : M,v; = ap}
for any i # j;i,5 =1.,,,,k.

We start our presentation assuming the simple form of information granules
defined by information systems. We have a variety of indiscernibility spaces
{U/INDp : B C A}; the Boolean algebra generated over the set of atoms
U/INDpg by means of set - theoretical operations of union, intersection and
complement is said to be the B-algebra CG(B) of B - pre-granules. Any member
of CG(B) is called a B - pre-granule.

We have an alternative logical language in which we can formalize the notion
of an information pre-granule; for a set of attributes B C A, we recall the
definition of the B-logic Lg: elementary formulas of Lg are of the form (a,v)
where a € B and v € V,. Formulas of Lg are built from elementary formulas
by means of logical connectives V, A; thus, each formula in DNF is represented
as Vjeg Aier, (ai,v;). The formulas of Lg, called information pre-granules, are
interpreted in the set of objects U: the denotation [(a,v)] of an elementary
formula (a,v) is the set of objects satisfying the equation a(z) = v i.e. [(a,v)] =
{u € U : a(u) = v} and this is extended by structural induction viz. [a V ] =
(] UIB], [a A Bl = [a] N [8] for a, B € Lp.

Clearly, given a B -pre-granule G € CG(B), there exists an information
pre-granule ag of Lg such that [ag] = G.

An atom of the Boolean algebra CG(B) will be called an elementary B-pre-
granule; clearly, for any atom G of CG(B) there exists an elementary information
pre-granule ag of the form A,ep(a,v,) such that [ag] = G.

For given non-empty sets B, C' C A, apair (Gg,G¢) where Gg € CG(B) and
Gc € CG(Q) is called a (B,C) - granule of knowledge. There exists therefore an
information granule (o, , oG, ) such that ag, € Lp,ag, € Lo, [ag,]|=Gp and
[ag.]|=Gc. If G, G are atoms then the pair (Gg,G¢) is called an elementary
(B,C) - granule.

One can associate with any granule (G, G) where G' € CG(B'),G € CG(B)
arule ag = aq/[334].

The notion of a granule corresponds to the logical content (logic of knowledge)
of the information system; however, there is more to the notion of a granule of
knowledge: we have to take into account the restrictions which on the choice
of good granules are imposed by the structure and demands of two interfaces:
input_interface which controls the input objects (signals) and output_interface
which controls the output objects (actions, signals).

Consider a granule (G,G"); let G = [ag], G' = [ag]. There are two charac-
teristics of the granule (G, G") important in applications to adaptive synthesis of
complex objects viz. the characteristic whose values measure what part of [G'] is
in [G] (the strength of the covering of the rule ag = a' and the characteristic
whose values measure what part of [G] is in [G'] (the strength of the support for
the rule ag = aqgr).

To select sufficiently strong rules, we would set thresholds : tr, ¢r' € [0, 1]. We
define then, by analogy with machine learning techniques, two characteristics:
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) =
)

and we call a (u, B, C,tr,tr')— information granule of knowledge any (B,C')-
information granule (a, a’) such that

(i) p(a,a’) > tr and

(ii) n(a,a’) > tr'.

The set of all (u, B,C,tr,tr')— granules corresponding to (u, B, C,tr,tr')—
information granules generates a Boolean algebra of (u, B, C, tr,tr')-granules of
knowledge. Let us observe that given sets B,C C A,a € Lg and o' € L¢, we
may define the value Gr(B, C, u,tr,tr',a,a’) to be TRUE in the case when the
pair (a,a') is an (u, B, C, tr,tr')— granule of knowledge. In this way we define
the relation Gr which we call the granulation relation induced by the triple
(input_interface, logic of knowledge, output_interface) related to the information
system A.

The functions 7, p and thresholds t¢r, #r' introduced above have been used
to present an example of the interface between two sources of information e.g.
between input information source and inner agent knowledge. This is necessary
because very often the exact interpretation of information from one source into
another one is impossible. Different methods for constructing and tuning these
interfaces up, crucial for granular computing, can be developed using rough set
and fuzzy set approaches.

Rough inclusion pg may enter our discussion of a granule and of the relation
Gr in each of the following ways:

([a], [@]);

o) = p
ca) = u([(a")], [@]) for any (B, C)-information granule (a, a')

— concerning the definitions (1), (p) of functions 1 and p , we may replace in
them the rough membership function p with pg possibly better fitted to a
context.

— the function po can be extended to a rough inclusion p* by means of a
formula above, relative to a tconorm — and a tnorm T suitably chosen.
This rough inclusion p* can now be used to measure the information granule
closeness.

17.2 Information Granules of the Form (&,¢)

In applications it is often convenient to use another language for information
granules description allowing for more compressed description of information
granules. Let us assume that a pre-rough inclusion is generated over a set B
of attributes. Let p* be the rough inclusion generated from pg. Now, a new
information granule language Lg for B C A counsists of pairs (@,¢) where @ is
an elementary B-information pre-granule and ¢ € [0,1]. By [®,e]p we denote
the B-granule [ag ] where ag . is a B-information granule being a disjunction
of all Au where u is of the form {(a,v) : a € B,v € V,} (where V, is the value
set of a) and p*([Au], [®]) > €.
We say that
T [=ag (P,€) iff p*([Au(2)], [P]) > €
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where u(z) is {(a,a(z)) : a € B}.

One can also consider more general information granules taking instead of
formulas (®,¢) sets (,e1),..., (P,en) where €1 < ... < g, are interpreted as
closeness degrees to @.

gy

17.3 Synthesis in Terms of Granules

We adopt here our scheme for approximate synthesis and we refer to the notation
therein. We will show how the synthesis process over this scheme can be driven by
granule exchange among agents. We include the following changes in comparison
to this scheme.

1. We introduce an additional agent C's (the customer), where C's ¢ Ag, whose
actions consist in issuing approximate specifications ¥ describing the desired
object (signal, action etc.) to be synthesized by the scheme (Inv, Ag) where
Inw is the set of inventory objects of agents from Ag.

2. We assume that the customer —root of Ag inter face produces approximate
formulas of the form

(®(root(Ag)),e(root(Ag))

for the root agent root(ag) of the agent scheme corresponding to approximate
specifications ¥ in the sense that any object satisfying the formula

(P(root(Ag)),e(root(Ag))

is regarded as satisfying the approximate specification ¥ in satisfactory de-
gree.
3. Let [#(ag), c(ag))ay =

{z € Ulag) : = |=ay (P(ag),£(ag))}-

4. For a given specification (®(ag),e(ag)) at ag, k-ary operation o(ag) at ag
and a mereological connective f(ag) (see above) the decomposition process
returns a sequence

(¢1751)7 X3 (¢k78k)

of specifications (in the language of ag) for agents ag ,...,agy satisfying

0 # o(ag)([1,e1]ag X - X [Pk, Ek]ag)

c [é(ag% f(ag) (51 e 516)]0«9]

where f(ag)(ei,...,er) > (ag).
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5. Next, information granules aq, ..., ay at agy, ..., agy, respectively, are chosen
in such a way that granules

[@1]ags s [@k]agy

and respectively
[Ql ) El]ag: [ék: 5k]ag
are sufficiently close (in the tuning process parameters p,n, tr, tr' are fixed).

The closeness of the granules should guarantee that the following inclusion
is true

O(ag)([al]flm XX [ak]a!}k)
c [é(ag% f(a’g)(51 3 "':516)]119‘

Formulae ay,...,ay at ags,...,agy are described in the form

(P(agr),e(agr)), ..., (Plagr), e(ag))
for agents agy,...,agx, respectively.

The meaning of an expression z =g (&,¢e) is that an agent scheme S is
yielding at the root(S) the object z. A goodness - of - granule synthesis scheme
criterium can be formulated in the following:

Theorem 17.1 (/334]). Let S be an agent scheme satisfying the following
conditions:

(i) the root of S denoted by root(S) has attached a specification
(B(root(S),e(root(S)));

(ii) any non-leaf and non-root agent ag of S satisfies conditions stated in (4)-(5);
(iii) for any leaf agent ag of S the attached specification (P,,,€q4) is satisfied
by some object from the inventory object set INV .

Then the scheme S is yielding at root(S) an object z satisfying

z =5 (P(root(S)), e(root(S))).
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17.4 Adaptivity of calculus of granules
The adaptivity of our scheme is due to the several factors. Among them are
— The possibility of changing the parameters
w,tr.tr', B, C
in the granulation predicate
Gr(ag)(B,C, p, tr,tr',a,a')

for any agent ag € Ag.

— The possibility of new granule formation at any agent ag € Ag in the dy-
namic process of synthesis.

— The possibility of forming new rough inclusion at any agent ag € Ag in the
dynamic process of synthesis e.g. by choosing T, — in the definition of u.

In conclusions we discuss some other potential applications of rough mereo-
logical approach.

18 Conclusions

The rough set approach to data analysis has many important advantages. Some
of them are listed below.

Synthesis of efficient algorithms for finding hidden patterns in data.
Identification of relationships that would not be found using statistical meth-
ods.

Representation and processing of both qualitative and quantitative param-
eters and mixing of user-defined and measured data.

Reduction of data to a minimal representation.

Evaluation of the significance of data.

Synthesis of classification or decision rules from data.

Legibility and straightforward interpretation of synhesized models.

Most algorithms based on the rough set theory are particularly suited for
parallel processing, but in order to exploit this feature fully, a new computer
organization based on rough set theory is necessary.

Although rough set theory has many achievements to its credit, nevertheless
several theoretical and practical problems require further attention.

Especially important is widely accessible efficient software development for
rough set based data analysis, particularly for large collections of data.

Despite of many valuable methods of efficient, optimal decision rule genera-
tion methods from data, developed in recent years based on rough set theory -
more research here is needed, particularly, when quantitative and quantitative
attributes are involved. Also an extensive study of a new approach to missing
data is very important. Comparison to other similar methods still requires due
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attention, although important results have been obtained in this area. Particu-
larly interesting seems to be a study of the relationship between neural network
and rough set approach to feature extraction from data.

Last but not least, rough set computer is badly needed for more advanced
applications. Some research in this area is already in progress.

We would like to stress some areas of research related to the rough mereologi-
cal approach. They are in particular important for further development of rough
set theory and soft computing. They can be characterized as new algorithmic
methods for inducing structures of information granules and information granule
calculus from data (also in distributed and multi agent environments). Among
them are adaptive algorithmic methods for:

— extracting logical (algebraic) structures of information granules from data:
this belongs to the process of searching for a model couched in logical (alge-
braic) terms;

— constructing interfaces among various knowledge structures: this group of
problems is relevant in granular computing; as observed above, granules of
knowledge are the result, among other factors, of uncertainty immanent to
interfaces among various sources of knowledge;

— extracting distance functions for similarity measures from data: here we
would like to have clustering methods based on closeness measures to con-
struct aggregation - based models;

— inducing exact dependencies: this group of problems belong to the second
step i.e. searching for elements of the model and dependencies among them,;
exact dependencies constitute the skeleton along which we organize schemes
for approximate reasoning;

— inducing approximate dependencies: here we search for approximate i.e. close
to exact dependencies and possible ways of expressing them like described in
this collection and literature default rules, templates, rough classifiers, rough
mereological connectives etc.;

— inducing networks of dependencies: emulation of schemes of approximate
reasoning including also algorithmic methods for inducing concurrent data
models from data.

We propose rough mereology as a general framework for investigations in
these directions. Taking this point of view the research should be concentrated
around two main groups of problems, namely methods of adaptive learning
from data of components of schemes of approximate reasoning (like standards,
rough inclusions, mereological connectives, decomposition schemes etc. (see Sec-
tion 2.4)) and adaptive learning of schemes of approximate reasoning (synthesis
schemes of agents).

The research results in the above mentioned areas will also have important
impact on development of new methods for KDD, in particular for development
of algorithmic methods for pattern extraction from data (also in multi agent en-
vironemt) and extracting from data calculus for approximate reasoning on sets
of extracted patterns (e.g. algorithmic methods for large data table decomposi-
tiopn, synthesis of global laws from local findings).
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The advantage of employing various sources of knowledge and various struc-
tures of knowledge in data mining and knowledge discovery implies that new
algorithmic methods are desirable for hybrid systems in which rough set meth-
ods will be applied along with methods based on (one or more of) the following:
fuzzy sets; neural nets; evolutionary strategies; statistical reasoning; belief nets;
evidence theory.

Problems of knowledge discovery should be studied also from the point of
view of complexity. The following topics seem to be important:

— analysis of complexity of knowledge discovery processes: complexity of ex-
tracting classes of problems solvers;

— analysis of complexity of problems of approximate reasoning: complexity of
feature and model extraction/selection, complexity of data mining processes,
complexity of knowledge discovery processes;

— quality of heuritics for hard problems of approximate reasoning: quality -
complexity trade - off;

— refinements of complexity theory for problems of approximate reasoning:
classification issues, relations to minimal length description.

Let us observe that this analysis would require in many cases transgressing the
classical complexity theory.

In addition to areas of application discussed in the paper we would like to
point to some areas where perspectives of applications of rough sets are promising
as borne out by the current research experience. Among them are applications
in: data mining and knowledge discovery; process control; case based reasoning;
conflict analysis and negotiations; natural language processing; software engi-
neering.

Finally, the progress in the discussed above rough merology, being an exten-
sion of rough set theory, should bring forth:

— new computation model based on information granulation and granule cal-
culus;

— new software systems for mentioned above important applications;

— hardware developments: a rough mereological processor and a rough mereo-
logical computer.

We are convinced that progress in the above areas is of the utmost importance
for creating new methods, algorithms, software as well as hardware systems
which prove the applicability of rough set techniques to challenging problems of
Data Mining, Knowledge Discovery and other important areas of applications.
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