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IntroductionRough set theory was developed by Zdzis law Pawlak [285, 290, 203] in the early1980's. It deals with the classi�catory analysis of data tables. The data canbe acquired from measurements or from human experts; although in principleit must be discrete, there exist today methods that allow processing featureswith continuous values. The main goal of the rough set analysis is to synthesizeapproximation of concepts from the acquired data. We show that �rst in thetraditional approach and later how it evolves towards \information granules"under tolerance relation.The purpose of developing such de�nitions may be twofold. In some instances,the aim may be to gain insight into the problem at hand by analyzing theconstructed model, i.e. the structure of the model is itself of interest. In otherapplications, the transparency and explainability features of the model is ofsecondary importance, and the main objective is to construct a classi�er thatclassi�es unseen objects well. A logical calculus on approximate notions is equallyimportant. It is based on the concept of \being a part to a degree" and is knownas rough mereology (see e.g. [327, 329, 330, 331, 332, 339, 397, 334, 335]).The overall modelling process typically consists of a sequence of several sub-steps that all require various degrees of tuning and �ne-adjustments. In orderto perform these functions, an environment to interactively manage and processdata is required. An important feature of rough sets is that the theory is fol-lowed by practical implementations of toolkits that support interactive modeldevelopment. Several software systems based on rough sets exist. For a list ofthese systems see Sect. 12.The article consists of two parts. In Part I we discuss:{ classical rough set theory (Sections 1 to 5),{ the modelling process using rough sets which includes feature selection, fea-ture extraction (by discretization, symbolic attribute value grouping, search-ing for relevant hyperplanes), rule synthesis and validation, (Section 7),{ some extensions to classical rough set approach (Section 8),{ some introductory information on algebraic and logical aspects of rough sets(Section 9),{ some relationships with other approaches (Section 10),{ a list of applications of rough sets (Section 11){ a list of software systems that implement rough set methods (Section 12),{ and, �nally, some conslusions including also considerations on future re-search.



3In Part II we overview of rough mereology developed as a tool for synthe-sis of objects satisfying a given speci�cation in satisfactory degree. The maingoal of this approach is to develop methodology for construction of calculus onapproximate concepts.The tutorial attempts to address the needs of a broad readership. By com-bining informal introductions of each topic with simple examples, it should beaccessible to all readers with interest in data analysis: from undergraduate stu-dents in computer science, to engineers, medical informatics scientists, to �nan-cial analysts, to social science researchers, etc. Since every informal expositionis followed by precise de�nitions, the tutorial is also an authorative source forgraduate students and researchers in the subject.PartIRough sets1 Information SystemsA data set is represented as a table, where each row represents a case, an event,a patient, or simply an object. Every column represents an attribute (a variable,an observation, a property, etc.) that can be measured for each object; it canalso be supplied by a human expert or user. This table is called an informationsystem. More formally, it is a pair A = (U;A), where U is a non-empty �nite setof objects called the universe and A is a non-empty �nite set of attributes suchthat a : U ! Va for every a 2 A. The set Va is called the value set of a.Example 1.1 A very simple information system is shown in Tab. 1. There areseven cases or objects, and two attributes (Age and Lower Extremity MotorScore, LEMS ). Age LEMSx1 16-30 50x2 16-30 0x3 31-45 1-25x4 31-45 1-25x5 46-60 26-49x6 16-30 26-49x7 46-60 26-49Table 1. An example information system.The reader will easily notice that cases x3 and x4 as well as x5 and x7 haveexactly the same values of conditions. The cases are (pairwise) indiscernibleusing the available attributes. 2



4 In many applications, there is an outcome of classi�cation that is known. Thisa posteriori knowledge is expressed by one distinguished attribute called decisionattribute; the process is known as supervised learning. Information systems ofthis kind are called decision systems. A decision system is any information systemof the form A = (U;A[fdg), where d =2 A is the decision attribute. The elementsof A are called conditional attributes or simply conditions. The decision attributemay take several values, though binary outcomes are rather frequent.Example 1.2 A small example decision table can be found in Tab. 2. The tablehas the same seven cases as in the previous example, but one decision attribute(Walk) with two possible outcomes has been added.Age LEMS Walkx1 16-30 50 Yesx2 16-30 0 Nox3 31-45 1-25 Nox4 31-45 1-25 Yesx5 46-60 26-49 Nox6 16-30 26-49 Yesx7 46-60 26-49 NoTable 2. Walk : An example decision tableThe careful reader may again notice that cases x3 and x4 as well as x5 and x7still have exactly the same values of conditions, but the �rst pair has a di�erentoutcome (di�erent value of the decision attribute) while the second pair also hasthe same outcome. 2The de�nitions to be synthesized from decision tables will be of the ruleform \if Age is 16-30 and LEMS is 50 then Walk is Yes". Among the possibleproperties of the constructed rule sets, minimality (of the left hand side lengthsof rules) is one of the important issues. This is studied in the next section.2 IndiscernibilityA decision system (i.e. a decision table) expresses all the knowledge about themodel. This table may be unnecessarily large, in part because it is redundant inat least two ways. The same or indiscernible objects may be represented severaltimes, or some of the attributes may be superuous. We shall look into theseissues now.The notion of equivalence is recalled �rst. A binary relation R � X�X whichis reexive (i.e. an object is in relation with itself xRx), symmetric (if xRy thenyRx) and transitive (if xRy and yRz then xRz) is called an equivalence relation.



5The equivalence class of an element x 2 X consists of all objects y 2 X suchthat xRy.Let A = (U;A) be an information system, then with any B � A there isassociated an equivalence relation INDA(B):INDA(B) = f(x; x0) 2 U2 j 8a 2 B a(x) = a(x0)gINDA(B) is called the B-indiscernibility relation. If (x; x0) 2 INDA(B), thenobjects x and x0 are indiscernible from each other by attributes from B. Theequivalence classes of the B-indiscernibility relation are denoted [x]B . The sub-script A in the indiscernibility relation is usually omitted if it is clear whichinformation system is meant.Some extensions of standard rough sets do not require transitivity to hold.See, for instance, [398]. Such a relation is called tolerance or similarity. We willdiscuss this case later (see Section 8).Example 2.1 Let us illustrate how a decision table such as Tab. 2 de�nes anindiscernibility relation. The non-empty subsets of the conditional attributes arefAgeg, fLEMSg and fAge, LEMSg.If we consider, for instance, fLEMSg, objects x3 and x4 belong to the sameequivalence class and are indiscernible. (By the same token, x5, x6 and x7 belongto another indiscernibility class.) The relation IND de�nes three partitions ofthe universe. IND(fAgeg) = ffx1; x2; x6g; fx3; x4g; fx5; x7ggIND(fLEMSg) = ffx1g; fx2g; fx3; x4g; fx5; x6; x7ggIND(fAge; LEMSg) = ffx1g; fx2g; fx3; x4g; fx5; x7g; fx6gg 23 Set ApproximationAn equivalence relation induces a partitioning of the universe (the set of casesin our example). These partitions can be used to build new subsets of the uni-verse. Subsets that are most often of interest have the same value of the outcomeattribute. It may happen, however, that a concept such as \Walk" cannot be de-�ned in a crisp manner. For instance, the set of patients with a positive outcomecannot be de�ned crisply using the attributes available in Tab. 2. The \problem-atic" patients are objects x3 and x4. In other words, it is not possible to inducea crisp (precise) description of such patients from the table. It is here that thenotion of rough set emerges. Although we cannot de�ne those patients crisply,it is possible to delineate the patients that certainly have a positive outcome,the patients that certainly do not have a positive outcome and, �nally, the pa-tients that belong to a boundary between the certain cases. If this boundary isnon-empty, the set is rough. These notions are formally expressed as follows.Let A = (U;A) be an information system and let B � A and X � U . We canapproximate X using only the information contained in B by constructing the



6B-lower and B-upper approximations of X , denoted BX and BX respectively,where BX = fx j [x]B � Xg and BX = fx j [x]B \X 6= ;g.The objects in BX can be with certainty classi�ed as members of X on thebasis of knowledge in B, while the objects in BX can be only classi�ed as possiblemembers of X on the basis of knowledge in B. The set BNB(X) = BX�BX iscalled the B-boundary region of X , and thus consists of those objects that wecannot decisively classify into X on the basis of knowledge in B. The set U�BXis called the B-outside region of X and consists of those objects which can bewith certainly classi�ed as do not belonging to X (on the basis of knowledgein B). A set is said to be rough (respectively crisp) if the boundary region isnon-empty (respectively empty)6.Example 3.1 The most common case is to synthesize de�nitions of the out-come (or decision classes) in terms of the conditional attributes. Let W =fx j Walk (x) = Yesg, as given by Tab. 2. We then obtain the approxima-tion regions AW = fx1; x6g, AW = fx1; x3; x4; x6g, BNA(W ) = fx3; x4g andU � AW = fx2; x5; x7g. It follows that the outcome Walk is rough since theboundary region is not empty. This is shown in Fig. 1. 2
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{{x2}, {x5, x7}}

Yes/No

Yes

NoFig. 1. Approximating the set of walking patients, using the two conditionalattributes Age and LEMS. Equivalence classes contained in the correspondingregions are shown.One can easily show the following properties of approximations:(1) B(X) � X � B(X);(2) B(;) = B(;) = ;; B(U) = B(U) = U;(3) B(X [ Y ) = B(X) [ B(Y );6 The letter B refers to the subset B of the attributes A. If another subset were chosen,e.g. F � A, the corresponding names of the relations would have been F-boundaryregion, F-lower- and F-upper approximations.



7(4) B(X \ Y ) = B(X) \ B(Y );(5) X � Y implies B(X) � B(Y ) and B(X) � B(Y );(6) B(X [ Y ) � B(X) [ B(Y );(7) B(X \ Y ) � B(X) \ B(Y );(8) B(�X) = �B(X);(9) B(�X) = �B(X);(10) B(B(X)) = B(B(X)) = B(X);(11) B(B(X)) = B(B(X)) = B(X);where �X denotes U �X .It is easily seen that the lower and the upper approximations of a set, arerespectively, the interior and the closure of this set in the topology generated bythe indiscernibility relation.One can de�ne the following four basic classes of rough sets, i.e., four cate-gories of vagueness:a) X is roughly B-de�nable, i� B(X) 6= ; and B(X) 6= U;b) X is internally B-inde�nable, i� B(X) = ; and B(X) 6= U;c) X is externally B-inde�nable, i� B(X) 6= ; and B(X) = U;d) X is totally B-inde�nable, i� B(X) = ; and B(X) = U:The intuitive meaning of this classi�cation is the following.If X is roughly B-de�nable, this means that we are able to decide for someelements of U that they belong to X and for some elements of U that they belongto �X , using B:If X is internally B-inde�nable, this means that we are able to decide forsome elements of U that they belong to �X , but we are unable to decide forany element of U , whether it belongs to X , using B:If X is externally B-inde�nable, this means that we are able to decide forsome elements of U that they belong to X , but we are unable to decide, for anyelement of U whether it belongs to �X , using B:If X is totally B-inde�nable, we are unable to decide for any element of Uwhether it belongs to X or �X , using B:Rough set can be also characterized numerically by the following coe�cient�B(X) = jB(X)jjB(X)j ;called the accuracy of approximation, where jX j denotes the cardinality ofX 6= ;.Obviously 0 � �B(X) � 1. If �B(X) = 1, X is crisp with respect to B (X isprecise with respect to B), and otherwise, if �B(X) < 1, X is rough with respectto B (X is vague with respect to B).4 ReductsIn the previous section we investigated one natural dimension of reducing datawhich is to identify equivalence classes, i.e. objects that are indiscernible using



8the available attributes. Savings are to be made since only one element of theequivalence class is needed to represent the entire class. The other dimensionin reduction is to keep only those attributes that preserve the indiscernibilityrelation and, consequently, set approximation. The remaining attributes are re-dundant since their removal does not worsen the classi�cation. There is usuallyseveral such subsets of attributes and those which are minimal are called reducts.Computing equivalence classes is straightforward. Finding e.g. minimal reduct(i.e. reduct with minimal cardinality among all reducts) is NP-hard [399]. Onecan also show that the number of reducts of an information system with mattributes can be equal to � mbm=2c�It means that computing reducts it is a non-trivial task that cannot be solvedby a simple minded increase of computational resources. It is, in fact, one of thebottlenecks of the rough set methodology. Fortunately, there exist good heuris-tics e.g. [520, 521] based on genetic algorithms that compute su�ciently manyreducts in often acceptable time, unless the number of attributes is very high.Example 4.1 Consider the following decision system (de�ned in Tab. 3): A0 =(U; fDiploma ;Experience ;French;Referenceg[fDecisiong). Let us consider onlythe conditional attributes i.e. an information systemA = (U; fDiploma ;Experience ;French;Referenceg:For simplicity, each equivalence class contains one element. It appears that thereis a minimal set of attributes fExperience, Referenceg which discerns objectsin the same way as the full set of considered objects. The reader may checkthat the indiscernibility relation using the full set of attributes and the setfExperience,Referenceg is the same. The actual construction of minimal setsof attributes with such property will be soon revealed. 2Diploma Experience French Reference Decisionx1 MBA Medium Yes Excellent Acceptx2 MBA Low Yes Neutral Rejectx3 MCE Low Yes Good Rejectx4 MSc High Yes Neutral Acceptx5 MSc Medium Yes Neutral Rejectx6 MSc High Yes Excellent Acceptx7 MBA High No Good Acceptx8 MCE Low No Excellent RejectTable 3. Hiring : An example of an unreduced decision table.Given an information system A = (U;A) the de�nitions of these notionsare as follows. A reduct of A is a minimal set of attributes B � A such that



9INDA(B) = INDA(A). In other words, a reduct is a minimal set of attributesfrom A that preserves the partitioning of the universe, and hence the ability toperform classi�cations as the whole attribute set A does.Let A be an information system with n objects. The discernibility matrix ofA is a symmetric n� n matrix with entries cij as given below. Each entry thusconsists of the set of attributes upon which objects xi and xj di�er.cij = fa 2 A j a(xi) 6= a(xj)g for i; j = 1; :::; nA discernibility function fA for an information systemA is a Boolean functionof m Boolean variables a�1; :::; a�m (corresponding to the attributes a1; :::; am)de�ned as below, where c�ij = fa� j a 2 cijg.fA(a�1; :::; a�m) = ^n_ c�ij j 1 � j � i � n, cij 6= ;oThe set of all prime implicants7 of fA determines the set of all reducts of A.Example 4.2 The discernibility function for the information system A de�nedin Tab. 3 is:fA(d; e; f; r) = (e_r)(d_e_r)(d_e_r)(d_r)(d_e)(e_f_r)(d_e_f)(d_r)(d_e)(d_e)(d_e_r)(e_f_r)(d_f_r)(d_e_r)(d_e_r)(d_e_r)(d_e_f)(f_r)(e)(r)(d_f_r)(d_e_f_r)(e_r)(d_e_f_r)(d_e_f_r)(d_f_r)(d_e_f)(d_e_r)where each parenthesized tuple is a conjunction in the Boolean expression, andwhere the one-letter Boolean variables correspond to the attribute names in anobvious way. After simpli�cation, the function is fA(d; e; f; r) = er. The notationer is a shorthand for e ^ r.Let us also notice that each row in the above discernibility function corre-sponds to one column in the discernibility matrix. This matrix is symmetricalwith the empty diagonal. So, for instance, the last but one row says that thesixth object (more precisely, the sixth equivalence class) can be discerned fromthe seventh one by any of the attributes Diploma, French or Reference and byany of Diploma, Experience or French from the eight one. 27 An implicant of a Boolean function f is any conjunction of literals (variables ortheir negations) such that if the values of these literals are true under an arbitraryvaluation v of variables then the value of the function f under v is also true. A primeimplicant is a minimal implicant. Here we are interested in implicants of monotoneBoolean functions only i.e. functions constructed without negation.



10 If we instead construct a Boolean function by restricting the conjunction toonly run over column k in the discernibility matrix (instead of over all columns),we obtain the k-relative discernibility function. The set of all prime implicantsof this function determines the set of all k-relative reducts of A. These reductsreveal the minimum amount of information needed to discern xk 2 U (or, moreprecisely, [xk] � U) from all other objects.Using the notions introduced above, the problem of supervised learning, i.e.,where the outcome of classi�cation is known, is to �nd the value of the de-cision d that should be assigned to a new object which is described with thehelp of the conditional attributes. We often require the set of attributes usedto de�ne the object to be minimal. For the example Tab. 3 it appears thatfExperience;Referenceg and fDiploma ;Experienceg are two minimal sets of at-tributes that uniquely de�ne to which decision class an object belongs. Thecorresponding discernibility function is relative to the decision. The notions arenow formalized.LetA = (U;A[fdg) be given. The cardinality of the image d(U) = fk j d(x) =k; x 2 Ug is called the rank of d and is denoted by r(d). Let us further assumethat the set Vd of values of decision d is equal to fv1d; : : : ; vr(d)d g.Example 4.3 Quite often the rank is two, e.g., fYes;Nog or fAccept;Rejectg.It can be an arbitrary number, however. For instance in the Hiring example, wecould have rank three if the decision had values in the set fAccept;Hold;Rejectg.2The decision d determines a partition CLASSA(d) = fX1A; : : : ; Xr(d)A g of theuniverse U , where XkA = fx 2 U j d(x) = vkdg for 1 � k � r(d). CLASSA(d)is called the classi�cation of objects in A determined by the decision d. The setX iA is called the i-th decision class of A. By XA(u) we denote the decision classfx 2 U j d(x) = d(u)g, for any u 2 U .Example 4.4 There are two decision classes in each of the running exampledecision systems, i.e., fYes;Nog and fAccept;Rejectg, respectively. The parti-tioning of the universe for the Walk table is U = XYes [ XNo, where XYes =fx1; x4; x6g and XNo = fx2; x3; x5; x7g. For the Hiring table we have U =XAccept[XReject, whereXAccept = fx1; x4; x6; x7g andXReject = fx2; x3; x5; x8g.The notation XYes and XNo is shorthand for X1 and X2, respectively. 2If X1A; : : : ; Xr(d)A are the decision classes of A, then the set BX1[ : : :[BXr(d)is called the B-positive region of A and is denoted by POSB(d).Example 4.5 A quick check, left to the reader, reveals that AXYes[AXNo 6= Uwhile AXAccept [ AXReject = U . This is related to the fact that for the decisionsystem in Tab. 2 a unique decision cannot be made for objects x3 and x4 whilein case of the other table all decisions are unique. 2This important property of decision systems is formalized as follows. Let A =(U;A [ fdg) be a decision system. The generalized decision in A is the function



11@A : U �! P(Vd) de�ned by @A(x) = fi j 9x0 2 U x0 IND(A)x and d(x) = ig. Adecision table A is called consistent (deterministic) if j@A(x)j = 1 for any x 2 U ,otherwise A is inconsistent (non-deterministic).It is easy to see that a decision tableA is consistent if, and only if, POSA(d) =U . Moreover, if @B = @B0 , then POSB(d) = POSB0(d) for any pair of non-emptysets B;B0 � A.Example 4.6 The A-positive region of A in the Walk decision system is aproper subset of U , while in the Hiring decision system the corresponding set isequal to the universe U . The �rst system is non-deterministic, the second one -deterministic. 2We have introduced above the notion of k-relative discernibility function.Since the decision attribute is so signi�cant, it is useful to introduce a spe-cial de�nition for its case. Let A = (U;A [ fdg) be a consistent decision tableand let M(A) = (cij) be its discernibility matrix. We construct a new matrixMd(A) = (cdij) assuming cdij = ; if d(xi) = d(xj) and cdij = cij � fdg, otherwise.Matrix Md(A) is called the decision-relative discernibility matrix of A. Con-struction of the decision-relative discernibility function from this matrix followsthe construction of the discernibility function from the discernibility matrix. Ithas been shown [399] that the set of prime implicants of fdM (A) de�nes the setof all decision-relative reducts of A.Example 4.7 The Hiring decision table in Tab. 4 is now used to illustratethe construction of the corresponding decision-relative discernibility matrix andfunction. The rows are reordered for convenience putting the accepted objects inthe top rows. The corresponding discernibility matrix in Tab. 5 is symmetricalDiploma Experience French Reference Decisionx1 MBA Medium Yes Excellent Acceptx4 MSc High Yes Neutral Acceptx6 MSc High Yes Excellent Acceptx7 MBA High No Good Acceptx2 MBA Low Yes Neutral Rejectx3 MCE Low Yes Good Rejectx5 MSc Medium Yes Neutral Rejectx8 MCE Low No Excellent RejectTable 4. Hiring: The reordered decision table.and the diagonal is empty, and so are all the entries for which the decisions areequal.The resulting simpli�ed decision-relative discernibility function is fdM (A) =ed _ er. From the de�nition of the decision-relative matrix it follows that se-lecting one column of the indiscernibility matrix, e.g., corresponding to [x1],



12 [x1] [x4] [x6] [x7] [x2] [x3] [x5] [x8][x1] ;[x4] ; ;[x6] ; ; ;[x7] ; ; ; ;[x2] e; r d; e d; e; r e; f; r ;[x3] d; e; r d; e; r d; e; r d; e; f ; ;[x5] d; r e e; r d; e; f; r ; ; ;[x8] d; e; f d; e; f; r d; e; f d; e; r ; ; ; ;Table 5. Hiring: The decision-relative discernibility matrix.and simplifying it gives a minimal function that discerns [x1] from objectsbelonging to the corresponding decision class from objects belonging to theother decision classes. For example, the �rst column gives a Boolean function(e_r)(d_e_r)(d_r)(d_e_f) which after simpli�cation becomes ed_rd_re_rf .The reader can check that, for instance, \if Reference is Excellent and French isYes then Decision is Accept" is indeed the case for x1. It is rather illuminatingto notice that if there is any other object for which \Reference is Excellent" and\French is Yes" holds, then the decision will also be \Accept". Indeed, this isthe case for x6. 2If we construct a Boolean function like in case of k-relative discernibilityfunction by restricting the conjunction to only run over these entries of thecolumn corresponding to objects with decision di�erent from the decision on xkthen we obtain (k; d){relative discernibility function. From prime implicants ofthese functions one constructs decision rules with minimal descriptions of theirleft hand sides (see Section 7.3).Example 4.8Figures 2 to 5 graphically display these four types of indiscernibiltiy. One canconsider some other kinds of reducts e.g. preserving positive region and againuse the presented above Boolean reasoning method to compute these reducts.25 Rough MembershipIn classical set theory, either an element belongs to a set or it does not. Thecorresponding membership function is the characteristic function for the set, i.e.the function takes values 1 and 0, respectively. In the case of rough sets, thenotion of membership is di�erent. The rough membership function quanti�esthe degree of relative overlap between the set X and the equivalence [x] class towhich x belongs. It is de�ned as follows:�BX : U �! [0; 1] and �BX (x) = j[x]B \X jj[x]B j



13
Fig. 2. Not relative to a particular case (or object) and not relative to the decision at-tribute. The full indiscernibility relation is preserved. Reducts of this type are minimalattribute subsets that enable us to discern all cases from each other, up to the samedegree as the full set of attributes does.
Fig. 3. Not relative to a particular case (or object) but relative to the decision attribute.All regions with the same value of the generalized decision @A are preserved. Reductsof this type are minimal conditional attribute subsets B � A that for all cases enableus to make the same classi�cations as the full set of attributes does, i.e. @A = @B.

xFig. 4. Relative to case (or object) x but not relative to the decision attribute. Reductsof this type are minimal conditional attribute subsets that enable us to discern case xfrom all other cases up to the same degree as the full set of conditional attributes does.
xFig. 5. Relative to case (or object) x and relative to the decision attribute. Our abilityto discern case x from cases with di�erent generalized decision than x is preserved.Reducts B of this type are minimal conditional attribute subsets that enable us todetermine the outcome of case x, up to the same degree as the full set of attributesdoes, i.e. @A(x) = @B(x).



14The rough membership function can be interpreted as a frequency-based estimateof Pr(x 2 X j x;B), the conditional probability that object x belongs to set X ,given knowledge of the information signature of x with respect to attributes B(see e.g. [518], [304], [302], [528]).The formulae for the lower and upper set approximations can be generalizedto some arbitrary level of precision � 2 ( 12 ; 1] by means of the rough membershipfunction [535], as shown below.B�X = fx j �BX (x) � �gB�X = fx j �BX(x) > 1� �gNote that the lower and upper approximations as originally formulated are ob-tained as a special case with � = 1:0.Approximations of concepts are constructed on the basis of background know-ledge. Obviously, concepts are also related to unseen so far objects. Hence it isvery useful to de�ne parameterized approximations with parameters tuned inthe searching process for approximations of concepts. This idea is crucial forconstruction of concept approximations using rough set methods.Rough sets can thus approximately describe sets of patients, events, out-comes, etc. that may be otherwise di�cult to circumscribe.6 Dependency of AttributesAnother important issue in data analysis is discovering dependencies betweenattributes. Intuitively, a set of attributes D depends totally on a set of attributesC, denoted C ) D, if all values of attributes from D are uniquely determinedby values of attributes from C. In other words, D depends totally on C, if thereexists a functional dependency between values of D and C:Formally dependency can be de�ned in the following way. Let D and C besubsets of A.We will say that D depends on C in a degree k (0 � k � 1), denoted C )k D,if k = (C;D) = jPOSC(D)jjU j ;where POSC(D) = [X2U=DC(X);called a positive region of the partition U=D with respect to C, is the set of allelements of U that can be uniquely classi�ed to blocks of the partition U=D, bymeans of C:Obviously (C;D) = XX2U=D jC(X)jjU j :If k = 1 we say that D depends totally on C, and if k < 1, we say that D dependspartially (in a degree k) on C.



15The coe�cient k expresses the ratio of all elements of the universe, whichcan be properly classi�ed to blocks of the partition U=D; employing attributesC and will be called the degree of the dependency.It can be easily seen that if D depends totally on C then IND(C) �IND(D): That means that the partition generated by C is �ner than the par-tition generated by D: Notice, that the concept of dependency discussed abovecorresponds to that considered in relational databases.Summing up: D is totally (partially) dependent on C, if all (may be some)elements of the universe U can be uniquely classi�ed to blocks of the partitionU=D, employing C:7 Concept Approximation Construction: The ModellingProcessOne of the main goal of machine learning, pattern recognition, knowledge dis-covery and data mining as well as fuzzy sets and rough sets is to synthesizeapproximations of target concepts (e.g. decision classes) from the backgroundknowledge reprersented (e.g. in the form of decision tables). Usually one cansearch only for approximate descriptions of target concepts because of inclom-plete knowledge about theses concepts (e.g. represented by positive and negativeexamples of comcepts).The approximate descriptions of concepts are constructed from some primi-tive concepts. It is well known that often the target concept descriptions de�neddirectly by e.g. by Boolean combinations of descriptors of the form a = v (whena is and attribute and a 2 Va can not be treated as approximations of good qual-ity. Searching for relevant primitive concepts is well known in machine learning,KDD and other areas as feature selection problem and feature extraction prob-lem (see, e.g. [145, 207, 91]).In case of feature selection problem we search for relevant features amongthe given features e.g. for descriptors a = v whre a is a relevant attribute. InSubsection 7.1 we discuss shortly rough set based methods for feature selection.Solving the feature extraction problem is implemented as a searching forsome new, more relevant for classi�cation, features de�ned (in some language)from existing ones. These new features can be e.g. of the form a 2 [0:5; 1)or 2a + 3b > 0:75: Their values on a given object are computed from givenvalues of conditional attributes on this object. The new features are often bi-nary taking value 1 on a given object i� the speci�ed condition is true onthis object. In case of symbolic value attributes we look for new features likea 2 fFrench, English, Polishg with value 1 i� a person is speaks any of theselanguages. The important cases of feature extraction problems are problems ofdiscretization of real value attributes, grouping of symbolic (nominal) value at-tributes, searching for new features de�ned by hyperplanes or more complexsurfaces de�ned over existing attributes. In Subsection 7.2 we discuss an ideaof a discretization based on rough set and Boolean reasoning approach. Wealso mention some approaches based on Boolean reasoning for other mentioned



16above feature extraction problems. All mentioned above cases of feature extrac-tion problem can be described as searching for relevant features in a particularlanguage of features.We point out for the crucial role of Boolean reasoning as an inference enginefor feature selection problems.Usually feature extraction and feature selection problems are implementedin preprocessing stage of the whole modelling process. There are some otheraspects related to this stage of modelling like noise elimination from data ormissing value treatment. The reader can �nd more information related to theseproblems e.g. in [336, 337] and in the bibliography included in these books.In the next stage of construction process of target concept approximationsthe description of target concepts are constructed using extracted relevant fea-tures (relevant primitive concepts) by applying some operations. In the simplestcase when Boolean connectives _ and ^ are chosen thes descriptions are con-structed in the form of so called decision rules. In Subsection 7.3 we give shortintroduction to methods of decision rule synthesis based on rough set methodsand Boolean reasoning. There are two main cases of decision rules discussed,namely exact (deterministic) and approximate (non-deterministic). More infor-mation on decision rule synthesis and using rough set approach the reader can�nd e.g. in [336, 337] and in the bibliography included in these books.Finally, it is necessary to estimate the quality of constructed approximationsof target concepts. Let us observe that the "building blocks" from which dif-ferent approximations of target concepts are constructed can be inconsistent onnew, unseen so far objects (e.g. some objects can be classi�ed as belonging todisjoint concepts). This causes the necessity to develop some methods for theseinconsistencies resolving. The quality of target concept approximations can betreated as acceptable if the inconsistencies can be resolved by using these meth-ods. In Subsection 7.4 we present some introductory comments on this problemand we give some references to rough set methods for resolving conicts betweendi�erent decision rules voting for the �nal decision.7.1 Signi�cance of Attributes and Approximate ReductsA problem of relevant features selection is one of the important problems studiedin Machine Learning and Pattern Recognition (see e.g. [207]). There are alsoseveral attempts to this problem based on rough sets.One of the �rst idea [290] was to consider as relevant features those in coreof the information system A i.e. the intersection of all reducts of informationsystems. One can check that several de�nitions of relevant features used bymachine learning community can be interpreted in this way by choosing relevantdecision system corresponding to the information system.Another approach is related to dynamic reducts (see e.g. [18]) i.e. conditionalattribute sets appearing "su�ciently often" as reducts of samples of the originaldecision table. The attributes belonging to the "most" of dynamic reducts arede�ned as relevant. The value tresholds for "su�ciently often" and "most" shouldbe tuned for a given data. The reported experiments are showing that the set



17of decision rules based on such attributes is much smaller than the set of alldecision rules and the quality of classi�cation of new objects is increasing or notsigni�cantly decreasing if one considers only rules constructed over such relevantfeatures.One can also consider as relevant features those from some approximatereducts of su�ciently high quality. As it follows from considerations concerningreduction of attributes, they can be not equally important, and some of them canbe eliminated from an information table without loosing information containedin the table. The idea of attribute reduction can be generalized by introduction ofthe concept of signi�cance of attributes, which enables us to evaluate of attributesnot only by two-valued scale, dispensable { indispensable, but by assigning to anattribute a real number from the closed interval [0,1], expressing how importantan attribute in an information table is.Signi�cance of an attribute a in a decision table A = (U ; C [ D) (with thedecision set D) can be evaluated by measuring the e�ect of removing of anattribute a 2 C from the attribute set C on the positive region de�ned bythe table A: As shown previously, the number (C;D) expresses the degreeof dependency between attributes C and D, or accuracy of approximation ofU=D by C: We can ask how the coe�cient (C;D) changes when removing anattribute a, i.e., what is the di�erence between (C;D) and ((C �fag; D): Wecan normalize the di�erence and de�ne the signi�cance of an attribute a as�(C;D)(a) = ((C;D) � (C � fag; D))(C;D) = 1� (C � fag; D)(C;D) ;Thus the coe�cient �(a) can be understood as the error of classi�cationwhich occurs when attribute a is dropped. The signi�cance coe�cient can beextended to the set of attributes as follows:�(C;D)(B) = ((C;D) � (C �B;D))(C;D) = 1� (C �B;D)(C;D) ;denoted by �(B), if C and D are understood, where B is a subset of C:If B is a reduct of C, then �(C�B) = 0, i.e., removing any reduct complementfrom the set of conditional attributes unables to make decisions with certainty,whatsoever.Any subset B of C can be treated as an approximate reduct of C, and thenumber "(C;D)(B) = ((C;D)� (B;D))(C;D) = 1� (B;D)(C;D) ;denoted simply as "(B), will be called an error of reduct approximation. It ex-presses how exactly the set of attributes B approximates the set of conditionattributes C (relativelt to D).The concept of an approximate reduct (with respect to the positive region)is a generalization of the concept of a reduct considered previously. A minimalsubset B of condition attributes C, such that (C;D) = (B;D), or "(C;D)(B) =0 is a reduct in the previous sense. The idea of an approximate reduct can



18be useful in cases when a smaller number of condition attributes is preferredover accuracy of classi�cation on training data. This can allow to increase theclassi�cation accuracy on testing data. The error level of reduct approximationshould be tuned for a given data set to achieve this e�ect.We will mention in Section 7.3 several other methods of reduct approximationbased on measures di�erent than positive region. Performed experiments areshowing that by tuning of the approximation level one can, in most cases, increasethe classi�cation quality of new objects. It is important to note that one canagain use Boolean reasoning for computing these di�erent types of reducts andnext extract from them relevant approximations (see e.g. [410].7.2 Discretization and Some Other Feature Extraction MethodsThe discretization step determines how coarsely we want to view the world.For instance, temperature, which is usually measured in real numbers, can bediscretized into two, three or more, but �nitely many, intervals. Another examplecould be heart-beat rate at rest. Although the parameter is already expressed asdiscrete value (i.e. a natural number), medical doctors will usually not distinguishamong, say 68 or 72 beats per minute, and classify it as normal. On the otherhand, 48 to 56 beats per second is considered low, (but normal for a trained long-distance runner) while 120 to 140 beats will be very fast and abnormal unlessit is the rate for a fetus in a certain digestional stage. One can easily see thatthe selection of appropriate intervals and partitioning of symbolic attributes isa complex problem that grows exponentially in the number of attributes to bediscretized. Discretization is a step that is not speci�c to the rough set approachbut that most rule or tree induction algorithms currently require for them toperform well.A number of successful approaches to the problem of �nding e�ective methodsfor real value attributes quantization (discretization) has been proposed [45, 67,90, 228, 280, 346] by machine learning, pattern recognition and KDD researchers.The rough set community has been also committed to constructing e�cientalgorithms for new feature extraction, in particular for discretization or/andsymbolic attribute value grouping (see e.g. [177], [178], [45], [240], [180], [241],[243], [233]).Several successful applications of rough set methods combined with Booleanreasoning [27] have been developed for new feature extraction from data tablesassuming that these features belong to a prede�ned set.The most successful among these methods are:{ discretization techniques (see e.g. [240, 241, 233, 242, 234, 243]),{ methods of partitionining (grouping) of nominal (symbolic) attribute valuesets (see e.g. [233, 243, 237, 238, 239]) and{ combinations of the above methods (see e.g. [237, 238, 239]).Searching for new features expressed by multi-modal formulas (see e.g. [14,15, 16]) can also be mentioned here as a method for feature extraction.



19The results reported in the above cited papers are showing that the discretiza-tion problems and symbolic value partition problems are of high computationalcomplexity (i.e. NP-complete or NP-hard) which clearly justi�es the importanceof designing e�cient heuristics.We will concentrate on the basic discretization methods based on rough setand Boolean reasoning approaches. In the discretization of a decision table A =(U;A[fdg), where Va = [va; wa) is an interval of reals, we search for a partitionPa of Va for any a 2 A: Any partition of Va is de�ned by a sequence of so calledcuts v1 < v2 < ::: < vk from Va. Hence, any family of parti�ons fPaga2A can beidenti�ed with a set of cuts. In the discretization process we search for a set ofcuts satisfying some natural conditions. Let us start from a simple example.Example 7.1 Let us consider a (consistent) decision system (Tab. 6 (a)) withtwo conditional attributes a and b, and seven objects u1; :::; u7. The values ofattributes on these objects and the values of the decision d are presented inTab. 6. Geometrical interpretation of objects and decision classes are shown inFig.6. A a b du1 0.8 2 1u2 1 0.5 0u3 1.3 3 0u4 1.4 1 1u5 1.4 2 0u6 1.6 3 1u7 1.3 1 1 (a) =) AP aP bP du1 0 2 1u2 1 0 0u3 1 2 0u4 1 1 1u5 1 2 0u6 2 2 1u7 1 1 1 (b)Table 6. The discretization process: (a) The original decision system A: (b) TheP-discretization of A, where P = f(a; 0:9); (a; 1:5); (b; 0:75); (b; 1:5)gThe sets of possible values of a and b are de�ned by:Va = [0; 2) ;Vb = [0; 4) :The sets of values of a and b on objects from U are given bya(U) = f0:8; 1; 1:3; 1:4; 1:6g ;b(U) = f0:5; 1; 2; 3g ;respectively.We will describe a discretization process returning a partition into intervalsof the value sets of conditional attributes in such a way that if one will substitutefor any object instead its original value in A the unique name of the interval



20containing it we obtain also consistent decision system. In this way we can reducethe size of value attribute sets in decision system.In our example we obtain the following intervals for condition attributes:[0:8:1); [1; 1:3); [1:3; 1:4); [1:4; 1:6) for a;[0:5; 1); [1; 2); [2; 3) for bde�ned by objects in decision system. The reader can observe that we do notconsider intervals [0; 0:5), [1:6; 2) for a and [0; 0:5), [3; 4) for b. The reason forthat will be clear later.Now one can use an idea of cuts. These are pairs (a; c) where c 2 Va. We willrestrict our considerations for cuts de�ned by the middle points of the abovede�ned intervals. In our example we obtain the following cuts (see Fig. 7):(a; 0:9); (a; 1:15); (a; 1:35); (a; 1:5);(b; 0:75); (b; 1:5); (b; 2:5).Any cut de�nes a new conditional attribute with binary values. For examplethe attribute corresponding to the cut (a; 1:2) is equal to 0 if a(x) < 1:2, other-wise is equal to 1. Hence, objects positioned on di�erent sides of the stright linea = 1:2 are discerned by this cut.Similarly, any set P of cuts de�nes a new conditional attribute aP for anya. One should consider a partition of the value set of a by cuts from P and putthe unique names for the elements of these partition. Lets take the set of cuts:P = f(a; 0:9); (a; 1:5); (b; 0:75); (b; 1:5)g. This set of cuts is gluing values of a lessthen 0:9, all values in the interval [0:9; 1:5) and all values on [1:5; 4). Analogouslyfor b. The values of the new attributes aP and bP are shown in Table 6 (b).The reader can now observe why we have eliminated from our considerationssome mentioned above intervals: cuts positioned in these intervals will not discernobjects from the table.Now a question arises: How to construct a set of cuts with the minimalnumber of elements?We will show that this can be done using Boolean reasoning approach.We start by introducing for any attribute a and any interval determined by athe corresponding Boolean variable. In our example the set of Boolean variablesde�ned by A is equal toV B (A) = �pa1 ; pa2 ; pa3; pa4 ; pb1; pb2; pb3	 ;where pa1 � [0:8; 1) of a (i.e. pa1 corresponds to the interval [0:8; 1) of attributea); pa2 � [1; 1:3) of a; pa3 � [1:3; 1:4) of a; pa4 � [1:4; 1:6) of a; pb1 � [0:5; 1) of b;pb2 � [1; 2) of b; pb3 � [2; 3) of b (see Fig. 7).Let us recall that a valuation of propositional variables is any function fromthe set of propositional variables into f0; 1g. Now one can easily observe thatthere is a one-to-one correspondence between the set of valuations of proposi-tional variables de�ned above for a given A and the set of cuts in A. The ruleis given by (i) for any cut choose the interval containing it and next the propo-sitional variable corresponding to it; (ii) for any propositional variable choosea cut in the interval corresponding to the variable. For example the set of cutsP = f(a; 0:9); (a; 1:5); (b; 0:75); (b; 1:5)g corresponds to the valuation assigning 1
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10.50Fig. 6. A geometrical representation of data and cuts.to the propositional variables: pa1 ; pa4 ; pb1; pb2 only. Having this correspondence,we will say that the Boolean formula built from the propositional variables issatis�ed by a given set of cuts i� it is satis�ed by the valuation correspondingto that set (i.e. taking value 1 only on variables corresponding to cuts from thisset).Now, using our example, we will show how to built a Boolean formula �A ,called the discernibility formula, for a given A with the following property: theset of prime implicants of �A de�nes uniquely the family of all minimal set ofcuts discerning objects in A.Having in mind the discernibility matrix for A, one can see that we shouldchoose at least one cut on one of the attributes appearing in the entry (xi; xj) ofthe discernibility matrix of A for any objects xi and xj discernible by conditionalattributes which have di�erent decisions.The discernibility formulas  (i; j) for di�erent pairs (ui; uj) of discernible
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Fig. 7. The set of cuts (a; c1); (a; c2); (a; c3); (a; c4) on a, the set of propositional vari-ables pa1 , pa2 , pa3 , pa4 and the set of intervals corresponding to these variables in A (seeExample 7.1)objects from U � U with di�erent decisions have the following form: (2; 1) = pa1 _ pb1 _ pb2;  (2; 4) = pa2 _ pa3 _ pb1; (2; 6) = pa2 _ pa3 _ pa4 _ pb1 _ pb2 _ pb3;  (2; 7) = pa2 _ pb1; (3; 1) = pa1 _ pa2 _ pb3;  (3; 4) = pa2 _ pb2 _ pb3; (3; 6) = pa3 _ pa4 ;  (3; 7) = pb2 _ pb3; (5; 1) = pa1 _ pa2 _ pa3 ;  (5; 4) = pb2; (5; 6) = pa4 _ pb3;  (5; 7) = pa3 _ pb2;For example, the formula  (5; 6) is true on the set of cuts if there exists acut p1 = (a; c) on Va in this set such that c 2 [1:4; 1:6) or a cut p2 = (b; c) on Vbthat c 2 [2; 3).The discernibility formula �A in CNF form is given by taking all the aboveconditions, so�A = �pa1 _ pb1 _ pb2� ^ �pa1 _ pa2 _ pb3� ^ (pa1 _ pa2 _ pa3) ^ �pa2 _ pa3 _ pb1�^pb2 ^ �pa2 _ pb2 _ pb3� ^ �pa2 _ pa3 _ pa4 _ pb1 _ pb2 _ pb3� ^ (pa3 _ pa4)^ �pa4 _ pb3� ^ �pa2 _ pb1� ^ �pb2 _ pb3� ^ �pa3 _ pb2� :Transforming the formula �A to the DNF form we obtain four prime impli-cants: �A = �pa2 ^ pa4 ^ pb2� _ �pa2 ^ pa3 ^ pb2 ^ pb3�_ �pa3 ^ pb1 ^ pb2 ^ pb3� _ �pa1 ^ pa4 ^ pb1 ^ pb2� :If we decide to take e.g. the last prime implicant S = �pa1 ; pa4 ; pb1; pb2	, weobtain the following set of cutsP(S) = f(a; 0:9); (a; 1:5); (b; 0:75); (b; 1:5)g:The new decision system AP(S) is represented in Table 6 (b). 2



23Below we present more formal description of the discretiztion problem dis-cussed above.Let A = (U ;A[fdg) be a decision system where U = fx1; x2; : : : ; xng;A =fa1; :::; akg and d : U ! f1; :::; rg. We assume Va = [la; ra) � < to be a realinterval for any a 2 A and A to be a consistent decision system. Any pair (a; c)where a 2 A and c 2 < will be called a cut on Va. Let Pa be a partition onVa (for a 2 A) into subintervals i.e. Pa = f[ca0 ; ca1); [ca1 ; ca2); : : : ; [caka ; caka+1)g forsome integer ka, where la = ca0 < ca1 < ca2 < : : : < caka < caka+1 = ra and Va =[ca0 ; ca1) [ [ca1 ; ca2) [ : : : [ [caka ; caka+1). Hence any partition Pa is uniquely de�nedand often identi�ed as the set of cuts: f(a; ca1); (a; ca2); : : : ; (a; caka)g � A�<.Any set of cuts P = Sa2APa de�nes from A = (U;A[fdg) a new decisionsystem AP = (U ;AP[ fdg) called P-discretization of A, where AP = faP : a 2Ag and aP(x) = i , a(x) 2 [cai ; cai+1) for x 2 U and i 2 f0; ::; kag.Two sets of cuts P0;P are equivalent, i.e. P0�AP, i� AP = AP0 . The equiv-alence relation �A has a �nite number of equivalence classes. In the sequel wewill not discern between equivalent families of partitions.We say that the set of cuts P is A-consistent if @A = @AP , where @A and @APare generalized decisions of A and AP, respectively. The A-consistent set of cutsPirr is A-irreducible if P is not A-consistent for any P � Pirr. The A-consistentset of cuts Popt is A-optimal if card (Popt) � card (P) for any A-consistent setof cuts P.One can show [240] that the decision problem of checking if for a givendecision system A and an integer k there exists an irreducible set of cuts P in Asuch that card(P) < k is NP -complete. The problem of searching for an optimalset of cuts P in a given decision system A is NP -hard.However, one can construct e�cient heuristics returning semi-minimal setsof cuts [240, 241, 244, 233, 237, 238, 239, 318]. Here we discuss the simplestone based on the Johnson strategy. Using this strategy one can look for a cutdiscerning the maximal number of object pairs, next one can eliminate all alreadydiscerned object pairs and repeat the procedure until all object pairs to bediscerned are discerned. It is intersecting to note that this can be realized bycomputing the minimal relative reduct of the corresponding decision system.Again we will explain this idea using our example.From a given decision system one can construct a new decision system A�having as objects all pairs of objects from A with di�erent decision values, soall object pairs to be discerned. We are adding one more object new on whichall constructed new conditional attributes have value 0 and on which the deci-sion value is also 0. The new decision is equal to 1 on all other objects in thenew decision system. The set of condition attributes in the new decision systemA� is equal to the set of all attributes de�ned by all cuts (or all propositionalvariables considered above). These attributes are binary. The value of the newattribute corresponding to a cut (a; c) on the pair (ui; uj) is equal to 1 i� thiscut is discerning objects (ui; uj) (i.e. min(a(ui); a(uj))< c <max(a(ui); a(uj)))and 0 otherwise. One can formulate this condition in another way. The valueof the new attribute corresponding to the propositional variable pas on thepair (ui; uj) is equal to 1 i� the interval corresponding to pas is included in



24[min(a(ui); a(uj));max(a(ui); a(uj))] and 0 otherwise.The resulting new decision system A� is shown in Tab. 7.Objects in A� are all pairs (xi; xj) discernible by the decision d. One moreobject is included, namely new with all values of attributes equal to 0. This allowsformally to keep the condition: "at least one occurrence of 1 (for conditionalattributes) appears in any row for any subset of columns corresponding to anyprime implicant".The relative reducts of this table correspond exactly to the prime implicantsof the function �A (for the proof see e.g. [233]).Our "MD heuristic" is based on searching for a cut with maximal numberof object pairs discerned by this cut [240], [237]. The idea is analogous to theJohnson approximation algorithm and can be formulated as follows:A� pa1 pa2 pa3 pa4 pb1 pb2 pb3 d�(u1; u2) 1 0 0 0 1 1 0 1(u1; u3) 1 1 0 0 0 0 1 1(u1; u5) 1 1 1 0 0 0 0 1(u4; u2) 0 1 1 0 1 0 0 1(u4; u3) 0 0 1 0 0 1 1 1(u4; u5) 0 0 0 0 0 1 0 1(u6; u2) 0 1 1 1 1 1 1 1(u6; u3) 0 0 1 1 0 0 0 1(u6; u5) 0 0 0 1 0 0 1 1(u7; u2) 0 1 0 0 1 0 0 1(u7; u3) 0 0 0 0 0 1 1 1(u7; u5) 0 0 1 0 0 1 0 1new 0 0 0 0 0 0 0 0Table 7. Decision system A� constructed from AALGORITHM MD-heuristic (Semi-optimal family of partitions)Step 1. Construct the table A� from A and erase the last row (i.e. a "new" element)from A�; set B :=A�;Step 2. Choose a column from B with the maximal number of occurrences of 1's;Step 3. Delete from B the column chosen in Step 2 and all rows marked in thiscolumn by 1;Step 4. If B is non-empty then go to Step 2 else Stop.In our example the algorithm is choosing �rst pb2 next pa2 and �nally pa4 . HenceS = fpa2 ; pa4; pb2g and the resulting set of cuts P = f(a; 1:15); (a; 1:5); (b; 1:5)g. Fig8 is showing the constructed set of cuts (marked by bold lines).The algorithm based on Johnson's strategy described above is searching fora cut which discerns the largest number of pairs of objects (MD-heuristic). Then
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10.50Fig. 8. The minimal set of cuts of Awe move the cut c from A� to the resulting set of cuts P and remove from U� allpairs of objects discerned by c. Our algorithm is continued until U� = fnewg.Let n be the number of objects and let k be the number of attributes of decisionsystem A. Then card (A�) � (n� 1) k and card (U�) � n(n�1)2 . It is easy toobserve that for any cut c 2 A� we need O �n2� steps to �nd the number ofall pairs of objects discerned by c. Hence the straightforward realization of thisalgorithm requires O �kn2� of memory space and O(kn3) steps to determineone cut, so it is not feasible in practice. The MD-heuristic presented in [236]determines the best cut in O (kn) steps using O (kn) space only. This heuristicis very e�cient with respect to the time necessary for decision rules generationas well as with respect to the quality of unseen object classi�cation. (see e.g[233, 241, 237]).Let us observe that the new features in the considered case of discretizationare of the form a 2 V , where V � Va and Va is the set of values of attribute a.One can extend the presented approach (see e.g. [243], [237], [238], [238],) tothe case of symbolic (nominal, qualitative) attributes as well as to the case whenin a given decision system nominal and numeric attribute appear. The receivedheuristics are of very good quality.Experiments for classi�cation methods (see [238]) have been carried overdecision systems using two techniques called "train-and-test" and "n-fold-cross-



26validation". In Table 8 some results of experiments obtained by testing the pro-posed methods MD and MD-G for classi�cation quality on well known datatables from the "UC Irvine repository" are shown. The results reported in [95]are summarized in columns labeled by S-ID3 and C4.5 in Table 8). It is interest-ing to compare those results with regard both to the classi�cation quality. Letus note that the heuristics MD and MD-G are also very e�cient with respect tothe time complexity. Names of Classi�cation accuraciesTables S-ID3 C4.5 MD MD-GAustralian 78.26 85.36 83.69 84.49Breast (L) 62.07 71.00 69.95 69.95Diabetes 66.23 70.84 71.09 76.17Glass 62.79 65.89 66.41 69.79Heart 77.78 77.04 77.04 81.11Iris 96.67 94.67 95.33 96.67Lympho 73.33 77.01 71.93 82.02Monk-1 81.25 75.70 100 93.05Monk-2 69.91 65.00 99.07 99.07Monk-3 90.28 97.20 93.51 94.00Soybean 100 95.56 100 100TicTacToe 84.38 84.02 97.7 97.70Average 78.58 79.94 85.48 87.00Table 8. The quality comparison between decision tree methods. MD: MD-heuristics;MD-G: MD-heuristics with symbolic value partitionIn case of real value attributes one can search for features in the feature setcontaining the characteristic functions of half-spaced determined by hyperplanesor parts of spaces de�ned by more complex surfaces in multidimensional spaces.In [241], [233], [239] genetic algorithms have been applied in searching for semi-optimal hyperplanes or second order surfaces. The reported results are showingsubstantial increase in the quality of classi�cation of unseen objects but we payfor that spending more time in searching for the semi-optimal hyperplanes.In all of these cases one can use a general "board game" determined by thecorresponding discernibility matrix in searching for optimal, in a sense, featuresand apply the following general scheme. For each entry of the discernibility ma-trix for discernable objects x and y one should consider the set of all formulas(from a considered language of features) discerning these objects. From the dis-cernibility matrix the Boolean function(s) is (are) constructed, in a standard way[399], with the following property: the prime implicants of these functions deter-mine the problem solutions. Using this general scheme one can invent much easiere�cient heuristics searching for semi-prime implicants, and hence semi-optimalsolutions, because they can be extracted by manipulation on Boolean formu-las with a simple structure. The experimental results are supporting this claim



27(see e.g. [237], [238]). One of the possible strategy in searching for semi-optimalsolutions is to search for short prime implicants because from the minimum de-scription length principle, one can expect that from the corresponding solutionsthe decision algorithms with high quality of unseen object classi�cation can bebuilt.Boolean reasoning can also be used as a tool to measure the complexity ofapproximate solution of a given problem. As a complexity measure of a givenproblem one can consider the complexity of the corresponding to that problemBoolean function (represented by the number of variables, number of clauses,etc.).7.3 Decision Rule SynthesisThe reader has certainly realized that the reducts (of all the various types)can be used to synthesize minimal decision rules. Once the reducts have beencomputed, the rules are easily constructed by overlaying the reducts over theoriginating decision table and reading o� the values.Example 7.2 Given the reduct fDiploma ;Experienceg in the Tab. 4, the ruleread o� the �rst object is \if Diploma is MBA and Experience is Medium thenDecision is Accept". 2We shall make these notions precise. The rules are de�ned inductively in theusual manner.Let A = (U;A [ fdg) be a decision system and let V = SfVa j a 2 Ag [ Vd.Atomic formulae over B � A[fdg and V are expressions of the form a = v; theyare called descriptors over B and V , where a 2 B and v 2 Va. The set F(B; V )of formulae over B and V is the least set containing all atomic formulae over Band V and closed with respect to the propositional connectives ^ (conjunction),_ (disjunction) and : (negation).The semantics (meaning) of the formulae is also de�ned recursively. Let ' 2F(B; V ). j'jA denotes the meaning of ' in the decision table A which is the setof all objects in U with the property '. These sets are de�ned as follows:1. if ' is of the form a = v then j'jA= fx 2 U j a(x) = vg2. j' ^ '0jA=j'jA \ j'0jA; j' _ '0jA=j'jA [ j'0jA; j:'jA= U� j'jAThe set F(B; V ) is called the set of conditional formulae of A and is denotedC(B; V ).A decision rule for A is any expression of the form ' ) d = v, where' 2 C(B; V ), v 2 Vd and j'jA 6= ;. Formulae ' and d = v are referred to as thepredecessor and the successor of decision rule ') d = v.Decision rule ') d = v is true in A if, and only if, j'jA�jd = vjA.Example 7.3 Looking again at Tab. 4, some of the rules are, for example:Diploma = MBA ^ Experience = Medium ) Decision = AcceptExperience = Low ^ Reference = Good ) Decision = RejectDiploma = MSc ^ Experience = Medium ) Decision = Accept



28The �rst two rules are true in Tab. 4 while the third one is not true in that table.2Let us assume that our decision table is consistent. One can observe that bycomputing (k; d){relative reducts for x 2 U it is possible to obtain the decisionrules with minimal number of descriptors on their left hand sides among rulestrue in A: It is enough for any such prime implicant to create the left hand sideof the rule as follows: construct a conjunction of all descriptors a = v where a isin prime implicant and v is the value on a on xk :Several numerical factors can be associated with a synthesized rule. For ex-ample, the support of a decision rule is the number of objects that match thepredecessor of the rule. Various frequency-related numerical quantities may becomputed from such counts.The main challenge in inducing rules from decision tables lies in determin-ing which attributes that should be included in the conditional part of the rule.Although we can compute minimal decision rules, this approach results in rulesthat may contain noise or other peculiarities of the data set. Such detailed ruleswill be over�t and will poorly classify unseen cases. More general, i.e. shorterrules should be rather synthesized which are not perfect on known cases (in-uenced by noise) but can be of high quality on new cases. Several strategiesimplementing this idea have been implemented. They are based on di�erentmeasures like boundary region thinning (see e.g. [535], [393]), preserving up to agiven threshold the positive region (see e.g. [393]), entropy (see [410], [407]). Onecan also search for reduct approximations need to be found instead, i.e. attributesubsets that in a sense \almost" preserve e.g. the indiscernibility relation. Oneway of computing approximations is �rst to compute reducts for some randomsubsets of the universe of a given decision system and next to select the moststable reducts, i.e. reducts that occur in most of the subsystems. These reducts,called dynamic reducts, are usually inconsistent for the original table, but therules synthesized from them are more tolerant to noise and other abnormalities;they perform better on unseen cases since they cover the most general patternsin the data [13], [18]. Another approach is related to searching for patterns al-most included in the decision classes combined with decomposition of decisiontables into regular domains (see e.g. [235, 238, 244, 246, 247, 521]). One canalso search for default rules. For a presentation of generating default rules see[215, 213, 214] and [135] who investigate synthesis of default rules or normalcyrules and some implementations of heuristics that search for such reducts.One particularly successful method based on the resampling approach iscalled dynamic reducts. It is implemented in the Rosetta system [276].For a systematic overview of rule synthesis see e.g. [434], [13], [108], [393].7.4 Rule ApplicationWhen a set of rules have been induced from a decision table containing a set oftraining examples, they can be inspected to see if they reveal any novel relation-ships between attributes that are worth pursuing for further research. Further-



29more, the rules can be applied to a set of unseen cases in order to estimate theirclassi�catory power.Several application schemes can be envisioned. Let us consider one of thesimplest which has shown to be useful in practice.1. When a rough set classi�er is presented with a new case, the rule set isscanned to �nd applicable rules, i.e. rules whose predecessors match thecase.2. If no rule is found (i.e. no rule \�res"), the most frequent outcome in thetraining data is chosen.3. If more than one rule �res, these may in turn indicate more than one possibleoutcome.4. A voting process is then performed among the rules that �re in order toresolve conicts and to rank the predicted outcomes. A rule casts as manyvotes in favour of its outcome as its associated support count. The votesfrom all the rules are then accumulated and divided by the total numberof votes cast in order to arrive at a numerical measure of certainty for eachoutcome. This measure of certainty is not really a probability, but may beinterpreted as an approximation to such, if the model is well calibrated.For a systematic overview of rule application methods see e.g. [420], [13],[108, 109].8 Rough Sets and Tolerance RelationsWe discuss in this section extensions of rough sets based on tolerance relationsbut we would like to mention that many other generalizations have been stud-ied like abstract approximation spaces [40], [205], [402], (see also Section 9);nondeterministic information systems (see e.g. [198], [284], [272], [342], [271]);recently developed extensions of rough set approach to deal with preferentialordering on attributes (criteria) in multicriteria decision making [105], [103],[104]; an extenstion based on reexive relations as models for object closeness,only [427]; extensions of rough set methods for incomplete information systems[174], [175]; formal languages approximations [144], [282], [283]; neighboorhoodsystems [182], [183], [184]; extensions of rough sets for distributed systems andmulti{agent systems (see e.g. [348], [349], [348], [335]). For discussion of otherpossible extensions see [335].Tolerance relations provide an attractive and general tool for studying indis-cernibility phenomena. The importance of those phenomena had been noticedby Poincare and Carnap. Studies have led to the emergence of such approachesto indiscernibility in rough set community.We present only some examples of problems related to an extension of roughsets by using tolerance relations instead of equivalence relations as a model forindiscernibility. More details the reader can �nd e.g. in [29, 39, 40, 98, 123,139, 149, 262, 263, 268, 269, 270, 164, 165, 166, 182, 189, 201, 247, 246, 251,340, 336, 337, 341, 295, 342, 393, 398, 396, 402, 426, 427, 437, 438, 465, 492,



30493, 522, 524, 526, 525, 528, 541, 542]. Let us also note that there are manyinteresting results on relationships between similarity and fuzzy sets (see e.g.[529, 71, 72, 74, 75, 76, 86, 87, 122, 376, 385, 386, 491]). Problems of similarityrelations are also related to problems of clustering (see e.g. [62, 511]).We call a relation � � X�U a tolerance relation on U if (i) � is reexive: x�xfor any x 2 U (ii) � is symmetric: x�y implies y�x for any pair x; y of elementsof U .The pair (U; �) is called a tolerance space. It leads to a metric space with thedistance functiond� (x; y) = minfk : 9x0;x1;:::;xkx0 = x^xk = y ^ (xi�xi+1 for i = 0; 1; : : : ; k� 1)gSets of the form �(x) = fy 2 U : x� yg are called tolerance sets .One can easily generalize the de�nitions of the lower and upper approxima-tions of sets by substituting tolerance classes for abstract classes of the indis-cernibility relation. We obtain the following formulas for the � - approximationsof a given subset X of the universe U :�X = fx 2 U : �(x) � Xg and �X = fx 2 U : �(x) \X 6= ;g.However, one can observe that when we are dealing with tolerances we havea larger class of de�nable sets than in case of equivalence relations as well as thepresented above de�nition of the set approximations is not unique. For exampleone could take as primitive de�nable sets the tolerance classes of some iterationsof tolerance relations or the equivalence classes of the relation de�ned fromthe tolerance relation � by: xIND�y i� dom� (x) = dom� (y) where dom� (x) =\f�(z) : x 2 �(z)g: In case of approximations we would like to refer to [40] whereapproximations of sets have been de�ned which are more close in a sense to Xthan the classical ones. They can be de�ned as follows:��X = fx 2 U : 9y(x�y&�(y) � X)gand ��X = fx 2 U : 8y(x�y ) �(y) \X 6= ;)g:One can check that �X � ��X � X � ��X � �XThis approximations are closely related to the Brouwerian orthocomplemen-tation (see [40]). One can take for any set X as its orthocomplementation theset X# = fx 2 U : 8h 2 X(:(x�h))g � Xc where Xc = U � X and to �ndformulas (see [40]) expressing the new approximations using this kind of comple-mentation. Let us observe that the condition :(x�h) inside of the above formulacan be interpreted as the discernibility condition for x; h:Hence we can see that in the process of learning of the proper concept ap-proximations by tuning approximations or by choosing the primitive de�nablesets we have more possibilities dealing with tolerance relations than in case ofequivalence relations. However, we pay for this because it is harder from compu-tational point of view to search for relevant approximations in this larger space.



31There has been made a great e�ort to study properties of logical systemsbased on similarity relations (see e.g. [529, 72, 74, 76, 87, 251, 262, 263, 149,269, 270, 342, 385, 386, 438, 492, 493, 495, 525].Despite of many interesting mathematical properties of these logical sys-tems there is a great need for algorithmic tools suitable for relevant toler-ance relation discovery from data, to tune the parameters of these relationsor set approximations to obtain approximations of analysed concepts of satis-factory quality. Recently, results in this direction have been reported (see e.g.[98, 247, 246, 426, 427, 165]) with promising experimental results for extractingpatterns from data. Tolerance relations can be interpreted as graphs and severalproblems of searching for relevant patterns in data are strongly related to graphproblems (see e.g. [247, 246]. These problems are NP-complete or NP-hard how-ever several e�cient heuristics have been developed to extract relevant patternsfrom data. The logical systems developed so far can not help us to infer relevanttolerance relations. Practitioners will look very much for such logical systemsand this is a challenge for logicians.Let us summarize previous observations related to concept approximations.The lower and upper approximations are only examples of the possible ap-proximations. In terminology of machine learning they are approximations ofsubsets of objects known from training sample. However, when one would liketo deal with approximations of subsets of all objects (including also new i.e.unseen so far objects) some techniques have been proposed to construct setapproximations suitable for such applications. The best known among them isthe technique called the boundary region thinning related to the variable pre-cision rough set approach [535]; another technique is used in tuning of decisionrules. For instance, achieving better quality on new objects classi�cation by in-troducing some degree of inconsistency on training objects. This technique isanalogous to the well known techniques for decision tree pruning. The discussedapproaches can be characterized in the following way: parameterized approxima-tions of sets are de�ned and by tuning these parameters better approximationsof sets or decision rules are obtained. Some of the reported above methods canalso be interpreted as tuning concept approximations de�ned by tolerance re-lations. Further research in this direction will certainly lead to new interestingresults.One extension of rough set approach is based on recently developed roughmereology ([327, 329, 330, 331, 332, 329, 333, 334, 335]). The relations to be apart in a degree (discovered from data) are de�ning tolerance relations (de�n-ing so called rough inclusions) used to measure the closeness of approximatedconcepts. Tolerance relations play an important role in the process of schemesconstruction de�ning approximations of target concepts by some primitive ones.Contrary to classical approaches these schemes are "derived" from data by ap-plying some algorithmic methods. The reader can look for more details in thesection of the paper on rough mereological approach.Tolerance relations can be de�ned from information systems or decision ta-bles. Hence the reduction problems of information necessary to de�ne tolerancesrelations arise (see e.g. [401, 402, 437, 438, 396]). We will briey present an idea



32of this approach. By a tolerance information system [402] we understand a tripleA0 = (U;A; �) where A0 = (U;A) is an information system and � is a tolerancerelation on information vectors Inf B(x) = f(a; a(x)) : a 2 Bg where x 2 U ,B � A. In particular, a tolerance information system can be realized as a pair(A; D) where A = (U;A) is an information system, while D = (DB)B�A andDB � INF (B)�INF (B) is a relation, called the discernibility relation, satisfyingthe following conditions:(i) INF (B)� INF (B)�DB is a tolerance relation;(ii) ((u � v) [ (v � u) � (u0 � v0) [ (v0 � u0)) & uDBv ! u0DBv0 for anyu; v; u0; v0 2 INF (B) i.e. DB is monotonic with respect to the discernibilityproperty;(iii) non(uDCv) implies non(ujBDBvjB) for any B � C and u; v 2 INF (C)where INF (B) = fInf B(x) : x 2 Ug and if u 2 INF (C) and B � C � A thenujB = f(a; w) 2 u : a 2 Bg i.e. ujB is the restriction of u to B. A (B;DB)-tolerance �B is de�ned byy�Bx i� non(Inf B(x)DBInf B(y)):A (B;DB)-tolerance function I [B;DB ] : U �! P(U) is de�ned by I [B;DB ](x)= �B(x) for any x 2 U .The set I [B;DB ](x) is called the tolerance set of x. The relation INF (B) �INF (B) �DB expresses similarity of objects in terms of accessible informationabout them. The set RED(A; D) is de�ned byfB � A : I [A;DA] = I [B;DB ] and I [A;DA] 6= I [C;DC ] for any C � BgElements of RED(A; D) are called tolerance reducts of (A; D) (or, tolerancereducts , in short). It follows from the de�nition that the tolerance reducts areminimal attribute sets preserving (A;DA) - tolerance function. The tolerancereducts of (A; D) can be constructed in an analogous way as reducts of informa-tion systems. The problem of minimal tolerance reduct computing NP-hard [402].However again some e�cient heuristics for computing semi-minimal reducts canbe constructed. The method can be extended for computing so called relativetolerance reducts and other objects [438]. It is possible to apply Boolean reason-ing to the object set reduction in tolerance information systems. This is basedon the notion of an absorbent [465]. A subset Y � X is an absorbent for atolerance relation � (� -absorbent , in short) if and only if for each x 2 X thereexists y 2 Y such that x�y. The problem of minimal absorbent construction fora given tolerance information system can be easily transformed to the problemof minimal prime implicant �nding for a Boolean function corresponding to thissystem. hence, again the problem of minimal absorbent construction is NP-hardso e�cient heuristics have been constructed to �nd sub-minimal absorbents fortolerance information systems.The presented methods of information reduction in tolerance informationsystems create some step toward practical applications. However, more researchon foundations of this problem should still be done.



33Further progress in investigations on tolerance information systems will haveimpact on applications of rough sets in many areas like granular computing, casebased reasoning, process control, scaling continuous decisions etc.We have discussed in this section some problems related to rough set ap-proach based on tolerance approach. We have pointed out some interesting prob-lems to be investigated.9 Algebraic and Logical Aspects of Rough SetsOne of the basic algebraic problem related to rough sets can be characterized asfollows.Let � be a class of information systems, � { a class of algebraic structuresand e { a mapping form � into � . We say that � is e-dense in � if for anyalgebra A from � there exists and information system A in � such that A isisomorphic to e(A) (or a subalgebra of e(A)). If � is e-dense in � then we saythat the representation theorem for � (relatively to e and � ) holds.From this de�nition it follows that to formulate the representation theorem�rst one should choose the mapping e and the class � . They should be chosenas "natural" for the considered class of informations systems. The mapping eendows the information systems with a natural algebraic structure. We will showsome examples of natural algebraic structures for information systems to givethe reader some avour of the research going on. The reader interested in studyof algebraic characterizations of rough sets should refer to [270, 269, 278, 79]and papers cited in these articles.Let us recall that a de�nable set in an information system A is any union ofdiscernibility classes of IND(A). The �rst observation is that the set DE(A) ofall de�nable sets in A endowed with set theoretical operations: union, intersec-tion and complementation forms a Boolean algebra with the empty set as 0 andthe universe U as 1. The equivalence classes of the indiscernibility relation arethe only atoms of this Boolean algebra. Let us note that de�nability of sets inincomplete information systems (i.e. attributes are partial functions on objects)has also been investigated [33].For any information system A = (U;A) one can de�ne the family RS(A) ofrough sets i.e. pairs (AX;AX) where X � U: Hence two questions arise. How tocharacterize the set of all rough sets in a given infromation system? What arethe "natural" algebraic operations on rough sets?To answer the �rst question let us assign to any rough set (AX;AX) the pair(AX;BNAX). One can easily see that the boundary region BNAX = AX�AXdoes not contain any singleton discernibility class. Let us consider in the P(U)�P(U) the set Z of all pairs (Y; Z) such that for some X � U we have Y = AXand Z = BNAX . One can observe that the set Z can be characterized as theset of all pairs of de�nable sets in A which are disjoint and the second elementof any pair does not contain any singleton indiscernibility class of IND(A).From the point of view of algebraic operations one can choose another repre-sentation of rough sets. Let us recall that the lower approximation of a given set



34X is the set of all objects which can be with certainty classi�ed as belonging toX on the basis of knowledge encoded in A and the set theoretical complementof the upper approximation of X is the set of all objects in U which can be withcertainty rejected as belonging to X on the basis of knowledge encoded in A.Hence to any rough set (AX;AX) in A one can assign a pair (AX;U � AX).It happens that one can de�ne some "natural" oprations on such pairs of sets.First one easily will guess that (;; U) corresponds to the smallest rough set and(U; ;) corresponds to the largest rough set. To de�ne operations on such repre-sentations of rough sets let us imagine that we have two experts able to deliveranswers about objects (observed through "glasses" of A) if they belong to someconcepts i.e. subsets of U . Can we now de�ne an approximate fusion of thisconcepts? There are several possibilities. We can treat as the lower approxima-tion of the concept (representing concepts of two agents) the intersection of thelower approximations of two concepts using a rule: if both experts classify withcertainty the observed object to their concepts we will treat this object as be-longing with certainty to a concept being a fusion of those two. We will rejectthe observed object as belonging to the upper approximation of the concept be-ing the fusion of two concepts if at least one of the experts will reject it withcertainty as belonging to the corresponding concept. Hence we obtain the follow-ing de�nition of the algebraic operation on considered representations of roughsets: (X1; X2) ^ (Y1; Y2) = (X1 \ Y1; X2 [ Y2): The reader can immediately �ndinterpretation for another operation: (X1; X2) _ (Y1; Y2) = (X1 [ Y1; X2 \ Y2):Let us consider one more example. How we can built a model for the comple-mentation of a concept observed by an expert on the basis of his judgements?We again have several possibilities. The �rst model is the following: if the ex-pert is classifying with certainty an observed object as belonging to a conceptthen we are rejecting it with certainty as belonging to the concept but if theexpert is rejecting with certainty an observed object as belonging to a conceptwe are classifying it with certainty to the concept. Hence we have the follow-ing de�nition of one argument negation operation �: � (X1; X2) = (X2; X1).However, now the reader will observe that there are some other possibilities tobuild a model for the complement of the concept to which the expert is referringe.g. by assuming :(X1; X2) = (U �X1; X1) or �(X1; X2) = (X2; U �X2). Thede�ned operations are not random operations. We are now very close (still theoperation corresponding to implication should be de�ned properly!) to examplesof known abstract algebras, like Nelson or Heyting algebras, intensively studiedin connection with di�erent logical systems. The reader can �nd formal analysisof relationships of rough sets with Nelson, Heyting,  Lukasiewicz, Post or doubleStone algebras e.g. in [278] and in particular, the representation theorems forrough sets in di�erent classes of algebras. Let us also note that the propertiesof de�ned negation operations are showing that they correspond to well knownnegations studied in logic: strong (constructive) negation or weak (intuitionistic)negation.Algebraic structures relevant for construction of generalized approximationspaces are also discussed in e.g. [40]. In [40] it is shown that the general struc-ture of posets augmented with two subposets consisting of "inner de�nable"



35elements and "outer de�nable" elements is su�cient to de�ne inner and outerapproximation maps producing the best approximation from the bottom (lowerapproximation) and from the top (upper approximation) of any element with re-spect to the poset. By imposing De Morgan law it is received a duality betweeninner approximation space and outer approximation space. This class of De Mor-gan structures includes degenerate and quasi Brouwer-Zadeh posets, which aregeneralizations of topological spaces and preclusivity spaces, respectively. In theformer case the approximable concepts are described as points of posets whereasin the later case the approximable concepts are described by subsets of a givenuniverse. The classical, Pawlak approach coincides with the class of all clopentopologies or with the class of all preclusivity spaces induced from equivalencerelations.There is another research direction based on information systems [270]. Theaim is to study information algebras and information logics corresponding toinformation systems. First, so called information frames are de�ned. They arerelational structures consisting parameterized familes of binary relations over theuniverse of objects. These relations are e.g indiscernibility relations correspond-ing to di�erent subsets of attributes. Many other interesting frames can be founde.g. in [270]. If a frame is extended by adding e.g. set theoretical operations newalgebraic structure called (concrete) information algebra is received. The infor-mation algebras in the abstract form are Boolean algebras augmented with someparameterized families of operations reecting relevant properties of frames andin consequence of information systems. The main problems studied are relatedto the representation therems for information algebras as well as to constructionand properties of logical systems with semantics de�ned by information algebras[270].An attempt to de�ne rough algebras derived from rough equality is presentede.g. in [10].For more readings on algebraic aspects of (generalized) approximation spacesthe reader is referred to [106], [127], [356], [361], [362], [360], [128], [47], [494],[508], [39], [506].There is a number of results on logics reecting rough set aspects (for the bib-liography see [337], [270]). Among these logics there are propositional as well aspredicate logics. They have some new connectives (usually modal ones) reect-ing di�erent aspects of approximations. On semantical level they are allowing toexpress e.g. how the indiscernibility classes (or tolerance classes) interact withinterpretations of formulas in a given model M . For example, in case of neces-sity connective the meaning (2�)M of the formula � in the model M is thelower approximation of �M , in case of possibility connective (hi�)M it is theupper approximation of �M , i.e. the interpretation of � in M . Many other con-nectives have been introduced and logical systems with these connectives havebeen characterized. For example in predicate logic one can consider also roughquanti�ers [168]. The results related to the completeness of axiomatization, de-cidability as well as expressibility of these logical systems are typical results.More information on rough logic the reader can �nd in [270], in particular in[11] a review of predicate rough logic is presented. Many results on information



36logics, in particular characterization theorems, can be found e.g. in [495].Some relationships of rough algebras with many-valued logics have beenshown e.g. in [10], [261]. For example in [10] soundness and completeness of 3-valued  Lukasiewicz logic with respect to rough semantics has been proven. Therough semantics is de�ned by rough algebras [10] being a special kind of topolog-ical quasi-Boolean algebra [507]. Relationships of rough sets with 4-valued logicare shown in [261] and with quantum logic in [40].We would like to mention several attempts to use rough set logics for reason-ing about knowledge (see e.g. [363], [359], [364], [370], [371], [372], [297]).Properties of dependencies in information systems have been studied by manyresearchers see e.g. [256], [257], [32], [82], [129], [258], [368], [369], [259], [504],[366], [367].Finally we would like to mention a research direction related to so calledrough mereological approach for approximate synthesis of objects satisfying agiven speci�cation in satisfactory degree. We will discuss some aspects of thisapproach in Part II of this tutorial. Let us note here that one of the perspectivefor applied logic is to look for algorithmic methods of extracting logical structuresfrom data e.g. relational structures corresponding to relevant feature extraction[403], default rules (approximate decision rules see e.g. [215]), connectives foruncertainty coe�cients propagation and schemes of approximate reasoning. Thispoint of view is very much related to rough mereological approach and in manyapplications, in particular in knowledge discovery and data mining [91], calculion information granules and computing with words [530], [531].For more readings on logical aspects of rough sets the reader is referred to[270], [65], [11], [232], [79], [8], [278], [335], [495], [78], [148], [339], [303], [64],[193], [231], [331], [494],[230], [400], [492], [493], [358], [266], [267], [265], [356],[89], [355], [365], [88], [262], [264], [272].10 Relationships with Other ApproachesSome interesting results on relationships of rough sets with other approaches toreasoning under uncertainty have been reported. In this section we point outon applications of rough sets in decision analysis, data mining and knowledgediscovery, we present a comparison of some experimental results received byapplying some machine learning techniques and rough set methods, we discusssome relationships of rough sets and fuzzy sets, we present some consequences ofrelationships of rough set approach with the Dempster-Shafer theory of evidenceand �nally we overiview some hybrid methods and systems.There have been studied also relationships of rough sets with other ap-proaches e.g. with mathematical morphology (see e.g. [333, 322, 323, 324, 326]),statistical and probabilistic methods (see e.g. [286], [518], [439], [167], [314],[320],[527], [80], [81], [83]), concept analysis (see e.g. [100], [141], [277], [279]).



3710.1 Decision analysisDecision analysis is a discipline providing various tools for modelling decision sit-uation in view of explaining them or prescribing actions increasing the coherencebetween the possibilities o�ered by the situation, and goals and value systems ofthe agents involved. Mathematical decision analysis consists in building a func-tional or a relational model. The functional model has been extensively usedwithin the framework of multi{attribute utility theory. The relational is knowne.g. in the form of an outranking relation or a fuzzy relation (see [301], [377],[378], [379], [380], [9]).Both modelling and explanation/prescription stages are also crucial oper-ations et elaboration of a systematic and rational approach to modelling andsolving complex decision problems [2], [301].Rough set approach proved to be a useful tool for solving problems in decisionanalysis in particular in the analysis of multi{criteria decision problems relatedto:(i) multi{criteria sorting problems;(ii) multi{criteria, multi{sorting problems;(iii) multi{criteria description of objects.The case (i) can be described as decision problems related to the decisiontable with one decision. One can expect the following results from the rough setanalysis of decision table: (i) evaluation of importance of particular attributes;(ii) construction of minimal subsets of independent attributes which can not beeliminated without disturbing the ability of approximating the sorting decisions;(iii) computing the relevant attributes i.e. core of the attribute set; (iv) elimi-nation of redundant attributes from the decision table; (v) generation of sortingrules from the reduced decision table; they involve the relevant attributes onlyand explain a decision policy of the agent (decision maker or expret) in partic-ular how to solve conicts between decision rules voting for di�erent decisionwhen new objects are matched by these rules (see e.g. [420], see also 7.4). Themulti{criteria sorting problems represents the largest class of decision problemsto which the rough set approach has been successfuly used. The applicationsconcern many domains (see Section 11).In the case (ii) we deal with decision tables with more than one decision(received from di�erent agents). Using rough set methods one can measure thedegree of consistency of agents, detect and explain discordant and concordantparts of agent's decision policies, evaluate the degree of conict among the agents,and construct the preference models (sorting rules) expressed in common terms(conditional attributes) in order to facilitate a mutual understanding of theagents [301].In the case (iii) the primary objective is to describe a decision situation.The rough set approach to the decision situation description is especially wellsuited when minimal descriptions in terms of attributes is of primary concern.Another important problem analysed by rough set methods is conict analysis[295]. If agents are not explicitely represented in the information system one can



38look for discovery of dependencies among conditional attributes interpreted asconsequences of descisions represented by objects. Again, rough set methodologycan be used to solve this type of problems [301].For more readings on rough set approach to decision analysis see e.g. [420],[423], [424], [422], [293], [296], [300], [301].Let us also note that some extensions of rough set approach have been pro-posed for dealing with preferential ordering of attributes (criteria) (see e.g. [103]).10.2 Rough Sets and Data MiningRough set theory has proved to be useful in Data Mining and Knowledge Discov-ery. It constitues a sound basis for data mining applications. The theory o�ersmathematical tools to discover hidden patterns in data. It identi�es partial ortotal dependencies (i.e. cause{e�ect relations) in data bases, eliminates redun-dant data, gives approach to null values, missing data, dynamic data and others.The methods of data mining in very large data bases using rough sets recentlyhave been proposed and investigated.There are some important steps in the synthesis of approximations of con-cepts related to the construction of: (i) relevant primitive concepts from whichapproximations of more complex concepts will be constructed: (ii) (closeness)similarity measures between concepts; (iii) operations for construction of morecomplex concepts from primitive ones.These problems can be solved by combining the classical rough set approachand recent extensions of rough set theory. Methods for solving problems arisingin the realization of these steps are crucial for knowledge discovery and datamining (KDD) [91] as well.There have been done in last years a substantial progress in developing roughset methods for data mining and knowledge discovery (see the cited in Section11 cases and e.g. [238], [237], [246], [247], [235], [538], [46], [160], [161], [317],[319],[214], [336], [337], [239], [162], [521], [409], [434], [276], [189], [125], [66],[190], [124], [209], [147], [163], [243], [248], [249], [384], [241], [242], [188]), [480],[245], [52], [159], [158], [244], [398], [408], [391], [405], [240], [478], [479], [536],[393], [537], [533]).In particular new methods for extracting patterns from data (see e.g. [165],[247], [214], [235]), decomposition of decision tables (see e.g. [245], [408], [249],[247], [409]) as well as a new methodology for data mining in distributed andmultiagent systems (see e.g. [335]) have been developed.In Section 11 there are reported many successful case studies of data miningand knowledge discovery based on rough set methods and the reader can �ndmore references to papers on data mining.10.3 Comparison with Some Results in Machine LearningRecently several comparison studies have been reported showing that the resultsreceived by using software systems based on rough set methods are fully compa-rable with those obtained by using other systems (see e.g. [108], [115], [109], [13],



39[238], [434], [161]) for object classifying. Let us consider one of a method recentlyreported in [238]. Table 8 presents the results of some experiments obtained byusing the proposed methods and the methods reported in [95]. One can comparethose results with regard to the classi�cation qualities. MD and MD-G heuristicsare developed using rough set methods and Boolean reasoning.Several papers are comparing the results received by applying statisticalmethods and comparing them with the results received by rough set methods (seee.g. [233], [34], [497]). In the future more research should be done to recognizeproper areas for application of these methods separately and in hybridization.10.4 Rough Sets and Fuzzy SetsRough set theory and fuzzy set theory are complementary. It is natural to com-bine the two models of uncertainty (vagueness for fuzzy sets and coarseness forrough sets) in order to get a more accurate account of imperfect information[71]. The results concerning relationships between rough sets and fuzzy sets arepresented e.g. in [71], [76], [22], [302], [36], [37], [38], [41], [42], [43], [185], [187],[206], [288], [292], [294], [505], [306], [343], [344], [387], [189], [523].Rough set methods provide approximate descriptions of concepts and theycan be used to construct approximate description of fuzzy concepts as well.This is very important for more compressed representation of concepts, rules,patterns in KDD because using fuzzy concepts one can describe these items ina more compact way. These descriptions, moreover, can be more suitable forcommunication with human being.In rough set theory approximations of sets are de�ned relatively to a givenbackground knowledge represented by data tables (information systems, decisiontables) with the set of attributes A.The rough membership function �BX where X � U and B � A can be usedto de�ne approximations and the boundary region of a set, as shown below:B(X) = fx 2 U : �BX(x) = 1g;B(X) = fx 2 U : �BX(x) > 0g;BNB(X) = fx 2 U : 0 < �BX(x) < 1g:The rough membership function has the following properties [302]:a) �BX (x) = 1 i� x 2 B(X);b) �BX (x) = 0 i� x 2 �B(X);c) 0 < �BX(x) < 1 i� x 2 BNB(X);d) If IND(B) = f(x; x) : x 2 Ug , then �BX(x) is the characteristic function ofX;e) If xIND(B)y, then �BX(x) = �BX(y),f) �BU�X (x) = 1� �BX(x) for any x 2 U ,g) �X[Y (x) � max(�BX(x); �BY (x)) for any x 2 U;h) �BX\Y (x) � min(�BX (x); �BY (x)) for any x 2 U;i) If X is a family of pairwise disjoint sets of U , then �B[X(x) = PX2X �BX(x)for any x 2 U ,



40The above properties show clearly the di�erence between fuzzy and rough mem-berships. In particular properties g) and h) show that the rough membershipcan be regarded formally as a generalization of fuzzy membership, for the maxand the min operations for union and intersection of sets respectively for fuzzysets are special cases of that for rough sets. But let us recall that the "roughmembership", in contrast to the "fuzzy membership", has probabilistic avor.It has been shown [302] that the formulae received from inequalities g) andh) by changing them into equalities are not true in general. This importantobservation is a simple consequence of the properties of set approximation: thecalculus of set approximations in rough set theory is intensional. Namely, it isimpossible to �nd a function independent from a given background knowledgethat will allow to compute the values of the rough membership function for theintersection of sets (or union of sets) having only the values of the membershipfunction for the argument sets. This property is showing some more di�erencesbetween rough membership functions and fuzzy membership functions.Rough set and fuzzy set approaches create many possibilities for hybridiza-tion. The number of reported results in this direction are continuously increasing.Let us mention some of them.Combining rough sets and fuzzy sets allows to obtain rough approximationsof fuzzy sets as well as approximations of sets by means of fuzzy similarityrelations [DP4]. Let us consider the second case. Fuzzy rough sets (see e.g. [76])are de�ned by membership function on the universe of objects U by�S(X)(x) = sup!2X�S(x; !)�S(X)(x) = inf!=2X(1� �S(x; !))where S is a fuzzy indistinguishibility relation (fuzzy similarity relation) [76]and x 2 U:In this case we consider the fuzzy similarity relations instead of the (crisp) in-discernibility relations. In case of crisp indiscernibility (i.e. equivalence relation)relation we obtain �S(X)(x) = 1 i� x 2 S(X);�S(X)(x) = 1 i� x 2 S(X);where S(X) and S(X) denote the upper and the lower approximations of Xwith respect to the indiscernibility relation S.There are other interesting relationships of rough set with fuzzy sets (see e.g.[69], [70], [76]). For example, Ruspini's entailment can be understood in termsof rough deduction. In the rough set approach the indistinguishability notionis basic, while in Ruspini's fuzzy logic, it is the idea od closeness. It has beenshown [71] that by introducing lower and upper approximations of fuzzy sets wecome close to Caianiello's C-calculus [71]. Fuzzy rough sets are allowing to put



41together fuzzy sets and modal logic (see e.g. graded extensions of S5 system byNakamura [76]). Rough aspects of fuzzy sets are also discussed in [12].Rough{fuzzy hybridizaton methods give a tool for KDD. In the sequel wewill describe examples some tools and some research problems related to thistopic.The classical rough set approach is based on crisp sets. A generalizationof rough set approach for handling di�erent types of uncertainty has been pro-posed e.g. in [421]. It has been observed that the synthesized (extracted) featurese.g. cuts [248], hyperplanes [233] can be tuned into more relevant features forclassi�cation when they are substituted by fuzzy cuts and fuzzy hyperplanes,respectively. This is related to the following property: points which are closeto a cut or to a hyperplane can be hardly classi�ed to a speci�c side of thiscut or hyperplane because of expected noise inuencing the position of points.The same idea can be extended to decision rules or pattern description [247].Further investigations of techniques transforming crisp concepts (features) intofuzzy ones will certainly show more interesting results.Let us mention another source for rough{fuzzy hybridization. These ap-proaches can be characterized in the following way: parameterized approxima-tions of sets are de�ned and by tuning these parameters approximations of fuzzysets are received. Recently proposed proposed shadowed sets for fuzzy sets [305]use this technique. Fuzzy membership function is substituted by a family of pa-rameterized functions with the same domain but only with three possible values.They correspond to the parameterized lower, upper and boundary region by athreshold determining the size of shadowed region. The size of this region canbe tuned up in the process of learning.One of the main problems in soft computing is to �nd methods allowing tomeasure the closeness of concept extensions. Rough set methods can also be usedto measure the closeness of (fuzzy) concepts.In classical rough set approach sets are represented by de�nable sets, i.e.unions of indiscernibility classes. Extension of this approach have been proposedby several researchers (for references see e.g. [164], [247]). Instead of taking anequivalence relations as the indiscerniblity relations the tolerance relation (oreven more arbitrary binary relation [105]) is considered. This leads to a richerfamily of de�nable sets but it is harder (from computational complexity point ofview) to construct "good" approximations of concepts. Searching problems foroptimal tolerance relations are NP-complete or NP-hard [247]. However, it hasbeen possible to develop e�cient heuristics searching for relevant tolerance re-lation(s) that allow to extract interesting patterns in data (see e.g. [164], [247]).The reported results are promising. A successful realization of this approach ispossible because in the rough set approach relevant tolerance relations deter-mining patterns can be extracted from the background knowledge representedin the form of data tables. The extracted patterns can be further fuzzi�ed andapplied in constructing approximated concepts [235].Rough set methods can be used to de�ne fuzzy concepts approximately. Inthis case one should look for relevant �-cuts of the fuzzy set and to treat thesecuts as decision classes to �nd their approximations with respect to known con-



42ditional features. Once again problem of choosing relevant cuts is analogous tothe problem of relevant feature extraction. From computational complexity pointof view it is a hard problem and can be solved approximately by discovery oflearning strategies. One can observe that the relevant cuts should be "well" ap-proximated (i.e. new objects with high chance should be properly classi�ed tothem) as well as they should give together "good" approximation of the targetfuzzy set.The most general case is related to methods for approximate descriptionof fuzzy concepts by fuzzy concepts. One can look at this issue as the search-ing problem for an approximate calculus on approximate concepts (informationgranules) [530], [531]. This calculus should allow to construct approximate de-scriptions of fuzzy concepts from approximate descriptions of known ones. Onepossible approach to solve this problem is to use fuzzy set methods based on t-norms and co-norms to de�ne closeness of fuzzy concepts and to perform fusion offuzzy concepts [68]. In practical applications there is a need look for constructivemethods returing approximations of target concepts satisfying to a satisfactorydegree given speci�cations (constraints) from approximations of some primitive(known) concepts. An approach to solve this problem has been recently pro-posed as rough mereology (see e.g. [331], [397], [335]). In this approach rulesfor propagation of uncertainty coe�cients have to be learned form the availablebackground knowledge represented by data tables. Another interesting propertyof this approach is that the construction of schemes for approximate descrip-tion of the target concepts should be stable. This means that "small" changesin approximation quality of primitive concepts should give su�ciently "small"changes in approximation quality of constructed approximation of the targetconcepts. In [247] there are mentioned possible applications of this approach e.g.to the decomposition of large data tables.Rough set approach combined with rough mereology can be treated as aninference engine for computing with words and granular computing [530], [531].For example, the construction of satisfactory target fuzzy concept approxima-tions from approximations of the input (primitive) fuzzy concepts can be realizedin the following stages:{ �rst the fuzzy primitive (input) and the target (output) concept are repre-sented by relevant families of cuts;{ next by using rough set methods the appropriate approximations of cutsare constructed in terms of available (conditions) measurable features (at-tributes) related to concepts;{ the approximations of input cuts obtained in stage 2 are used to constructschemes de�ning to a satisfactory degree the approximations of output cutsfrom approximated input cuts (and other sources of background knowledge)[331], [397], [335];{ the constructed family of schemes represents satisfactory approximation ofthe target concept by the input concepts; (in this step more compact de-scriptions of the constructed family of schemes can be created, if needed).Progress in this direction seems to be crucial for further developments in soft



43computing and KDD.10.5 Rough Sets and the Dempster-Shafer Theory of EvidenceWe only present one example of applications for the decision rule synthesis im-plied by the relationships between rough set methods and Dempster-Shafer'stheory of evidence [390]. More details on the relationships between rough setsand Dempster-Shafer's theory the reader can �nd in [394]. In particular an in-terpretation of the Dempster-Shafer rule of combination by a simple operationon decision tables can be found in [394]. Some other aspects of relationships ofrough sets and evidence theory are discussed in [517], [516], [524], [192], [191],[143].In [394] it has been shown that one can compute a basic probability assign-ment (bpa) mA for any decision table A assumingmA(;) = 0 and mA(�) = jx 2 U : @A(x) = �jjU jwhere ; 6= � � �A = fi : d(x) = i for some x 2 Ug.Hence some relationships between belief functions BelA and P lA related to thedecision table A can be shown [394]:BelA(�) = jASi2�XijjU j and P lA(�) = jASi2�XijjU jfor any � � �A.The belief functions related to decision tables can be applied to generatestrong approximate decision rules. One of the possible approach is to search forsolutions of the following problem:APPROXIMATION PROBLEM (AP)INPUT: A decision table A = (U;A [ fdg), � � �Aand rational numbers "; tr 2 (0; 1].OUTPUT: Minimal (with respect to the inclusion) sets B � A satisfyingtwo conditions: (i) jP lAjB(�)� BelAjB(�)j < "(ii) BelAjB(�) > tr.where AjB = (U;B [ fdg).We are interseted to �nd "small" sets with the above property.The above conditions (i) and (ii) are equivalent tojB[i2�Xi �B[i2�Xij < "jU j and jB[i2�Xij > trjU jrespectively. Hence (i) means that the boundary region (with respect to B)corresponding to [i2�Xi is \small" (less than "jU j) and the lower approximationof [i2�Xi is \su�ciently large" (greater than trjU j) so one can expect that therules for this region will be strong. The solution for the above problem can beobtained by developing e�cient heuristics.



4410.6 Hybrid Methods and SystemsIt is an experience of soft computing community that hybrid systems combin-ing di�erent soft computing techniques into one system can often improve thequality of the constructed system. This has also been claimed in case of roughset methods that combined with neural networks, genetic algorithms and evo-lutionary programming, statistical inference tools or Petri nets may give bettersolutions. A number of papers on hybrid systems showing the results which bearout this claim have been published. To be speci�c: adding statistical tools canimprove the quality of decision rules induced by rough set methods (see e.g. [28]).Rough set based data reduction can be very useful in preprocessing of data inputto neural networks. Several other methods for hybridization of rough sets andneural networks have been developed (see e.g. in [132], [133], [134], [452], [210],[455], [456], [461]). Decision algorithms synthesized by rough set methods can beused in designing neural networks (see e.g. [248], [250], [411], [459], [460], [461]).Rough set ideas can lead to new models of neurons (see e.g. [195], [196], [197],[461]). Optimization heuristics based on evolutionary programs can e�cientlygenerate rough set constructs like reducts, patterns in data, decision rules (seee.g. [520], [249], [521]). Rough set methods can be useful in specifying concurrentsystems from which corresponding Petri nets can be automatically generated (seee.g. [404], [405], [443]). Rough sets combined with fuzzy sets and Petri nets givean e�cient method for designing clock information systems (see e.g. [310], [311]).Rough set approach to mathematical morphology leads to a generalization calledanalytical morphology ([328], [395], [333]), mathematical morphology of roughsets ([322], [323], [323], [326]) as well as to an idea of approximate compressionof data ([325], [326]).Moreover hybridization of rough set methods with classical methods likeprincipal component analysis, bayesian methods, 2D FFT (see e.g. [448], [447],[450], [451]) or wavelets (see e.g. [512]) leads to classi�ers of better quality .11 Applications and Case StudiesWe have been developed di�erent software systems based on rough set methods(see e.g. [337], [472] and Section 12). There are numerous areas of successfulapplications of rough set software systems. Many interesting case studies arereported. Let us mention some of them:{ MEDICINE:� Treatment of duodenal ulcer by HSV ([299], [93], [94], [425], [419]);� Analysis of data from peritoneal lavage in acute pancreatitis ([412],[413]);� Supporting of therapeutic decisions ([435]);� Knowledge acquisition in nursing ([30], [513], [109]);� Diagnosis of pneumonia patients ([312]);



45� Medical databases (e.g. headache, meningitis, CVD) analysis ([475], [477],[478], [490], [480], [481], [482], [483], [484], [488], [485], [486], [466], [467],[468], [469], [470], [471]);� Image analysis for medical applications ([219], [132], [134];)� Surgical wound infection ([138]);� Classi�cation of histological pictures ([132]);� Preterm birth prediction ([514], [116], [515], [110], [111], [109]);� Medical decision{making on board space station Freedom (NASA John-son Space Center) ([109]);� Veri�cation of indications for treatment of urinary stones by extracor-poreal shock wave lithotripsy (ESWL) ([416]);� Analysis of factors a�ecting the occurrence of breast cancer among womentereated in US military facilities (reported by W. Ziarko);� Anlysis of factors a�ecting the di�erential diagnosis between viral andbacterial menengitis ([489], [538]);� Developing an emergency room for diagnostic check list { A case studyof appendicitis([382]);� Analysis of medical experience with urolithiasis patients treated by ex-tracorporeal shock wave lithotripsy ([414]);� Diagnosing in progressive encephalopathy ([281], [501], [500]);� Automatic detection of speech disorders ([61]);� Rough set-based �ltration of sound applicable to hearing prostheses ([57];� Classi�cation of tooth surfaces ([159], the EUFIT'96 competition);� Discovery of attribute dependencies in experience with multiple injuredpatients ([417]);� Modelling cardiac patient set residuals ([273]);� Multistage analysis of therapeutic experience with acute pancreatitis([415]);� Brest cancer detection using electro-potentials ([451]);� Analysis od medical data of patients with suspected acute appendicitis([34]);� Attribute reduction in a database for hepatic diseases ([463]);� EEG signal analysis ([512]);{ ECONOMICS, FINANCE AND BUSINESS:� Evaluation of bankruptcy risk ([429], [428], [104]);� Company evaluation ([222]);� Bank credit policy ([222]);� Prediction of behaviour of credit card holders ([509]);� Drafting and advertising budget of a company ([222]);� Customer behaviour patterns ([319], [538]);� Response modeling in database marketing ([497]);� Analysis of factors a�ecting customer's income level ([538] also reportedby Tu Bao Ho);� Analysis of factors a�ecting stock price uctuation ([102]);� Discovery of strong predictive rules for stock market ([539], [17]);



46 � Purchase prediction in database marketing ([496]);� Modeling customer retention ([163], [84]);� Temporal patterns ([158]);� Analysis of business databases ([315], [162], [317]);� Rupture prediction in a highly automated production system ([455]);{ ENVIRONMENTAL CASES:� Analysis of a large multispecies toxicity database ([140]);� Drawing premonitory factors for earthquakes by emphasing gas geochem-istry ([464]);� Control conditions on a polder ([375]);� Environmental protection ([107], [109]);� Global warming: inuence of di�erent variables on the earth global tem-perature ([112]);� Global temperature stability ([117], [109]);� Programming water supply systems ([5], [381], [105]);� Predicting water demands in Regina ([6], [5]);� Prediction of oceanic upwelling o� the Mauretanian cost using sea surfacetemperature images, and real and model meteorological data (reportedby I. Duentsch);� Prediction of slope-failure danger level from cases ([99]);{ ENGINEERING:� Control: The design and implementation of rough and rough{fuzzy con-trollers ([217], [540], [534], [218], [462], [220], [223], [321], [225], [226],[298], [227]), [498], [309], [221]);� Signal and image analysis:� Noise and distortion reduction in digital audio signal ([52], [53], [54],[57]) [55]);� Filtration and coding of audio ([59]);� Audio signal enhancement ([60]);� Recognition of musical sounds ([153]);� Detection and interpolation of impulsive distortions in old audiorecordings ([50], [58]);� Subjective assessment of sound quality ([151], [152]);� Assessment of concert hall acoustics ([154]);� Classi�cation of musical timbres and phrases ([150], [155], [156];� Mining musical databases ([157]);� Image analysis ([219], [132], [134]);� Converting a continuous tone image into a halftone image using errordifussion and rough set methods ([458]);� Texture analysis ([250], [446], [448], [457], [450], [453]);� Voice recognition ([19], [56], [51], [61], [55]);� Classi�cation of animal voices ([159], EUFIT'96 competition);� Handwiritten digit recognition ([444], [15], [121], [16], [449]);� Optical character recognition ([49]);� Circuits synthesis and fault detection ([211], [212]);



47� Vibroacoustic technical diagnostics ([252], [253], [254], [255], [199]);� Intelligent scheduling ([137]);� Others:� Preliminary wind-bracing in steel skeleton structure ([7]);� Technical diagnostics of mechanical objects ([436]);� Decision supporting for highly automated production system ([456]);� Estimation of important highway parameters ([195], [196]);� Time series analysis of highway tra�c volumes ([195], [196]);� Real{time decision making ([406], [308]);� Material analysis ([130], [316]);� Power system security analysis ([176]);{ INFORMATION SCIENCE:� Software engineering:� Qualitative analysis of software engineering data ([383]);� Assessing software quality ([310]);� Software deployability ([307]);� Knowledge discovery form software engineering data([384]);� Information retrieval ([430], [431], [432], [98]);� Data mining from musical databases ([157]);� Analysis and synthesis of concurrent systems ([404], [405], [440], [441],[443]);� Integration RDMS and data mining tools using rough sets ([97],[249],[244]);� Rough set model of relational databases ([373], [20], [21], [188], [190]);� Cooperative knowledge base systems ([348], [349], [350], [351]);� Natural language processing ([114], [216], [115], [113], [109]);� Cooperative information system re{engineering ([440], [442]);{ DECISION ANALYSIS: (see cases and applications in this section);{ SOCIAL SCIENCES, OTHERS:� Conict analysis ([287], [291], [295], [63]);� Social choice functions ([96], [260]);� Rough sets in librarian science ([389]);� Rough sets{based study of voter preference ([118]);� Analysis of test pro�le performance ([352]);� On{line prediction of volleyball game progress ([445], [454]);{ MOLECULAR BIOLOGY: Discovery of functional components of pro-teins from amino{acid sequences ([479], [487]);{ CHEMISTRY: PHARMACY Analysis of relationship between structureand activity of substances ([169], [170], [171], [172], [173]);



4812 Software SystemsWe enclose the list of software systems based on rough sets. The reader can �ndmore details in [337]. It was possble to identify the following rough set systemsfor data analysis:{ Datalogic/R, http://ourworld.compuserve.com/homepages/reduct{ Grobian (Roughian), e-mail: I.Duentsch@ulst.ac.uk, ggediga@luce.psycho.Uni-Osnabrueck.DE{ KDD-R: Rough Sets-Based Data Mining System, e-mail: ziarko@cs.uregina.ca{ LERS|A Knowledge Discovery System , e-mail: jerzy@eecs.ukans.edu{ PRIMEROSE, e-mail: tsumoto@computer.org{ ProbRough | A System for Probabilistic Rough Classi�ers Generation, e-mail: fzpiasta,lenarcikg@sabat.tu.kielce.pl{ Rosetta Software System, http://www.idi.ntnu.no/~aleks/rosetta/{ Rough Family - Software Implementation of the Rough Set Theory, e-mail:Roman.Slowinski@cs.put.poznan.pl, Jerzy.Stefanowski@cs.put.poznan.pl{ RSDM: Rough Sets Data Miner, e-mail: fcfbaizan, emenasalvasg@.�.upm.es{ RoughFuzzyLab - a System for Data Mining and Rough and Fuzzy SetsBased Classi�cation, e-mail: rswiniar@saturn.sdsu.edu{ RSL { The Rough Set Library, ftp://ftp.ii.pw.edu.pl/pub/Rough/{ TAS: Tools for Analysis and Synthesis of Concurrent Processes using RoughSet Methods, e-mail: zsuraj@univ.rzeszow.pl{ Trance: a Tool for Rough Data Analysis, Classi�cation, and Clustering, e-mail:wojtek@cs.vu.nlPartIIRough Mereology: ApproximateSynthesis of ObjectsWe would like to give here a brief account of the rough mereological approach toapproximate reasoning [327, 329, 330, 331, 332, 339, 397, 334, 335]. We proposethis formalization as a tool for solving multi{agent or distributed applicationsrelated to approximate reasoning and to calculi on information granules [531],[530].13 Rough MereologyRough mereology o�ers the general formalism for the treatment of partial con-tainment. Rough mereology can be regarded as a far - reaching generalizationof mereology of Le�sniewski [181]: it does replace the relation of being a (proper)part with a hierarchy of relations of being a part in a degree. The basic notionis the notion of a rough inclusion.



49A real function �(X;Y ) on a universe of objects U with values in the interval[0; 1] is called a rough inclusion when it satis�es the following conditions:(A) �(x; x) = 1 for any x (meaning normalization);(B) �(x; y) = 1 implies that �(z; y) � �(z; x) for any triple x; y; z (meaningmonotonicity);(C) �(x; y) = 1 and �(y; x) = 1 imply �(x; z) � �(y; z) for any triple x; y; z(meaning monotonicity);(D) there is n such that �(n; x) = 1 for any x. An object n satisfying (D) is a�-null object.We let x =� y i� �(x; y) = 1 = �(y; x) and x 6=� y i� non(x =� y).We introduce other conditions for rough inclusion:(E) if objects x; y have the property :if z 6=� n and �(z; x) = 1then there is t 6=� n with �(t; z) = 1 = �(t; y)then it follows that: �(x; y) = 1.(E) is an inference rule: it is applied to infer the relation of being a part fromthe relation of being a subpart.(F) For any collection � of objects there is an object x with the properties:(i) if z 6=� n and �(z; x) = 1 then there are t 6=� n; w 2 � such that�(t; z) = �(t; w) = �(w; x) = 1;(ii) if w 2 � then �(w; x) = 1;(iii) if y satis�es the above two conditions then �(x; y) = 1.Any x satisfying F(i) is called a set of objects in � ; if, in addition, x satis-�es F(ii,iii), then x is called the class of objects in �: These notions allow forrepresentations of collections of objects as objects.We interpret the formula: �(x; y) = r as the statement: x is a part of y indegree at least r.The formula x = class(�U )fx1; x2; :::; xkg is interpreted as the statementthat the object x is composed (designed, synthesized) from parts x1; x2; :::; xk.In mereology of Le�sniewski the notions of a part, an element, and a subset areall equivalent: one can thus interpret the formula �(x; y) = r as the statement:x is an element (a subset) of y in degree r; if y = class(�)� , then �(x; y) = rmeans that x is a member of the collection � in degree r.A standard choice of an appropriate measure can be based on the frequencycount; the formal rendering of this idea is the standard rough inclusion functionde�ned for two sets X;Y � U by the formula�(X;Y ) = card(X \ Y )card(X)when X is non-empty, 1 otherwise: This function satis�es all of the above axiomsfor rough inclusion.



50Relations to fuzzy containment:Fuzzy containment may be de�ned in a fuzzy universe U endowed with fuzzymembership functions �X ; �Y by the formula :�(X � Y ) = infZ fI(�X(Z); �Y (Z))gfor a many - valued implication I: We quote a result in [331] which shows thatrough inclusions generate a class of fuzzy containments stable under residualimplications of the form �!> where > is a continuous t-norm [73] viz.: for anyrough inclusion � on U , the function�(X;Y ) = infZ f�!> (�(Z;X); �(Z; Y ))g:is also a rough inclusion. The impact of this is that in models of rough mereologywhich implement � as the model rough inclusion, we have the composition ruleof the form: if �(x; y; r) and �(y; z; s) then �(x; z;>(r; s)).Hence we can develop an associative calculus of partial containment.13.1 Rough inclusions from information systemsRough inclusions can be generated from a given information system A; for in-stance, for a given partition P = fA1; : : : ; Akg of the set A of attributes into non-empty sets A1; : : : ; Ak, and a given set W = fw1; : : : ; wkg of weights, wi 2 [0; 1]for i = 1; 2; : : : ; k and Pki=1 wi = 1 we let�o;P;W (x; y) = kXi=1 wi � kINDi(x; y)kkAikwhere INDi(x; y) = fa 2 Ai : a(x) = a(y)g. We call �o;P;W a pre-rough inclu-sion.The function �o;P;W is rough-invariant i.e. if a(x) = a(x0) and a(y) = a(y0)for each a 2 A then �o;P;W (x; y) = �o;P;W (x0; y0). �o;P;W can be extended toa rough inclusion on the set 2U [331] e.g. via the formula: �(X;Y ) = >f?f�o;P;W (x; y) : y 2 Y g : x 2 Xg where > is a t-norm and ? is a t-conorm.An advantage of having rough inclusions in this form is that we can optimizeweights wi in the learning stage.Example 13.1 Consider an information system HThe table below shows values of the initial rough inclusion �o;P;W (x; y) =card(IND(x;y))3 i.e. we consider the simplest case when k = 1; w1 = 1: 2



51hat ker pigx1 1 0 0x2 0 0 1x3 0 1 0x4 1 1 0Table 9. The information system Hx1 x2 x3 x4x1 1 0.33 0.33 0.66x2 0.33 1 0.33 0.00x3 0.33 0.33 1 0.66x4 0.66 0.00 0.66 1Table 10. Initial rough inclusion for HExample 13.2 In addition to the information system (agent) H from Example1 we consider agents B and HB. Together with H they form the string ag =(H)(B)(HB) i.e. HB takes objects: x sent by H and y sent by B and assemblesa complex object xy:The values of the initial rough inclusion � = �o;P;W are calculated for (B)and (BH) by the same procedure as in Example 13.1. 213.2 Approximate mereological connectivesAn important ingredient in our scheme is related to the problem of rough mere-ological connectives: given information systems A;B;C; ::: we will say that Aresults from B;C; ::: if there exists a (partial) mapping (an operation) oA :UB � UC � ::: ! UA with rng oA = UA i.e. any x 2 UA is of the formoA(y; z; :::) where y 2 UB and z 2 UC; ::: . In the case when pre - rough in-clusions �A; �B ; �C ; ::: are de�ned in respective universes UA; UB; UC; ::: therearises the problem of uncertainty propagation i.e. we have to decide in what wayis the measure �A related to measures �B ; �C ; :::: Formally, we have to �nd an(approximation) to a function f satisfying the following property:for any �1; �2; �3; ::: 2 [0; 1] :for any x; x1 2 UB; y; y1 2 UC; ::: :if �B(x; x1) � �1 , �C(y; y1) � �2 and ...then �A(oA(x; y; :::); oA(x1; y1; :::)) � f(�1; �2; :::)In practice, it is unrealistic to expect the existence of a function f satisfyingthe above condition globally; therefore, we localize this notion. To this end, letus select a subset SA � UA of objects which we will call standard objects; we willuse the symbol xyz::: to denote the object oA(x; y; :::) 2 UA: Given a standards = xyz:::; we will call a function f an (approximation to) rough mereologicalconnective relative to oA and s in case it satis�es the condition:



52 pis cut kni cry1 1 1 1 1y2 1 0 0 0y3 0 0 1 0y4 1 1 1 0Table 11. The information system Bhar lar off tarx1y1 1 0 1 0x1y3 0 1 0 0x2y1 1 0 0 0x2y3 0 1 0 1Table 12. The information system HBfor any �1; �2; �3; ::: 2 [0; 1] :for any x1 2 UB; y1 2 UC; :::: :if �B(x1; x) � �1 , �C(y1; y) � �2 and ...then �A(oA(x1; y1; :::); s) � f(�1; �2; :::)We outline an algorithm which may be used to extract from information sys-tems approximations to uncertainty functions (rough mereological connectives).Example 13.3 We will determine an approximation to the mereological con-nective at the standard x1y1 in Table 12 of Example 13.2 i.e. a function f suchthat (for simplicity of notation we omit subscripts of �):if �(x; x1) � �1 and �(y; y1) � �2then �(xy; x1y1) � f(�1; �2); for any pair �1; �2:The following tables show conditions which f is to ful�ll.x �(x; x1) y �(y; y1) �(xy; x1y1)x1 1 y1 1 1x1 1 y2 0.25 0.5x1 1 y3 0.25 0.25x1 1 y4 0.75 1x2 0.33 y1 1 0.75x2 0.33 y2 0.25 0.25x2 0.33 y3 0.25 0.00x2 0.33 y4 0.75 0.5Table 13. The conditions for f (�rst part)



53x �(x; x1) y �(y; y1) �(xy; x1y1)x3 0.33 y1 1 0.75x3 0.33 y2 0.25 0.25x3 0.33 y3 0.25 0.25x3 0.33 y4 0.75 0.75x4 0.66 y1 1 1x4 0.66 y2 0.25 0.5x4 0.66 y3 0.25 0.25x4 0.66 y4 0.75 1Table 14. The conditions for f (second part) 2This full set T0 of conditions can be reduced: we can �nd a minimal set T ofvectors of the form ("01; "02; ") such that if f satis�es the condition f("01; "02) = "for each ("01; "02; ") 2 T then f extends by the formula (1), below.The following algorithm produces a minimal set T of conditions.AlgorithmInput : table T0 of vectors(�(x; x1); �(y; y1); �(xy; x1y1));Step 1. For each pair (�(x; x1) = "1; �(y; y1) = "2); �nd "("1; "2) = minf" : "01 �"1; "02 � "2; ("01; "02; ") 2 T0g: Let T1 be the table of vectors ("1; "2; "("1; "2)).Step 2. For each "� such that ("1; "2; "("1; "2) = "�) 2 T1; �nd: row("�) =("�1; "�2; "�) where ("�1; "�2; "�) 2 T1 and if ("01; "02; "�) 2 T1 then "01 � "�1; "02 �"�2:Output: table T of vectors of the form row(") .One can check that Table 15 shows a minimal set T of vectors for the caseof Tables 13, 14. "1 "2 "0.66 0.75 10.33 0.75 0.50.66 0.25 0.250.33 0.25 0.00Table 15. A minimal set T of vectorsOne can extract from the algorithm the synthesis formula of f from conditionsT0 : f("1; "2) = min f"0 : ("01; "02; "0) 2 T0 ^ ("01 � "1) ^ ("02 � "2)g (1)



5414 Reasoning in Multi{Agent SystemsWe outline here basic ideas of reasoning under uncertainty by intelligent units(agents) in multi - agent systems. Schemes based on these ideas may be - in ouropinion - applied in the following areas of application, important for developmentof automated techniques [4]:{ computer-aided manufacturing or computer-aided design [4], [48],[126] wherea complex object=a �nal artifact (assembly) is produced (designed) frominventory (elementary) parts by a dedicated team of agents.{ logistics [77] where complex structures are organized from existing elemen-tary structures (units) to perform a task according to a given speci�cation.{ adaptive control of complex systems [200], [397] where the task consistsin maintaining a given constraint (speci�cation) by adaptive adjustment ofbehaviour of some parts (organs, physiological processes etc.).{ business re-engineering [77], [433] where the task is to adaptively modifya complex object (structure, organization, resources, etc.) according to thecurrent economic situation (speci�cation).{ cooperative/distributed problem solving including planning, dynamic taskassignment etc. [77], [85], [433] where the task is to organize a system ofagents into a scheme of local teams for solving a problem (speci�cation).{ automated fabrication [31] where the task is to build complex objects (e.g.mechanisms) by layer-after -layer synthesis.{ preliminary stage of design process [347] where the approximate reasoningabout objects and processes is crucial as it is carried out in an informal,often natural, language.The general scheme for approximate reasoning can be represented by thefollowing tupleAppr Reas = (Ag;Link; U; St;Dec Sch;O; Inv; Unc mes; Unc prop)where(i) The symbol Ag denotes the set of agent names.(ii) The symbol Link denotes a set of non-empty strings over the alphabet Ag;for v(ag) = ag1ag2:::agkag 2 Link, we say that v(ag) de�nes an elementarysynthesis scheme with the root ag and the leaf agents ag1; ag2; :::; agk: Theintended meaning of v(ag) is that the agents ag1; ag2,..,agk are the childrenof the agent ag which can send to ag some simpler constructs for assemblinga more complex artifact. The relation � de�ned via ag � ag0 i� ag is a leafagent in v(ag0) for some v(ag0), is usually assumed to be at least an orderingof Ag into a type of an acyclic graph; we assume for simplicity that (Ag; �)is a tree with the root root(Ag) and leaf agents in the set Leaf(Ag).(iii) The symbol U denotes the set fU(ag) : ag 2 Agg of universes of agents.(iv) The symbol St denotes the set fSt(ag) : ag 2 Agg where St(ag) � U(ag)is the set of standard objects at the agent ag.



55(v) The symbol O denotes the set fO(ag) : ag 2 Agg of operations whereO(ag) = foi(ag)g is the set of operations at ag.(vi) The symbol Dec Sch denotes the set of decomposition schemes; a particulardecomposition scheme dec schj is a tuple(fst(ag)j : ag 2 Agg; foj(ag) : ag 2 Agg)which satis�es the property that if v(ag) = ag1ag2:::agkag 2 Link thenoj(ag)(st(ag1)j ; st(ag2)j ; ::; st(agk)j) = st(ag)jfor each j.The intended meaning of dec schj is that when any child agi of ag submitsthe standard construct st(agi)j then the agent ag assembles from st(ag1)j ;st(ag2)j ; :::; st(agk)j the standard construct st(ag)j by means of the opera-tion oj(ag).The rule dec schj establishes therefore a decomposition scheme of any stan-dard construct at the agent root (Ag) into a set of consecutively simplerstandards at all other agents. The standard constructs of leaf agents areprimitive (inventory) standards. We can regard the set of decompositionschemes as a skeleton about which the approximate reasoning is organized.Any rule dec schj conveys a certain knowledge that standard constructs aresynthesized from speci�ed simpler standard constructs by means of speci�edoperations. This ideal knowledge is a reference point for real synthesis pro-cesses in which we deal as a rule with constructs which are not standard: inadaptive tasks, for instance, we process new, unseen yet, constructs (objects,signals).(vii) The symbol Inv denotes the inventory set of primitive constructs. We haveInv = [fU(ag) : ag 2 Leaf(Ag)g:(viii) The symbol Unc mes denotes the set fUnc mes(ag) : ag 2 Agg of un-certainty measures of agents, where Unc mes(ag) = f�j(ag)g and �j(ag)� U(ag) � U(ag) � V (ag) is a relation (possibly function) which deter-mines a distance between constructs in U(ag) valued in a set V (ag); usually,V (ag) = [0; 1], the unit interval.(ix) The symbol Unc prop denotes the set of uncertainty propagation rulesfUnc prop(v(ag)) : v(ag) 2 Linkg; for v(ag) = ag1ag2:::agkag 2 Link,the set Unc prop(v(ag)) consists of functions fj :V (ag1) � V (ag2) � ::: �V (agk) �! V (ag) such thatif �j(agi)(xi; st(agi)j) = "i for i = 1; 2; ::; kthen �j(ag)(oj(x1; x2; ::; xk); st(ag)j) = " � fj("1; "2; ::; "k):The functions fj relate values of uncertainty measures at the children of agand at ag.This general scheme may be adapted to the particular cases.As an example, we will interpret this scheme in the case of a fuzzy controller.In its version due to Mamdani [200] in its simplest form, we have two agents:



56input, output, and standards of agents are expressed in terms of linguistic labelslike positively small, negative, zero etc. Operations of the agent output expressthe control rules of the controller e.g. the symbol o(positively small; negative) =zero is equivalent to the control rule of the form if st(input)i is positively smalland st(input)j is negative then st(output)k is zero. Uncertainty measures ofagents are introduced as fuzzy membership functions corresponding to fuzzy setsrepresenting standards i.e. linguistic labels. An input construct (signal) x(input)is fuzzi�ed i.e. its distances from input standards are calculated and then thefuzzy logic rules are applied. By means of these rules uncertainty propagatingfunctions are de�ned which allow for calculating the distances of the outputconstruct x(output) from the output standards. On the basis of these distancesthe construct x(output) is evaluated by the defuzzi�cation procedure.The process of synthesis by a scheme of agents of a complex object x which isan approximate solution to a requirement � consists in our approach of the twocommunication stages viz. the top - down communication/negotiation processand the bottom - up synthesis process. We outline the two stages here.In the process of top - down communication, a requirement � received by thescheme from an external source is decomposed into approximate speci�cationsof the form (�(ag); "(ag))for any agent ag of the scheme. The intended meaning of the approximate spec-i�cation (�(ag); "(ag)) is that a construct z 2 U(ag) satis�es (�(ag); "(ag)) i�there exists a standard st(ag) with the properties that st(ag) satis�es the pred-icate �(ag) and �(ag)(z; st(ag)) � "(ag):The uncertainty bounds of the form "(ag) are de�ned by the agents viz. theroot agent root(Ag) chooses "(root(Ag)) and �(root(Ag)) as such that accordingto it any construct x satisfying (�(root(Ag); "(root(Ag)) should satisfy the exter-nal requirement � in an acceptable degree. The choice of (�(root(Ag); "(root(Ag))can be based on the previous learning process; the other agents choose their ap-proximate speci�cations in negotiations within each elementary scheme v(ag)2 Link. The result of the negotiations is succesful when there exists a de-composition scheme dec schj such that for any v(ag) 2 Link, where v(ag) =ag1ag2:::agkag, from the conditions �(agi)(xi; st(agi)j) � "(agi) and st(agi)jsatis�es �(agi) for i = 1; 2; ::; k; it follows that �(ag)(oj(x1x2; ::; xk); st(ag)j) �"(ag) and st(ag)j satis�es �(ag).The uncertainty bounds "(ag) are evaluated on the basis of uncertainty prop-agating functions whose approximations are extracted from information systemsof agents.The synthesis of a complex object x is initiated at the leaf agents: they selectprimitive constructs (objects) and calculate their distances from their respec-tive standards; then, the selected constructs are sent to the parent nodes ofleaf agents along with vectors of distance values. The parent nodes synthesizecomplex constructs from the sent primitives and calculate the new vectors of dis-tances from their respective standards. Finally, the root agent root(Ag) receives



57from its children the constructs from which it assembles the �nal construct andcalculates the distances of this construct from the root standards. On the basisof the found values, the root agent classi�es the �nal construct x with respectto the root standards as eventually satisfying (�(root(Ag); "(root(Ag)):Our approach is analytic: all logical components ( uncertainty measures, un-certainty functions etc.) necessary for the synthesis process are extracted fromthe empirical knowledge of agents represented in their information systems; itis also intensional in the sense that rules for propagating uncertainty are localas they depend on a particular elementary synthesis scheme and on a particularlocal standard.We will now give a more detailed account of the process of synthesis.15 Synthesis SchemesSynthesis agents.We start with the set Ag of synthesis agents and the set Inv of inventory objects.Any synthesis agent ag has assigned a label lab(ag) = fU(ag); A(ag); St(ag);L(ag); �o(ag); F (ag)g where: U(ag) is the universe of objects at ag, A(ag) =fU(ag); A(ag); V (ag)g is the information system of ag, St(ag) � U(ag) is theset of standard objects (standards) at ag, L(ag) is a set of unary predicates at ag(specifying properties of objects in U(ag)). Predicates of L(ag) are constructedas formulas in C(A(ag); V ) (i.e. Boolean combinations of descriptors over A(ag)and V ); �o(ag) � U(ag)�U(ag)� [0; 1] is a pre-rough inclusion at ag generatedfrom A(ag); F (ag) is a set of functions at ag called mereological connectives (cf.below, the notion of a (C,�; ")� scheme). Synthesis agents reason about objectsby means of the approximate logic of synthesis.Approximate logic of synthesis.Consider a synthesis agent ag. The symbol bag will denote the variable whichruns over objects in Uag : A valuation vX where X is a set of synthesis agents isa function which assigns to any bag for ag 2 X an element vX (bag) 2 Uag : Thesymbol vxag denotes vfagg with vfagg(bag) = x.We now de�ne approximate speci�cations at ag as formulas of the formhst(ag); �(ag); "(ag)i where st(ag) 2 St(ag); �(ag) 2 L(ag) and "(ag) 2 [0; 1].We say that v = vfagg satis�es a formula � = hst(ag); �(ag); "(ag)i, sym-bolically v j= �, in case �(ag)(v(bag); st(ag)) � " and st(ag) j= �(ag). Wewrite x j= hst(ag); �(ag); "(ag)i i� vxag j= hst(ag); �(ag); "(ag)i. The meaningof � = hst(ag); �(ag); "(ag)i is thus the set [�]ag of objects x satisfactorily (asdetermined by "(ag)) close to a standard (viz. st(ag)) satisfying �(ag): How theagents cooperate is determined by a chosen scheme; selection of a scheme is itselfan adaptive process of design [397].The synthesis languageLink: The synthesis agents are organized into a hierarchy (which may be an



58empty relation in case of autonomous agents system). We describe this hierarchyin a language Link over the alphabet Ag. The agents ag1; ag2; ::; agk; ag0 inAg form the string ag =ag1ag2:::agkag0 2 Link if and only if there exist amapping �(ag) :U(ag1) � ::: � U(agk) 7�! U(ag0) (meaning: the agent ag0 canassemble by means of �(ag) the object �(ag) (x1; :::; xk) 2 U(ag0) from anytuple (x1 2 U(ag1); :::; xk 2 U(agk)):Elementary constructions.If ag =ag1ag2:::agkag0 2 Link, then the pairc = (ag; fhst(agi); �(agi); "(agi)i : i = 0; 1; ::; kg)will be called an elementary construction. We write: Ag(c) = fag0; ag1; :::; agkg,Root(c) = ag0; Leaf(c) = Ag(c)� fag0g:Constructions.For elementary constructions c, c0 with Ag(c) \ Ag(c0) = fagg where ag =Root(c) 2 Leaf(c0); we de�ne the ag-composition c ?ag c0 of c and c0 withRoot(c?ag c0) = Root(c0), Leaf(c?ag c0) = (Leaf(c)�fagg)[(Leaf(c0), Ag(c?agc0) = Ag(c)[Ag(c0). A construction is any expression C obtained from a set ofelementary constructions by applying the composition operation a �nite numberof times.(C;�; ")-schemes.For an elementary construction c = c(ag) as above, we de�ne a (c; �; ")�schemeas (ag; fhst(agi); �(agi); "(agi)i : i = 0; 1; ::; kgwhere f(ag0) 2 F (ag0) satis�es the condition:if �(agi)(xi; st(agi)) � "(agi) for i = 1; 2; ::; kthen �o(ag)(x; st(ag0)) � ("(ag1); "(ag2); ::; "(agk))� "(ag0):A construction C composed of elementary constructions c1; ::; cm; co withRoot(C) = Root(co) = ago is the support of a (C;�; ")�scheme when each ci isthe support of a (ci; �i; "i)�scheme, where �i = �(Root(ci)), "i = "(Root(ci)),� = �(ag0) and " = "(ag0). The (C;�; ")-scheme c de�nes a function Fc calledthe output function of c given by Fc(vLeaf(C)) = x where x 2 U(ag0) is theunique object produced by C from vLeaf(C). The following statement expressesthe su�ciency criterium of synthesis by a scheme of an object satisfying theapproximate requirement hst(ago); �(ago); "(ago)i:



59Theorem 15.1 (the su�ciency criterium of synthesis). For any valuation vXon the set X of leaf agents ag(1); :: :; ag(m) of the (C;�; ")�scheme with ago =Root(C) such that v(bag(i)) j= hst(ag(i)); �(ag(i)); "(ag(i))ifor i = 1; 2; :::;m, we haveFc(vX) j= hst(ago); �(ago); "(ago)iLet us emphasize the fact that the functions f(ag), called mereological con-nectives above, are expected to be extracted from experiments with samplesof objects (see Example 3, above). The above property allows for an easy tojustify correctness criterium of a given (C;�; ")-scheme provided that all param-eters in this scheme have been chosen properly. The searching process for theseparameters and synthesis of an uncertainty propagation scheme satisfying theformulated conditions constitutes the main and not easy part of synthesis (anddesign as well).16 Mereological ControllersThe approximate speci�cation (�; ") can be regarded as an invariant to be keptover the universe of global states (complex objects) of the distributed system. Amereological controller generalizes the notion of a fuzzy controller. The controlproblems can be divided into several classes depending on the model of controlledobject. In this work we deal with the simplest case. In this case, the model ofa controlled object is the (C;�; ")-scheme c which can be treated as a modelof the unperturbed by noise controlled object whose states are satisfying theapproximate speci�cation (�; ").We assume the leaf agents of the (C;�; ")-scheme c are partitioned into twodisjoint sets, namely the set Un control(c) of uncontrollable (noise) agents andthe set Control(c) of controllable agents.We present now two examples of a control problem for a given (C;�; ") -scheme.(OCP) OPTIMAL CONTROL PROBLEM:Input: (C;�; ")-scheme c; information about actual valuation v of leaf agentsi.e. the values v(bag) for any ag 2 Control(c) and a value "0 such thatFc(v) j= hst(agc); �; "0i.Output: A new valuation v0 such that v0(bag) = v(bag) for ag 2 Un control(c)and Fc(v0) j= (st(agc); �; "0) where "0 = supf� : Fc(w) j= hst(agc); �; �i forsome w such that w(bag) = v(bag) for ag 2 Un control(c)g.



60 These requirements can hardly be satis�ed directly. A relaxation of (OCP)is(CP) r-CONTROL PROBLEMInput: (C;�; ")-scheme c; information about actual valuation v of leaf agents(i.e. the values v(bag) for any ag 2 Control(c)) and a value "0 such thatFc(v) j= hst(agc); �; "0i:Output: A new valuation v0 such that v0(bag) = v(bag) for ag 2 Un control(c)and Fc(v0) j= hst(agc); �; "0i where "0i"0 +r for some given threshold r.We will now describe the basic idea on which our controllers of complexdynamic objects represented by distributed systems of intelligent agents arebuilt. The main component of the controller are � - incremental rules.�-rules have the form:(�(ag)) (�"(agi1 ); :::; �"(agir ))= h("(ag);��"(ag); "(ag1); :::; "(agk))where agi1 ; :::; agir are all controllable children of ag (i.e. children of ag havingdescendents in Control(c)), h : Rk+2 ! Rr and R is the set of reals.Approximations to the function h are extracted from experimental data.The meaning of �(ag) is : if x0 j= hst(ag); �(ag); "0(ag)i for x0 2 U(ag)where "0(ag) = "(ag)+�"(ag) then if the controllable children agi1 ; :::; agir of agwill issue objects yi1 ; :::; yir with yij j= hst(agij ); �(agij ); "(agij ) +�"(agij )i forj = 1; :::; r where (�"(agi1 ); :::; �"(agir )) = h("(ag);��"(ag); "(ag1); :::; "(agk))then the agent ag will construct an object y such that y j= hst(ag); �(ag); "iwhere " � "(ag).In the above formula, we assume�"(ag) � 0 and�"(agi1 ) � 0; :::; �"(agir) �0. The above semantics covers the case when � - rules allow to compensate inone step the inuence of noise.�� rules can be composed in an obvious sense. �(ag?ag0) denotes the com-position of �(ag) and �(ag0) over ag ? ag0: The variable �(c) will run overcompositions of �� rules over c. We can sum up the above discussion in a coun-terpart of Theorem 15.1 which formulates a goodness - of - controller criterium.Theorem 16.1 (the su�ciency criterium of correctness of the controller). LetFc(v) j= hst(agc); �; "i where v is the valuation of leaf agents of the (C;�; ")-scheme c and let Fc(v0) j= hst(agc); �; "0i where v0 is a valuation of leaf agentsof c such that v0(bag) = v(bag) for ag 2 Control(c), "0 < ". If f"new(ag)g is anew assignment to agents de�ned by a composition �(c) of some �-rules suchthat "new(ag) = "(ag) for ag 2 Un control(c), "new(agc) = " and fxag : ag 2Control(c)g is the set of control parameters (inventory objects) satisfying xag j=hst(ag); �(ag); "new(ag)i for ag 2 Control(c) then for the object xnew = Fc(v1)constructed over the valuation v1 of leaf agents in c such that v1(bag) = v0(bag)for ag 2 Un control(c) and v1(bag) = xag for ag 2 Control(c) it holds that xnewj= hst(agc); �; "i.



61The meaning of Theorem 16.1 is that the controllable agents are able tocompensate of noise which perturbs the state hst(agc); �; "i to hst(agc); �; "0i incase the search in the space of � - rules results in �nding a composition of themwhich de�nes new, better uncertainty coe�cients "new(ag) for ag 2 Control(c);the new valuation v1 de�ned by f"new(ag) : ag 2 Control(c)g satis�es the statehst(agc); �; "i .The above approach can be treated as a �rst step towards modelling complexdistributed dynamical systems. We expect that it can be extended to solve con-trol problem for complex dynamical systems i.e. dynamical systems which aredistributed, highly nonlinear, with vague concepts involved in their description.One can hardly expect that classical methods of control theory can be success-fully applied to such complex systems.17 Adaptive Calculus of GranulesWithin paradigm of rough mereology one may formalize adaptive calculus ofgranules [334]. The metaphor of a granule, already present in rough set theory,has been recently advocated as a central notion of soft computing [531], [530].17.1 Information GranulesWe would like to present a general view on the problem of information granuleconstruction and information granule calculus. Our main claims are :{ granules can be identi�ed with �nite relational structures (�nite models);{ composition operations of granules (knowledge fusion) can be representedby operations on �nite models;{ granules are fused, transformed and converted into decision by intelligentcomputing units (agents) or their schemes;{ schemes of agents are seen as decision classi�ers and may be regarded asterms over granules and operations on them whose values are decisions;{ structure of granules and composition operations as well as the agent schemeand conversion operations on granules should be adaptively learned fromdata (the accessible information about objects).We propose to realize this program on the basis of rough mereology. Let usmention that fuzzy set approach can be treated as a particular case of thismethodology. One can consider also this approach as a basis for feature ex-traction in pattern recognition and machine learning. In the feature extractionprocess for instance we would like to develop learning strategies extracting frominitial accessible information InfA(xi) about object xi and decision d(xi) onxi (for i = 1; :::; n where n is the number of objects in data table) appropriategranules (�nite structures) in the form of e.g. a �nite model M and valuationsvi as well as formulas �i for i = 1; :::; k expressible in a language of the signature



62the same as M (and such that total size of these formulas is as small as possible)for which the following conditions holdd(xi) 6= d(xj) implies f�p : M; vi j= �pg 6= f�p : M; vj j= �pgfor any i 6= j; i; j = 1:; ; ; ; k.We start our presentation assuming the simple form of information granulesde�ned by information systems. We have a variety of indiscernibility spacesfU=INDB : B � Ag; the Boolean algebra generated over the set of atomsU=INDB by means of set - theoretical operations of union, intersection andcomplement is said to be the B-algebra CG(B) of B - pre-granules. Any memberof CG(B) is called a B - pre-granule.We have an alternative logical language in which we can formalize the notionof an information pre-granule; for a set of attributes B � A, we recall thede�nition of the B-logic LB : elementary formulas of LB are of the form (a; v)where a 2 B and v 2 Va: Formulas of LB are built from elementary formulasby means of logical connectives _;^; thus, each formula in DNF is representedas _j2J ^i2Ij (ai; vi): The formulas of LB , called information pre-granules, areinterpreted in the set of objects U : the denotation [(a; v)] of an elementaryformula (a; v) is the set of objects satisfying the equation a(x) = v i.e. [(a; v)] =fu 2 U : a(u) = vg and this is extended by structural induction viz. [� _ �] =[�] [ [�]; [� ^ �] = [�] \ [�] for �; � 2 LB:Clearly, given a B -pre-granule G 2 CG(B); there exists an informationpre-granule �G of LB such that [�G] = G:An atom of the Boolean algebra CG(B) will be called an elementary B-pre-granule; clearly, for any atomG of CG(B) there exists an elementary informationpre-granule �G of the form ^a2B(a; va) such that [�G] = G:For given non-empty sets B;C � A, a pair (GB ; GC) whereGB 2 CG(B) andGC 2 CG(C) is called a (B,C) - granule of knowledge. There exists therefore aninformation granule (�GB ; �GC ) such that �GB 2 LB ; �GC 2 LC ; [�GB ]=GB and[�GC ]=GC . If GB ; GC are atoms then the pair (GB ; GC) is called an elementary(B,C) - granule.One can associate with any granule (G0; G) where G0 2 CG(B0); G 2 CG(B)a rule �G =) �G0 [334]:The notion of a granule corresponds to the logical content (logic of knowledge)of the information system; however, there is more to the notion of a granule ofknowledge: we have to take into account the restrictions which on the choiceof good granules are imposed by the structure and demands of two interfaces:input interface which controls the input objects (signals) and output interfacewhich controls the output objects (actions, signals).Consider a granule (G;G0); let G = [�G]; G0 = [�G0 ]: There are two charac-teristics of the granule (G;G0) important in applications to adaptive synthesis ofcomplex objects viz. the characteristic whose values measure what part of [G0] isin [G] (the strength of the covering of the rule �G =) �G0 and the characteristicwhose values measure what part of [G] is in [G0] (the strength of the support forthe rule �G =) �G0).To select su�ciently strong rules, we would set thresholds : tr; tr0 2 [0; 1]. Wede�ne then, by analogy with machine learning techniques, two characteristics:



63(�) �(�; �0) = �([�]; [�0]);(�) �(�; �0) = �([(�0)]; [�]) for any (B;C)-information granule (�; �0)and we call a (�;B;C; tr; tr0)� information granule of knowledge any (B;C)-information granule (�; �0) such that(i) �(�; �0) � tr and(ii) �(�; �0) � tr0.The set of all (�;B;C; tr; tr0)� granules corresponding to (�;B;C; tr; tr0)�information granules generates a Boolean algebra of (�;B;C; tr; tr0)-granules ofknowledge. Let us observe that given sets B;C � A;� 2 LB and �0 2 LC , wemay de�ne the value Gr(B;C; �; tr; tr0 ; �; �0) to be TRUE in the case when thepair (�; �0) is an (�;B;C; tr; tr0)� granule of knowledge. In this way we de�nethe relation Gr which we call the granulation relation induced by the triple(input interface, logic of knowledge, output interface) related to the informationsystem A.The functions �; � and thresholds tr; tr0 introduced above have been usedto present an example of the interface between two sources of information e.g.between input information source and inner agent knowledge. This is necessarybecause very often the exact interpretation of information from one source intoanother one is impossible. Di�erent methods for constructing and tuning theseinterfaces up, crucial for granular computing, can be developed using rough setand fuzzy set approaches.Rough inclusion �0 may enter our discussion of a granule and of the relationGr in each of the following ways:{ concerning the de�nitions (�); (�) of functions � and � , we may replace inthem the rough membership function � with �0 possibly better �tted to acontext.{ the function �0 can be extended to a rough inclusion �� by means of aformula above, relative to a t-conorm ? and a t-norm > suitably chosen.This rough inclusion �� can now be used to measure the information granulecloseness.17.2 Information Granules of the Form (�; ")In applications it is often convenient to use another language for informationgranules description allowing for more compressed description of informationgranules. Let us assume that a pre-rough inclusion is generated over a set Bof attributes. Let �� be the rough inclusion generated from �0. Now, a newinformation granule language LB for B � A consists of pairs (�; ") where � isan elementary B-information pre-granule and " 2 [0; 1]: By [�; "]B we denotethe B-granule [��;"] where ��;" is a B-information granule being a disjunctionof all ^u where u is of the form f(a; v) : a 2 B; v 2 Vag (where Va is the valueset of a) and ��([^u]; [�]) � ".We say that x j=ag (�; ") i� ��([^u(x)]; [�]) � "



64where u(x) is f(a; a(x)) : a 2 Bg:One can also consider more general information granules taking instead offormulas (�; ") sets (�; "1); :::; (�; "n) where "1 � ::: � "n are interpreted ascloseness degrees to �:17.3 Synthesis in Terms of GranulesWe adopt here our scheme for approximate synthesis and we refer to the notationtherein. We will show how the synthesis process over this scheme can be driven bygranule exchange among agents. We include the following changes in comparisonto this scheme.1. We introduce an additional agent Cs (the customer), where Cs =2 Ag; whoseactions consist in issuing approximate speci�cations 	 describing the desiredobject (signal, action etc.) to be synthesized by the scheme (Inv;Ag) whereInv is the set of inventory objects of agents from Ag.2. We assume that the customer�root of Ag interface produces approximateformulas of the form (�(root(Ag)); "(root(Ag))for the root agent root(ag) of the agent scheme corresponding to approximatespeci�cations 	 in the sense that any object satisfying the formula(�(root(Ag)); "(root(Ag))is regarded as satisfying the approximate speci�cation 	 in satisfactory de-gree.3. Let [�(ag); "(ag)]ag =fx 2 U(ag) : x j=ag (�(ag); "(ag))g:4. For a given speci�cation (�(ag); "(ag)) at ag, k-ary operation o(ag) at agand a mereological connective f(ag) (see above) the decomposition processreturns a sequence (�1; "1); :::; (�k ; "k)of speci�cations (in the language of ag) for agents ag1,...,agk satisfying; 6= o(ag)([�1; "1]ag � :::� [�k ; "k]ag)� [�(ag); f(ag)("1; :::; "k)]ag]where f(ag)("1; :::; "k) � "(ag).



655. Next, information granules �1, ..., �k at ag1, ..., agk, respectively, are chosenin such a way that granules [�1]ag1 ; :::; [�k]agkand respectively [�1; "1]ag ; :::; [�k; "k]agare su�ciently close (in the tuning process parameters �; �; tr; tr0 are �xed).The closeness of the granules should guarantee that the following inclusionis trueo(ag)([�1]ag1 � :::� [�k]agk)� [�(ag); f(ag)("1; :::; "k)]ag :Formulae �1,...,�k at ag1,...,agk are described in the form(�(ag1); "(ag1)); :::; (�(agk); "(agk))for agents ag1,...,agk, respectively.The meaning of an expression x j=S (�; ") is that an agent scheme S isyielding at the root(S) the object x. A goodness - of - granule synthesis schemecriterium can be formulated in the following:Theorem 17.1 ([334]). Let S be an agent scheme satisfying the followingconditions:(i) the root of S denoted by root(S) has attached a speci�cation(�(root(S); "(root(S)));(ii) any non-leaf and non-root agent ag of S satis�es conditions stated in (4)-(5);(iii) for any leaf agent ag of S the attached speci�cation (�ag ; "ag) is satis�edby some object from the inventory object set INV .Then the scheme S is yielding at root(S) an object x satisfyingx j=S (�(root(S)); "(root(S))):



6617.4 Adaptivity of calculus of granulesThe adaptivity of our scheme is due to the several factors. Among them are{ The possibility of changing the parameters�; tr; tr0; B; Cin the granulation predicateGr(ag)(B;C; �; tr; tr0 ; �; �0)for any agent ag 2 Ag:{ The possibility of new granule formation at any agent ag 2 Ag in the dy-namic process of synthesis.{ The possibility of forming new rough inclusion at any agent ag 2 Ag in thedynamic process of synthesis e.g. by choosing >;? in the de�nition of �.In conclusions we discuss some other potential applications of rough mereo-logical approach.18 ConclusionsThe rough set approach to data analysis has many important advantages. Someof them are listed below.{ Synthesis of e�cient algorithms for �nding hidden patterns in data.{ Identi�cation of relationships that would not be found using statistical meth-ods.{ Representation and processing of both qualitative and quantitative param-eters and mixing of user-de�ned and measured data.{ Reduction of data to a minimal representation.{ Evaluation of the signi�cance of data.{ Synthesis of classi�cation or decision rules from data.{ Legibility and straightforward interpretation of synhesized models.Most algorithms based on the rough set theory are particularly suited forparallel processing, but in order to exploit this feature fully, a new computerorganization based on rough set theory is necessary.Although rough set theory has many achievements to its credit, neverthelessseveral theoretical and practical problems require further attention.Especially important is widely accessible e�cient software development forrough set based data analysis, particularly for large collections of data.Despite of many valuable methods of e�cient, optimal decision rule genera-tion methods from data, developed in recent years based on rough set theory -more research here is needed, particularly, when quantitative and quantitativeattributes are involved. Also an extensive study of a new approach to missingdata is very important. Comparison to other similar methods still requires due



67attention, although important results have been obtained in this area. Particu-larly interesting seems to be a study of the relationship between neural networkand rough set approach to feature extraction from data.Last but not least, rough set computer is badly needed for more advancedapplications. Some research in this area is already in progress.We would like to stress some areas of research related to the rough mereologi-cal approach. They are in particular important for further development of roughset theory and soft computing. They can be characterized as new algorithmicmethods for inducing structures of information granules and information granulecalculus from data (also in distributed and multi{agent environments). Amongthem are adaptive algorithmic methods for:{ extracting logical (algebraic) structures of information granules from data:this belongs to the process of searching for a model couched in logical (alge-braic) terms;{ constructing interfaces among various knowledge structures: this group ofproblems is relevant in granular computing; as observed above, granules ofknowledge are the result, among other factors, of uncertainty immanent tointerfaces among various sources of knowledge;{ extracting distance functions for similarity measures from data: here wewould like to have clustering methods based on closeness measures to con-struct aggregation - based models;{ inducing exact dependencies: this group of problems belong to the secondstep i.e. searching for elements of the model and dependencies among them;exact dependencies constitute the skeleton along which we organize schemesfor approximate reasoning;{ inducing approximate dependencies: here we search for approximate i.e. closeto exact dependencies and possible ways of expressing them like described inthis collection and literature default rules, templates, rough classi�ers, roughmereological connectives etc.;{ inducing networks of dependencies: emulation of schemes of approximatereasoning including also algorithmic methods for inducing concurrent datamodels from data.We propose rough mereology as a general framework for investigations inthese directions. Taking this point of view the research should be concentratedaround two main groups of problems, namely methods of adaptive learningfrom data of components of schemes of approximate reasoning (like standards,rough inclusions, mereological connectives, decomposition schemes etc. (see Sec-tion 2.4)) and adaptive learning of schemes of approximate reasoning (synthesisschemes of agents).The research results in the above mentioned areas will also have importantimpact on development of new methods for KDD, in particular for developmentof algorithmic methods for pattern extraction from data (also in multi{agent en-vironemt) and extracting from data calculus for approximate reasoning on setsof extracted patterns (e.g. algorithmic methods for large data table decomposi-tiopn, synthesis of global laws from local �ndings).



68 The advantage of employing various sources of knowledge and various struc-tures of knowledge in data mining and knowledge discovery implies that newalgorithmic methods are desirable for hybrid systems in which rough set meth-ods will be applied along with methods based on (one or more of) the following:fuzzy sets; neural nets; evolutionary strategies; statistical reasoning; belief nets;evidence theory.Problems of knowledge discovery should be studied also from the point ofview of complexity. The following topics seem to be important:{ analysis of complexity of knowledge discovery processes: complexity of ex-tracting classes of problems solvers;{ analysis of complexity of problems of approximate reasoning: complexity offeature and model extraction/selection, complexity of data mining processes,complexity of knowledge discovery processes;{ quality of heuritics for hard problems of approximate reasoning: quality -complexity trade - o�;{ re�nements of complexity theory for problems of approximate reasoning:classi�cation issues, relations to minimal length description.Let us observe that this analysis would require in many cases transgressing theclassical complexity theory.In addition to areas of application discussed in the paper we would like topoint to some areas where perspectives of applications of rough sets are promisingas borne out by the current research experience. Among them are applicationsin: data mining and knowledge discovery; process control; case based reasoning;conict analysis and negotiations; natural language processing; software engi-neering.Finally, the progress in the discussed above rough merology, being an exten-sion of rough set theory, should bring forth:{ new computation model based on information granulation and granule cal-culus;{ new software systems for mentioned above important applications;{ hardware developments: a rough mereological processor and a rough mereo-logical computer.We are convinced that progress in the above areas is of the utmost importancefor creating new methods, algorithms, software as well as hardware systemswhich prove the applicability of rough set techniques to challenging problems ofData Mining, Knowledge Discovery and other important areas of applications.AcknowledgmentsThe results presented in this tutorial are due to a long term collaborative e�ortof several international groups. The authors wish to thank their colleagues whocontributed to this tutorial both directly and indirectly. Several results from



69joint work were re-used here and citations provided as detailed as it was judgedfeasible.This research has been supported in part by the European Union 4th Frame-work Telematics project CardiAssist, by the ESPRIT-CRIT 2 project #20288,by the Norwegian Research Council (NFR) grants #74467/410, #110177/730and by the Polish National Research Committee (KBN) grant #8T11C01011.References1. A. Aamodt, J. Komorowski (Eds.) (1995), Proc. Fifth Scandinavian Conferenceon Arti�cial Intelligence. Trondheim, Norway, May 29{31, Frontiers. In: Arti�calIntelligence and Applications 28, IOS Press.2. R.L. Acko�, M.W. Sasieni (1968), Fundamentals of operational research. Wiley,New York.3. H. Almuallim, T. G. Dietterich (1994), Learning Boolean concepts in the Presenceof many irrelevant features. Arti�cial Intelligence 69(1-2), pp. 279{305.4. S. Amarel et al. (1991), PANEL on AI and design. In: Twelfth International JointConference on Arti�cial Intelligence (IJCAI-91), Morgan Kaufmann, San Mateo,pp. 563{565.5. A. An, C. Chan, N. Shan, N. Cercone, W. Ziarko (1997), Applying KnowledgeDiscovery to Predict Water-Supply Consumption. IEEE Expert 12/4, pp. 72{78.6. A. An, N. Shan, C. Chan, N. Cercone, W. Ziarko (1995), Discovering rules fromdata for water demand prediction. In: Proceedings of the Workshop on MachineLearning in Engineering (IJCAI'95), Montreal, pp. 187{202; see also, Journal ofIntelligent Real-Time Automation, Engineering Applications of Arti�cial Intelli-gence 9/6, pp. 645{654.7. T. Arciszewski, W. Ziarko (1987), Adaptive expert system for preliminary designof wind{bracings in steel skeleton structures. In: Second Century of Skyscraper,Van Norstrand, pp. 847{855.8. P. Balbiani (1998), Axiomatization of logics based on Kripke models with relativeaccessibility relations. In: Or lowska [270], pp. 553-578.9. C.A. Bana e Costa (1990), Readings in multiple{criteria decision aid. Springer{Verlag, Berlin.10. M. Banerjee (1997), Rough sets and 3-valued Lukasiewicz logic. Fundamenta In-formaticae 32/1, pp. 213{220.11. M. Banerjee, M.K. Chakraborty (1998), Rough logics: A survey with further di-rections.pedrycz@ee.ualberta.ca In: Or lowska [270] pp. 579-600.12. M. Banerjee, S.K. Pal (1996), Roughness of a fuzzy set. Information Sciences In-formatics and Comp. Sc. 93/3-4. pp. 235{246.13. J. Bazan (1998), A comparison of dynamic non-dynamic rough set methods forextracting laws from decision tables. In: Polkowski and Skowron [336], pp. 321{365.14. J. Bazan, H.S. Nguyen, T.T. Nguyen, A. Skowron, J. Stepaniuk (1994), SomeLogic and Rough Set Applications for Classifying Objects. Institute of ComputerScience, Warsaw University of Technology, ICS Research Report 38/94.15. J. Bazan, H.S. Nguyen, T.T. Nguyen, A. Skowron, J. Stepaniuk (1995), Applicationof modal logics and rough sets for classifying objects. In: M. De Glas, Z. Pawlak(Eds.), Proceedings of the Second World Conference on Fundamentals of Arti�cialIntelligence (WOCFAI'95), Paris, July 3-7, Angkor, Paris, pp. 15{26.



7016. J.G. Bazan, H.S. Nguyen, T.T. Nguyen, A. Skowron, J. Stepaniuk (1998), Syn-thesis of decision rules for object classi�cation. In: Or lowska [270], pp. 23{57.17. J. Bazan, A. Skowron, P. Synak (1994), Market data analysis. Institute of Com-puter Science, Warsaw University of Technology, ICS Research Report 6/94.18. J. Bazan, A. Skowron P. Synak (1994), Dynamic reducts as a tool for extractinglaws from decision tables. Proc. Symp. on Methodologies for Intelligent Systems,Charlotte, NC, USA, Oct. 16-19, LNAI, 869, Springer-Verlag, pp. 346{355.19. D. Brindle (1995), Speaker-independent speech recognition by rough sets analysis.In: Lin, Wildberger [194], pp. 101{106.20. T. Beaubouef, F.E. Petry (1993), A rough set model for relational databases. In:Ziarko [536], pp. 100{107.21. T. Beaubouef, F.E. Petry (1994), Rough querying of crisp data in relationaldatabases. In: Ziarko [536], pp. 85{88.22. S. Bodjanova (1997), Approximation of fuzzy concepts in decision making. FuzzySets and Systems 85, pp. 23{29.23. P. Borne, G. Dauphin{Tanguy, C. Sueur, S. El Khattabi (Eds.), Proceedingsof IMACS Multiconference, Computational Engineering in Systems Applications(CESA'96). July 9{12, Lille, France, Gerf EC Lille { Cite Scienti�que 3/4.24. B. Bouchon{Meunier, M. Delgado, J.L. Verdegay, M.A. Vila, R.R. Yager (1996),Proceedings of the Sixth International Conference. Information Processing Man-agement of Uncertainty in Knowledge{Based Systems (IPMU'96). July 1-5,Granada, Spain 1{3, pp. 1{1546.25. B. Bouchon{Meunier, R.R. Yager (1998), Proc. Seventh Conference on Informa-tion Processing and Management of Uncertainty in Knowledge-Based Systems,(IPMU'98). July 6{10, Universit�e de La Sorbonne, Paris, France, Edisions, E.D.K.,Paris, pp. 1{1930.26. Z. Bonikowski, E. Bryniarski, and U. Wybraniec{Skardowska (1998), Extensionsand intensions in the rough set theory. Information Sciences 107, 149{167.27. F. M. Brown (1990), Boolean Reasoning. Kluwer Academic Publishers, Dordrecht.28. C. Browne, I. D�untsch, G. Gediga (1998), IRIS revisited, A comparison of dis-criminant enhanced rough set data analysis. In: Polkowski and Skowron [337], pp.347{370.29. E. Bryniarski E., U. Wybraniec-Skardowska (1997), Generalized rough sets in con-textual spaces. In: Lin and Cercone [189] pp. 339{354.30. A. Budihardjo, J.W. Grzyma la{Busse, L. Woolery (1991), Program LERS{LB2.5 as a tool for knowledge acquisition in nursing. In: Proceedings of the FourthInternational Conference on Industrial Engineering Applications of Arti�cial In-telligence Expert Systems, Koloa, Kauai, Hawaii, June 2{5, pp. 735{740.31. M. Burns (1993), Resources: Automated Fabrication. Improving Productivity inManufacturing. Prentice Hall, Englewood Cli�s, NJ.32. W. Buszkowski, E. Or lowska (1998), Indiscernibility{based formalisation of depen-dencies in information systems. In: Or lowska [270], pp. 293{315.33. W. Buszkowski (1998), Approximation spaces and de�nability for incomplete in-formation systems. In: Polkowski and Skowron [338], pp. 115{122.34. U. Carlin, J. Komorowski, A. �hrn (1998), Rough set analysis of patients withsuspected acute appendicitis. In: Bouchon{Meunier and Yager [25], pp. 1528{1533.35. J. Catlett (1991), On changing continuos attributes into ordered discrete attributes.In: Y. Kodrato�, (Ed.), Machine Learning-EWSL-91, Proc. of the European Work-ing Session on Learning, Porto, Portugal, March 1991, LNAI, pp. 164{178.



7136. G. Cattaneo (1996), A uni�ed algebraic approach to fuzzy algebras and rough ap-proximations. In: R. Trappl (Ed.), Proceedings of the 13th European Meetingon Cybernetics and Systems Research (CSR'96), April 9{12, The University ofVienna 1, pp. 352{357.37. G. Cattaneo (1996), Abstract rough approximation spaces (Bridging the gap be-tween fuzziness and roughness). In: Petry and Kraft [313], pp. 1129{1134.38. G. Cattaneo (1996), Mathematical foundations of roughness and fuzziness, In:Tsumoto, Kobayashi, Yokomori, Tanaka, and Nakamura [474]. pp. 241{247.39. G. Cattaneo (1997), Generalized rough sets. Preclusivity fuzzy-intuitionistic (BZ)lattices. Studia Logica 58, pp. 47{77.40. G. Cattaneo (1998), Abstract approximation spaces for rough theories. In:Polkowski and Skowron [336], pp. 59{98.41. G. Cattaneo, R. Giuntini, R. Pilla (1997), MVBZ algebras and their substructures.The abstract approach to roughness and fuzziness. In: Mares, Meisar, Novak, andRamik [204], pp. 155{161.42. G. Cattaneo, R. Giuntini, R. Pilla (1997), MVBZdM and Stonian algebras (Appli-cations to fuzzy sets and rough approximations). In: Fuzzy Sets and Systems.43. M.K. Chakraborty, M. Banerjee (1997), In search of a common foundation forrough sets and fuzzy sets. In: Zimmermann [544], pp. 218{220.44. Y.-Y. Chen, K. Hirota, J.-Y. Yen (Eds.) (1996), Proceedings of 1996 ASIANFUZZY SYSTEMS SYMPOSIUM { Soft Computing in Intelligent Systems In-formation Processing. December 11{14, Kenting, Taiwan, ROC.45. M.R. Chmielewski, J.W. Grzymala-Busse (1994), In: Lin [186] pp. 294{301.46. J. Cios, W. Pedrycz, R.W. Swiniarski (1998), Data Mining in Knowledge Discov-ery, Academic Publishers.47. S. Comer (1991), An algebraic approach to the approximation of information. Fun-damenta Informaticae 14, pp. 492{502.48. J.H. Connolly J.H., E.A. Edmunds E.A. (1994), CSCW and Arti�cial Intelligence.Springer - Verlag, Berlin.49. A. Czajewski (1998), Rough sets in optical character recognition. In: Polkowskiand Skowron [338], pp. 601{604.50. A. Czy_zewski (1995), Some methods for detection interpolation of impulsive distor-tions in old audio recordings. In: IEEE ASSP Workshop on Applications of SignalProcessing to Audio Acoustics Proceedings, October 15-18, New York, USA.51. A. Czy_zewski (1996), Speaker{independent recognition of digits { Experiments withneural networks, fuzzy logic rough sets. Journal of the Intelligent Automation andSoft Computing 2/2, pp. 133{146.52. A. Czy_zewski (1996), Mining knowledge in noisy audio data. In: Simoudis, Han,and Fayyad [392] pp. 220{225.53. A. Czy_zewski (1997), Learning algorithms for audio signal enhancement { Part I,Neural network implementation for the removal of impulse distortions. Journal ofthe Audio Engineering Society 45/10, pp. 815{831.54. A. Czy_zewski (1997), Learning algorithms for audio signal enhancement - Part II,Rough set method implementation for the removal of hiss. Journal of the AudioEngineering Society 45/11, pp. 931{943.55. A. Czy_zewski (1998), Soft processing of audio signals. In: Polkowski and Skowron[337], pp. 147{165.56. A. Czy_zewski, A. Kaczmarek (1995), Speaker-independent recognition of isolatedwords using rough sets. In: Wang [502], pp. 397{400.



7257. A. Czy_zewski, B. Kostek (1996), Rough set-based �ltration of sound applicable tohearing prostheses. In: Tsumoto, Kobayashi, Yokomori, Tanaka, and Nakamura[474], pp. 168{175.58. A. Czy_zewski, B. Kostek (1996), Restoration of old records employing arti�cialintelligence methods. Proceedings of IASTED International Conference { Arti�cialIntelligence, Expert Systems Neural Networks, August 19{21, Honolulu, Hawaii,USA, pp. 372{375.59. A. Czy_zewski, R. Kr�olikowski (1997), New methods of intelligent �ltration codingof audio. In: 102nd Convention of the Audio Engineering Society, March 22{25,preprint 4482, Munich, Germany .60. A. Czy_zewski, R. Kr�olikowski (1998), Applications of fuzzy logic rough sets toaudio signal enhancement. In this book.61. A. Czy_zewski, R. Kr�olikowski, P. Sk�orka (1996), Automatic detection of speechdisorders. In: Zimmermann [543], pp. 183{187.62. B.V. Dasarathy (Ed.) (1991), Nearest Neighbor Pattern Classi�cation Techniques.IEEE Computer Society Press.63. R. Deja (1996), Conict analysis. In: Tsumoto, Kobayashi, Yokomori, Tanaka,and Nakamura [474], pp. 118{124.64. S. Demri (1996), A class of information logics with a decidable validity problem.In: Lecture Notes in Computer Science 1113, Springer-Verlag pp. 291{302.65. S. Demri, E. Or lowska (1998), Logical analysis of indiscernibility. In: Or lowska[270], pp. 347{380.66. J.S. Deogun, V.V. Raghavan, A. Sarkar, H. Sever (1997), Data mining: Trends inresearch and development. In: Lin and Cercone [189]. pp. 9{45.67. J. Dougherty, R. Kohavi, M. Sahami (1995), Supervised Unsupervised Discretiza-tion of Continuous Features. Proceedings of the Twelfth International Conferenceon Machine Learning, Morgan Kaufmann, San Francisco, CA, pp. 194{202.68. D. Dubois, H. Prade (1980), Fuzzy Sets and Systems: Theory and Applications.Academic Press.69. D. Dubois, H. Prade (1987), Twofold fuzzy sets and rough sets - Some issues inknowledge representation. Fuzzy Sets and Systems 23, pp. 3{18.70. D. Dubois, H. Prade (1990), Rough fuzzy sets and fuzzy rough sets. InternationalJ. General Systems 17, pp. 191{209.71. D. Dubois, H. Prade (1992), Putting rough sets and fuzzy sets together. In:S lowi�nski [418], pp. 203{232.72. D. Dubois, H. Prade (1992), Comparison of two fuzzy set{based logics: similaritylogic and possibilistic logic. In: Proceedings FUZZ-IEEE'95, Yokohama, Japan,pp. 1219{1236.73. D. Dubois, H. Prade, R.R. Yager(Eds.) (1993), Readings in Fuzzy Sets for Intel-ligent Systems, Morgan Kaufmann, San Mateo.74. D. Dubois, F. Esteva, P. Garcia, L. Godo, and H. Prade (1997), Logical approach tointerpolation based on similarity. Journal of Approximate Reasoning (to appear)(available as IIIA Research Report 96-07).75. D. Dubois, H. Prade (1998), Similarity-based approximate reasoning. In: J.M. Zu-rada, R.J. Marks II, and X.C.J. Robinson (Eds.), Proceedings of the IEEE Sym-posium, Orlando, FL, June 17{July 1st, IEEE Press, pp. 69{80.76. D. Dubois, H. Prade (1998), Similarity versus preference in fuzzy set-based logics.In: Or lowska [270] pp. 440{460.77. E.H. Durfee (1988), Coordination of Distributed Problem Solvers. Kluwer Aca-demic Publishers, Boston.



7378. I. D�untsch (1997), A logic for rough sets. Theoretical Computer Science 179/1-2pp. 427{436.79. I. D�untsch (1998), Rough sets and algebras of relations. In: Or lowska [270], pp.95{108.80. I. D�untsch, G. Gediga, G. (1997), Statistical evaluation of rough set dependencyanalysis. International Journal of Human-Computer Studies 46, pp. 589{604.81. I. D�untsch, G. Gediga (1997), Non{invasive data analysis. Proceedings of theEighth Ireland Conference on Arti�cial Intelligence, Derry, pp. 24{31.82. I. D�untsch, G. Gediga (1997), Algebraic aspects of attribute dependencies in in-formation systems. Fundamenta Informaticae 29, pp. 119{133.83. I. D�untsch, G. Gediga (1998), IRIS revisited: A comparison of discriminant andenhanced rough set data analysis. In: Polkowski and Skowron [336], pp. 347{370.84. A.E. Eiben, T.J. Euverman, W. Kowalczyk, F. Slisser (1998), Modelling customerretention with statistical techniques, rough data models, genetic programming. Inthis book.85. E. Ephrati, J.S. Rosenschein (1994), Divide and conquer in multi-agent plan-ning. In: Proceedings of the Twelfth National Conference on Arti�cial Intelligence(AAAI'94) AAAI Press/MIT Press, Menlo-Park, CA, pp. 375{380.86. F. Esteva, P. Garcia, L. Godo (1993), On the relatonsship between preference andsimilarity{based approaches to possibilistic reasoning. In: Proceedings of the 2ndIEEE International Conference on Fuzzy Systems (FUZZ-IEEE'93), San Fran-cisco, CA, March 28{April 1st, pp. 918{923.87. F. Esteva, P. Garcia, L. Godo (1997), Similarity reasoning: Logical grounds andapplications. In: Zimmermann [544], pp. 113{117.88. L. Farinas del Cerro, E. Or lowska (1985), DAL{A logic for data analysis. Theoret-ical Computer Science 36, pp. 251{264; see also, Corrigendum, ibidem 47 (1986),pp. 345.89. L. Farinas del Cerro, H. Prade (1986), Rough sets, twofold fuzzy sets and modallogic { Fuzziness in indiscernibility and partial information. In: A. Di Nola, A.G.S.Ventre (Eds.), The Mathematics of Fuzzy Systems, Verlag TUV Rheinland, K�oln,pp. 103{120.90. U.M. Fayyad, K.B. Irani (1992), The attribute election problem in decision treegeneration. Proc. of AAAI-92, July 1992, San Jose, CA., MIT Press, pp. 104-110.91. U. Fayyad, G. Piatetsky-Shapiro, G. (Eds.) (1996), Advances in Knowledge Dis-covery and Data Mining. MIT/AAAI Press.92. U.M. Fayyad, R. Uthurusamy (Eds.) (1995), Proceedings of the First InternationalConference on Knowledge Discovery Data Mining (KDD'95). Montreal, August,AAAI Press, Menlo Park, CA, pp. 1{354.93. J. Fibak, Z. Pawlak, K. S lowi�nski, R. S lowi�nski (1986), Rough sets based deci-sion algorithm for treatment of duodenal ulcer by HSV. Bull. Polish Acad. Sci.Biological Sci. 34/10-12, pp. 227{246.94. J. Fibak, K. S lowi�nski, R. S lowi�nski (1986), The application of rough sets theoryto the veri�cation of treatment of duodenal ulcer by HSV. In: Proceedings of theSixth International Workshop on Expert Systems their Applications, Agence del'Informatique, Paris, pp. 587{599.95. J. Friedman, R. Kohavi, Y. Yun (1996), Lazy decision trees. Proc. of AAAI-96,pp. 717{724.96. M. Fedrizzi, J. Kacprzyk, H. Nurmi (1996), How di�erent are social choice func-tions, A rough sets approach. Quality & Quantity 30, pp. 87{99.



7497. M.C. Fernandes{Baizan, E. Menasalvas Ruiz, M. Castano (1996), IntegratingRDMS data mining capabilities using rough sets. In: Bouchon{Meunier, Delgado,Verdegay, Vila, and Yager [24] 2, pp. 1439{1445.98. K. Funakoshi, T.B. Ho (1996), Information retrieval by rough tolerance relation.In: Tsumoto, Kobayashi, Yokomori, Tanaka, and Nakamura [474], pp. 31{35.99. H. Furuta, M. Hirokane, Y. Mikumo (1998), Extraction method based on rough settheory of rule-type knowledge from diagnostic cases of slope-failure danger levels.In: Polkowski and Skowron [337], pp. 178{192.100. B. Ganter, R. Wille (1996), Formale Begri�sanalyse: Mathematische Grundlagen.Springer{Verlag, Berlin, pp. 1{286.101. M. L. Geleijnse, A. Elhendy, R. van Domburg et al. (1996), Prognostic Value ofDobutamine-Atropine Stress Technetium-99m Sestamibi Perfusion Scintigraphy inPatients with Chest Pain. Journal of the American College of Cardiologists, 28/2,August, pp. 447{454.102. R. Golan, W. Ziarko (1995), A methodology for stock market analysis utilizingrough set theory. In: Proceedings of IEEE/IAFE Conference on ComputationalIntelligence for Financial Engineering, New York City, pp. 32{40.103. S. Greco, B. Matarazzo, R. S lowi�nski (1997), Rough set approach to multi-attributechoice ranking problems. Institute of Computer Science, Warsaw University ofTechnology, ICS Research Report 38/95 (1995); see also, G. Fandel, T. Gal (Eds.),Multiple Criteria Decision Making: Proceedings of 12th International Conferencein Hagen, Springer{Verlag, Berlin, pp. 318{329.104. S. Greco, B. Matarazzo, R. S lowi�nski (1998), A new rough set approach to eval-uation of bankruptcy risk. In: C. Zopounidis (Ed.), New Operational Tools in theManagement of Financial Risks, Kluwer Academic Publishers, Dordrecht pp. 121{136.105. S. Greco, B. Matarazzo, R. S lowinski (1998), Rough approximation of a preferencerelation in a pairwise comparison table. In: Polkowski and Skowron [337] pp. 13{36.106. J.W. Grzyma la-Busse (1986), Algebraic properties of knowledge representationsystems. In: Z.W. Ras, M. Zemankova (Eds.), Proceedings of the ACM SIGARTInternational Symposium on Methodologies for Intelligent Systems (ISMIS'86),Knoxville, Tennessee, October 22{24, ACM Special Interest Group on Arti�cialIntelligence, pp. 432{440.107. J.W. Grzyma la{Busse (1993), ESEP, an expert system for enviromental protec-tion. In: Ziarko [536], pp. 499{508.108. J.W. Grzyma la-Busse (1997), A new version of the rule induction system LERS.Fundamenta Informaticae 31, pp. 27{39.109. J.W. Grzyma la{Busse (1998), Applications of the rule induction system LERS.In: Polkowski and Skowron [336], pp. 366{375.110. J.W. Grzyma la-Busse L.K. Goodwin (1997), Predicting preterm birth risk usingmachine learning from data with missing values. In: S. Tsumoto (Ed.), Bulletin ofInternational Rough Set Society 1/2, pp. 17{21.111. J.W. Grzyma la{Busse, L.K. Goodwin (1996), A comparison of less speci�c versusmore speci�c rules for preterm birth prediction. In: Proceedings of the First OnlineWorkshop on Soft Computing WSC1 on the Internet, served by Nagoya University,Japan, August 19{30, pp. 129{133.112. J.W. Grzyma la{Busse, J.D. Gunn (1995), Global temperature analysis based onthe rule induction system LERS. In: Proceedings of the Fourth International Work-shop on Intelligent Information Systems, August�ow, Poland, June 5{9, 1995, In-stitute od Computer Science, Polish Academy of Sciences, Warsaw, pp. 148{158.



75113. J.W. Grzyma la{Busse, L.J. Old (1997), A machine learning experiment to deter-mine part of speach from word-endings. In: Ras and Skowron [354], pp. 497{506.114. J.W. Grzyma la{Busse, S. Than (1993), Data compression in machine learning ap-plied to natural language. Behavior Research Methods, Instruments & Computers25, pp. 318{321.115. J.W. Grzyma la{Busse, C.P.B. Wang (1996), Classi�cation rule induction basedon rough sets. In: [313], pp. 744{747.116. J.W. Grzyma la{Busse, L. Woolerly (1994), Improving prediction of preterm birthusing a new classi�cation scheme rule induction. In: Proceedings of the 18th An-nual Symposium on Computer Applications in Medical Care (SCAMC), November5-9, Washington D. C. pp. 730{734.117. J.D. Gunn, J.W. Grzyma la-Busse (1994), Global temperature stability by rule in-duction. An interdisciplinary bridge. Human Ecology 22, pp. 59{81.118. M. Hadjimichael, A. Wasilewska (1993), Rough sets-based study of voter preferencein 1988 USA presidential election. In: S lowi�nski [418], pp. 137{152.119. D. Heath, S. Kasif, S. Salzberg (1993), Induction of oblique decision trees. Proc.13th International Joint Conf. on AI, Chambery, France, pp. 1002-1007.120. R.C. Holt (1993), Very simple classi�cation rules perform well on most commonlyused datasets. Machine Learning 11, pp. 63{90.121. Y. Hou, W. Ziarko (1996), A rough sets approach to handwriting classi�cation.In: Tsumoto, Kobayashi, Yokomori, Tanaka, and Nakamura [474], pp.372{382.122. U. H�ohle (1988), Quotients with respect to similarity relations. Fuzzy Sets andSystems 27, pp. 31{44.123. X. Hu, N. Cercone (1995), Rough set similarity based learning from databases. In:Fayyad and Uthurusamy [92], pp. 162{167.124. X. Hu, N. Cercone (1997), Learning maximal generalized decision rules via dis-cretization, generalization, and rough set feature selection. In: Proceedings of theNinth IEEE International Conference on Tools with Arti�cial Intelligence, New-port Beach, CA, pp. 548{557.125. X. Hu, N. Cercone, W. Ziarko (1997), Generation of multiple knowledge fromdatabases based on rough set theory. In: Lin and Cercone [189], pp. 109{121.126. T. Ishida (1994), Parallel, Distributed and Multiagent Production Systems. Lec-ture Notes in Computer Science 878, Springer{Verlag, Berlin.127. T. Iwi�nski (1987), Algebraic approach to rough sets. Bull. Polish Acad. Sci. Math.35, pp. 673{683.128. T. Iwi�nski (1988), Rough order and rough concepts. Bull. Polish Acad. Sci. Math.pp. 187{192.129. J. J�arvinen (1997), A Representation of dependence spaces and some basic algo-rithms. Fundamenta Informaticae 29/4, pp. 369{382.130. A.G. Jackson, S.R. Leclair, M.C. Ohmer, W. Ziarko, H. Al-Kamhawi (1996),Rough sets applied to material data. Acta Metallurgica et Materialia, pp.44{75.131. J. Jelonek, K. Krawiec, R. S lowi�nski, Rough set reduction of attributes and theirdomains for neural networks. In: [CI], pp.339{347132. J. Jelonek, K. Krawiec, R. S lowi�nski, J. Stefanowski, J. Szymas, (1994), Neuralnetworks rough sets { Comparison combination for classi�cation of histologicalpictures. In: Ziarko [536], pp. 426{433.133. J. Jelonek, K. Krawiec, R. S lowinski, J. Stefanowski, J. Szymas (1994), Roughsets as an intelligent front{end for the neural network. In: Proceedings of theFirst National Conference on Neural Networks their Applications 2, Cz�estochowa,Poland, pp. 116{122.



76134. J. Jelonek, K. Krawiec, R. S lowi�nski, J. Szymas (1995), Rough set reduction offeatures for picture{based reasoning. In: Lin and Wildberger [194], pp.89{92.135. T.-K. Jensen, J. Komorowski A. �hrn (1998), Improving Mollestad's algorithmfor default knowledge discovery. In: Polkowski and Skowron [338], pp. 373{380.136. G. John, R. Kohavi, K. Peger (1994), Irrelevant features subset selection prob-lem. Proc. of the Twelfth International Conference on Machine Learning, MorganKaufmann, pp. 121{129.137. J. Johnson (1998), Rough mereology for industrial design. In: Polkowski andSkowron [338], pp. 553{556.138. M. Kandulski, J. Marciniec, K. Tuka l lo (1992), Surgical wound infection { Con-ductive factors and their mutual dependencies. In: S lowi�nski [418], pp. 95{110.139. J.D. Katzberg, W. Ziarko W. (1996), Variable precision extension of rough sets.Fundamenta Informaticae 27, pp. 155{168.140. K. Keiser, A. Szladow, W. Ziarko (1992), Rough sets theory applied to a largemultispecies toxicity database. In: Proceedings of the Fifth International Workshopon QSAR in Environmental Toxicology, Duluth, Minnesota.141. R.E. Kent (1996), Rough concept analysis: A synthesis of rough sets and formalconcept analysis. Fundamenta Informaticae 27/2{3, pp. 169{181.142. R. Kerber (1992), Chimerge. Discretization of numeric attributes. Proc. of theTenth National Conference on Arti�cial Intelligence, MIT Press, pp. 123{128.143. S. K lopotek, S. Wierzcho�n (1997), Qualitative versus quantitative interpretationof the mathematical theory of evidence. In: Ras and Skowron [354], pp. 391{400.144. S. Kobayashi, T, Yokomori (1997), Approximately learning regular languages withrespect to reversible languages: A rough set based analysis. In: Wang [503], pp.91{94.145. Y. Kodrato�, R. Michalski (1990), Machine learning, An Arti�cial Intelligenceapproach 3, Morgan Kaufmann, 1990.146. J. Komorowski, Z.W. Ras (Eds.) (1993), Proceedings of the Seventh InternationalSymposium on Methodologies for Intelligent Systems (ISMIS'93), Trondheim, Nor-way, June 15{18, Lecture Notes in Computer Science 689, Springer{Verlag, Berlin.147. J. Komorowski, J. _Zytkow (Eds.) (1997), The First European Symposium onPrinciples of Data Mining and Knowledge Discovery (PKDD'97). June 25{27,Trondheim, Norway, Lecture Notes in Arti�cial Intelligence 1263, Springer-Verlag,Berlin.148. B. Konikowska (1997), A logic for reasoning about relative similarity. Studia Log-ica 58/1, pp. 185{226.149. B. Konikowska B. (1998), A logic for reasoning about similarity. In: Or lowska[270] pp. 461{490.150. B. Kostek (1995) Computer based recognition of musical phrases using the roughset approach. In: Wang [502], pp. 401{404.151. B. Kostek (1997) Soft set approach to the subjective assessment of sound quality.In: Proceedings of the Symposium on Computer Science and Engineering Cy-bernetics, August 18{23, Baden{Baden, Germany, The International Institute forAdvanced Studies in Systems Research and Cybernetics (to appear).152. B. Kostek (1997), Sound quality assessment based on the rough set classi�er. In:Zimmermann [544], pp. 193{195.153. B. Kostek (1998), Soft computing{based recognition of musical sounds. In:Polkowski and Skowron [337], pp. 193{213.154. B. Kostek (1998), Assesment of concert hall acoustics using rough set fuzzy ap-proach. In this book.



77155. B. Kostek, A. Czy_zewski (1996), Automatic classi�cation of musical timbres basedon learning algorithms applicable to Cochlear implants. In: Proceedings of IASTEDInternational Conference { Arti�cial Intelligence, Expert Systems and Neural Net-works, August 19{21, Honolulu, Hawaii, USA, pp. 98{101.156. B. Kostek, M. Szczerba (1996), Parametric representation of musical phrases. In:101st Convention of the Audio Engineering Society, November 8{11, Los Angeles,California, USA, preprint 4337.157. B. Kostek, M. Szczerba, A. Czy_zewski (1997), Rough set based analysis of com-puter musical storage. In: Proceedings of the International Conference on Comput-ing Intelligent Multimedia Applications (ICCIMA'97), February 10{13, Brisbane,Australia.158. W. Kowalczyk (1996), Analyzing temporal patterns with rough sets. In: Zimmer-mann [543], pp. 139{143.159. W. Kowalczyk (1996), Analyzing signals with AI-techniques, two case studies. Acontribution to the International Competition for Signal Analysis Processing byIntelligent Techniques held during the Fourth European Congress on IntelligentTechniques and Soft Computing (EUFIT'96), September 2{5, 1996, Aachen, Ger-many; available by anonymous ftp from ftp.cs.vu.nl, the directory /pub/wojtek.160. W. Kowalczyk (1998), Rough data modelling, A new technique for analyzing data.In: Polkowski and Skowron [336], pp. 400{421.161. W. Kowalczyk (1998), An empirical evaluation of the accuracy of rough datamodels. In: Bouchon{Meunier and Yager [25], pp. 1534{1538.162. W. Kowalczyk, Z. Piasta (1998), Rough sets{inspired approach to knowledge dis-covery in business databases. In: The Second Paci�c{Asian Conference on Know-ledge Discovery Data Mining, (PAKDD'98), Melbourne, Australia, April 15{17.163. W. Kowalczyk, F. Slisser (1997), Analyzing customer retention with rough datamodels. In: Komorowski and _Zytkow [147], pp. 4{13.164. K. Krawiec, K., R. S lowi�nski, and D. Vanderpooten (1996), Construction of roughclassi�ers based on application of a similarity relation. In: Tsumoto, Kobayashi,Yokomori, Tanaka, and Nakamura [474] pp. 23{30.165. K. Krawiec, R. S lowi�nski, and D. Vanderpooten (1998), Learning decision rulesfrom similarity based rough approximations. In: Polkowski and Skowron [337], pp.37{54.166. M. Kretowski, J. Stepaniuk J. (1996), Selection of objects and attributes, a tol-erance rough set approach. In: Proceedings of the Poster Session of Ninth Inter-national Symposium on Methodologies for Intelligent Systems, Zakopane Poland,June 10-13, pp. 169{180.167. E. Krusi�nska, R. S lowi�nski, J. Stefanowski (1992), Discriminant versus rough setapproach to vague data analysis, Applied Stochastic Models and Data Analysis 8,pp. 43{56.168. M. Krynicki, L. Szczerba (1998), On the logic with rough quanti�er. In: Or lowska[270], pp. 601{613.169. J. Krysi�nski (1990), Rough set approach to the analysis of structure{activity re-lationship of quaternary imidazolium compounds. Arzneimittel Forschung / DrugResearch 40/11, pp. 795{799.170. J. Krysi�nski (1992), Grob Mengen Theorie in der Analyse der Struktur WirkungsBeziehungen von quartaren Pyridiniumverbindungen. Pharmazie 46/12, pp.878{881.171. J. Krysi�nski (1992), Analysis of structure{activity relationships of quaternary am-monium compounds. In: S lowi�nski [418], pp. 119{136.



78172. J. Krysi�nski (1995), Application of the rough sets theory to the analysis ofstructure{activity relationships of antimicrobial pyridinium compounds. Die Phar-mazie 50, pp. 593{597.173. J. Krysi�nski (1995), Rough sets in the analysis of the structure{activity relation-ships of antifungal imidazolium compounds. Journal of Pharmaceutical Sciences84/2, pp. 243{247.174. M. Kryszkiewicz (1995), Rough set approach to incomplete information systems.In: Wang [502], pp. 194{197.175. M. Kryszkiewicz (1997), Generation of rules from incomplete information sys-tems. In: Komorowski and _Zytkow [147], pp. 156{166.176. G. Lambert{Torres, R. Rossi, J. A. Jardini, A. P. Alves da Silva, V. H. Quintana(1998), Power system security analysis based on rough classi�cation. In this book.177. A. Lenarcik, Z. Piasta (1992), Discretization of condition attributes space In:S lowi�nski [418], pp. 373{389.178. A. Lenarcik, Z. Piasta (1993), Probabilistic approach to decision algorithm gen-eration in the case of continuous condition attributes. Foundations of Computingand Decision Sciences 18/3{4, pp. 213{223.179. A. Lenarcik, Z. Piasta (1994), Deterministic rough classi�ers. In: Lin [186]. pp.434{441.180. A. Lenarcik, Z. Piasta (1997), Probalilistic rough classi�ers with mixture of dis-crete and continuous attributes, In: Lin and Cercone [189] pp. 373{383.181. S. Le�sniewski (1992), Foundations of the general theory of sets, In: Surma, Srzed-nicki, Barnett, Rickey (Eds.), Stanislaw Le�sniewski Collected Works, Kluwer Aca-demic Publishers, Dordrecht, pp. 128{173.182. T.Y. Lin (1989), Neighborhood systems and approximation in database and know-ledge base systems. In: Proceedings of the 4th International Symposium onMethodologies for Intelligent Systems.183. T.Y. Lin (1989), Granular computing on binary relations I. In: Polkowski andSkowron [336], pp. 107{121.184. T.Y. Lin (1989), Granular computing on binary relations II. In: Polkowski andSkowron [336], pp. 122{140.185. T.Y. Lin (1994), Fuzzy reasoning and rough sets. In: Ziarko [536], pp. 343{348.186. T.Y. Lin (Ed.) (1994), Proceedings of the Third International Workshop on RoughSets Soft Computing (RSSC'94). San Jose State University, San Jose, California,USA, November 10{12.187. T.Y. Lin (1996), Neighborhood systems { A qualitative theory for fuzzy and roughsets. In: P.P. Wang (Ed.), Advances in Machine Intelligence and Soft Computing4, pp. 132{155.188. T.Y. Lin (1996), An overview of rough set theory from the point of view of rela-tional databases. In: S. Tsumoto (Ed.), Bulletin of International Rough Set Society1/1, pp. 23{30.189. T. Y. Lin, N. Cercone (Eds.) (1997), Rough sets and data mining. Analysis ofimprecise data. Kluwer Academic Publishers, Boston.190. T.Y. Lin, R. Chen (1997), Finding reducts in very large databases. In: Wang [503],pp. 350{352.191. T.Y. Lin, J.C. Liau (1997), Probabilistics multivalued random variables { Belieffunctions and granular computing. In: Zimmermann [544], pp. 221{225.192. T.Y. Lin, J.C. Liau (1997), Belief functions based on probabilistic multivaluedrandom variables. In: Wang [503], pp. 269{272.



79193. T.Y. Lin, Q. Liu (1996), First{order rough logic I, Approximate reasoning viarough sets. Fundamenta Informaticae 27, pp. 137{153.194. T.Y. Lin, A.M. Wildberger (Eds.) (1995), Soft Computing: Rough Sets, FuzzyLogic, Neural Networks, Uncertainty Management, Knowledge Discovery. Simula-tion Councils, Inc., San Diego, CA.195. P. Lingras (1996), Rough neural networks. In: Bouchon{Meunier, Delgado, Verde-gay, Vila, and Yager [24] 2, pp. 1445{1450.196. P. Lingras (1996), Learning using rough Kohonen neural networks classi�ers. In:Borne, Dauphin{Tanguy, Sueur, and El Khattabi [23], pp. 753{757.197. P. Lingras (1997), Comparison of neofuzzy rough neural networks. In: Wang [503],pp. 259{262.198. W. Lipski (1981), On databases with incomplete information. Journal of the ACM28, pp. 41{70.199. T. L�ken (1998), Vibration analysis using Rosetta, A practical application of roughsets. (Project in Technical Report), Knowledge Systems Group, The NorwegianUniversity of Science Technology, Trondheim, Norway.200. E.H. Mamdani, S. Assilian (1975), An experiment in linguistic synthesis with afuzzy logic controller. International Journal of Man - Machine Studies 7,pp. 1{13.201. S. Marcus (1994), Tolerance rough sets, Cech topologies, learning processes. Bull.Polish Acad. Sci. Tech. Sci. 42/3, pp. 471{487.202. W. Marek, Z. Pawlak (1976), Information storage and retrieval: Mathematicalfoundations. Theoretical Computer Science 1, pp. 331-354.203. W. Marek, Z. Pawlak (1984), Rough sets and information systems. FundamentaInformaticae 17, pp. 105-115.204. M. Mares, R. Meisar, V. Novak, and J. Ramik (Eds.) (1997), Proceedings of theSeventh International Fuzzy Systems Assotiation World Congress (IFSA'97). June25{29, Academia, Prague 1, pp. 1{529.205. P. Maritz (1996), Pawlak and topological rough sets in terms of multifunctions.Glasnik Matematicki 31/51, pp. 159{178.206. S. Miyamoto (1996), Fuzzy multisets and application to rough approximation offuzzy sets. In: Tsumoto, Kobayashi, Yokomori, Tanaka, and Nakamura [474], pp.255{260.207. T.M. Michell (1997), Machine Learning. Mc Graw-Hill, Portland.208. D. Michie, D.J. Spiegelhalter, C.C. Taylor, (Eds.) (1994), Machine learning, Neu-ral and Statistical Classi�cation. Ellis Horwood, New York.209. M. Millan, F. Machuca (1997), Using the rough set theory to exploit the datamining potential in relational databases systems. In: Wang [503], pp. 344{347.210. S. Mitra, M. Banerjee (1996), Knowledge{based neural net with rough sets. In: T.Yamakawa et al. (Eds.), Methodologies for the Conception, Design, Applicationof Intelligent Systems, Proceedings of the Fourth International Conference on SoftComputing (IIZUKA'96), Iizuka, Japan 1996, World Scienti�c, pp. 213{216.211. M. Modrzejewski (1993), Feature selection using rough sets theory. In: P.B. Brazdil(Ed.), Proceedings of the European Conference on Machine Learning, pp. 213{226.212. T.  Luba, J. Rybnik (1992), Rough sets some aspects of logical synthesis. In: R.S lowi�nski [418], pp. 181{202.213. T. Mollestad (1997), A Rough set approach to data mining, extracting a logicof default rules from data. Ph.D. thesis, Norwegian University of Science andTechnology.214. T. Mollestad J. Komorowski (1998), A rough set framework for propositional de-fault rules data mining. In this book.



80215. T. Mollestad A. Skowron (1996), A rough set framework for data mining of propo-sitional default rules. In: Pawlak and Ras [353], pp. 448{457. Full version availableat http://www.idi.ntnu.no.216. H. Moradi, J.W. Grzyma la{Busse, J. Roberts (1995), Entropy of English text,Experiments with humans machine learning system based on rough sets. In: Wang[502], pp. 87{88.217. A. Mr�ozek (1985), Information systems and control algorithms. Bull. Polish Acad.Sci. Tech. Sci. 33, pp. 195{212.218. A. Mr�ozek (1992), Rough sets in computer implementation of rule{based controlof industrial processes. In: S lowi�nski [418], pp. 19{31.219. A. Mr�ozek, L. P lonka (1993), Rough sets in image analysis. Foundations of Com-puting Decision Sciences 18/3{4, pp. 259{273.220. A. Mr�ozek, L. P lonka (1994), Knowledge representation in fuzzy rough controllers.In: M. D�abrowski, M. Michalewicz, Z.W. Ras (Eds.), Proceedings of the ThirdInternational Workshop on Intelligent Information Systems, Wigry, Poland, June6{10. Institute of Computer Science, Polish Academy of Sciences, Warsaw, pp.324{337.221. A. Mr�ozek, L. P lonka (1998), Rough sets in industrial applications. In: Polkowskiand Skowron [337], pp. 214{237.222. A. Mr�ozek, K. Skabek (1998), Rough sets in economic applications. In: Polkowskiand Skowron [337], pp. 238{271.223. A. Mr�ozek, L. P lonka, R. Winiarczyk, J. Majtan (1994), Rough sets for controllersynthesis. In: Lin [186], pp. 498{505.224. A. Mr�ozek, L. P lonka, J. K�edziera (1996), The methodology of rough controllersynthesis. In: In: Petry and Kraft [313], pp. 1135{1139.225. T. Munakata (1995), Commercial industrial AI a future perspective on rough sets.In: Lin and Wildberger [194], pp. 219{222.226. T. Munakata (1995), Rough control, Basic ideas applications. In: Wang [502], pp.340{343.227. T. Munakata (1997), Rough control, A perspective. In: Lin and Cercone [189], pp.77{88.228. S. Murthy, S. Kasif, S. Saltzberg, R. Beigel,(1993), OC1. Randomized inductionof oblique decision trees. Proc. of the Eleventh National Conference on AI, pp.322{327.229. A. Nakamura (1993), On a multi{modal logic based on the graded classi�cations.In: [FCDS'93] pp. 275{292.230. A. Nakamura (1994), Fuzzy quanti�ers and rough quanti�ers. In: P.P. Wang (Ed.),Advances in Fuzzy Theory and Technology II pp. 111{131.231. A. Nakamura, A rough logic based on incomplete information and its application.International Journal of Approximate Reasoning 15/4, pp. 367{378.232. A. Nakamura, Conict logic with degrees. In this book.233. H. S. Nguyen (1997), Discretization of Real Value Attributes, Boolean ReasoningApproach. Ph.D. Dissertation, supervisor A. Skowron, Warsaw University (1997),pp. 1{90.234. H.S. Nguyen(1998), From optimal hyperplanes to optimal decision trees. Funda-menta Informaticae 34, 1998, pp. 145{174.235. S.H. Nguyen (1998), Data regularity analysis and applications in data mining.Ph.D. Thesis (in preparation).



81236. S.H. Nguyen, H.S. Nguyen (1996), Some e�cient algorithms for rough set meth-ods. In: Bouchon{Meunier, Delgado, Verdegay, Vila, and Yager [24], pp. 1451{1456.237. H.S. Nguyen, S.H. Nguyen (1998), Discretization methods in data mining. In:Polkowski and Skowron [336], pp. 451{482 .238. H.S. Nguyen, S.H. Nguyen (1998), Pattern extraction from data. FundamentaInformaticae 34, 1998, pp. 129{144.239. H.S. Nguyen, S.H. Nguyen (1998), Pattern extraction from data. In: Bouchon{Meunier and Yager [25], pp. 1346{1353.240. H.S. Nguyen, A. Skowron (1995), Quantization of real values attributes: Roughset and Boolean reasoning approaches. In: Wang [502], pp. 34{37.241. H.S. Nguyen, S.H. Nguyen, A. Skowron (1996), Searching for Features de�ned byHyperplanes. In: Ra�s and Michalewicz [353], pp. 366{375.242. H.S. Nguyen, A. Skowron (1996), Quantization of real value attributes: Rough setand Boolean reasoning approach. In: S. Tsumoto (Ed.), Bulletin of InternationalRough Set Society 1/1 (1996), pp. 5{16 also in Information Sciences (1998) (inprint).243. H.S. Nguyen, A. Skowron (1997), Boolean reasoning for feature extraction prob-lems. In: Ras and Skowron [354], pp. 117{126.244. S.H. Nguyen, T.T. Nguyen, A. Skowron, P. Synak (1996), Knowledge discoveryby rough set methods. In: Nagib C. Callaos (Ed.), Proceedings of the InternationalConference on Information Systems Analysis and Synthesis (ISAS'96), July 22{26,Orlando, USA, pp. 26{33.245. S.H. Nguyen, L. Polkowski, A. Skowron, P. Synak, J. Wr�oblewski (1996), Search-ing for approximate description of decision classes. In: Tsumoto, Kobayashi, Yoko-mori, Tanaka, and Nakamura [474], pp. 153{161.246. S.H. Nguyen, A. Skowron (1997), Searching for relational patterns in data. In:Komorowski and _Zytkow [147], pp. 265{276.247. S.H. Nguyen, A. Skowron, P. Synak (1998), Discovery of data patterns with appli-cations to decomposition and classi�cation problems. In: Polkowski and Skowron[337], pp. 55{97.248. H.S. Nguyen, M. Szczuka, D. �Sl�ezak (1997), Neural network design, Rough setapproach to real{valued data. In: Komorowski and _Zytkow [147], pp. 359{366.249. S.H. Nguyen, A. Skowron, P. Synak, J. Wr�oblewski (1997), Knowledge discoveryin data bases, Rough set approach. In: Mares, Meisar, Novak, and Ramik, [204],pp. 204{209.250. T. Nguyen, R. Swiniarski, A. Skowron, J. Bazan, K. Thagarajan (1995), Appli-cations of rough sets, neural networks and maximum likelihood for texture classi-�cation based on singular value decomposition. In: Lin and Wildberger [194], pp.157{160.251. J. Nieminen (1988), Rough tolerance equality. Fundamenta Informaticae 11/3,pp. 289{296.252. R. Nowicki, R. S lowi�nski, J. Stefanowski (1990), Possibilities of applying the roughsets theory to technical diagnostics. In: Proceedings of the Ninth National Sym-posium on Vibration Techniques Vibroacoustics, Krak�ow, December 12{14, AGHUniversity Press, Krak�ow, pp. 149{152.253. R. Nowicki, R. S lowi�nski, J. Stefanowski (1992), Rough sets analysis of diagnos-tic capacity of vibroacoustic symptoms. Journal of Computers Mathematics withApplications 24, pp.109{123.



82254. R. Nowicki, R. S lowi�nski, J. Stefanowski (1992), Evaluation of vibroacoustic di-agnostic symptoms by means of the rough sets theory. Journal of Computers inIndustry 20, pp. 141{152.255. R. Nowicki, R. S lowi�nski, J. Stefanowski (1992), Analysis of diagnostic symptomsin vibroacoustic diagnostics by means of the rough set theory. In: S lowi�nski [418],pp. 33{48.256. M. Novotny (1998), Dependence spaces of information systems. In: Or lowska [270],pp. 193{246.257. M. Novotny (1998), Applications of dependence spaces. In: Or lowska [270], pp.247{289.258. M. Novotny, Z. Pawlak (1991), Algebraic theory of independence in informationsystems. Fundamenta Informaticae 14, pp. 454{476.259. M. Novotny, Z. Pawlak (1992), On problem concerning dependence space. Funda-menta Informaticae 16/3{4, pp. 275{287.260. H. Nurmi, J. Kacprzyk, M. Fedrizzi (1996), Theory methodology, Probabilistic,fuzzy rough concepts in social choice. European Journal of Operational Research,pp. 264{277.261. A. Obtu lowicz (1988), Rough sets and Heyting algebra valued sets. Bull. PolishAcad. Sci. Math. 35/9{10, pp. 667{671.262. E. Or lowska (1984), Modal logics in the theory of information systems. Zeitschriftf�ur Mathematische Logic und Grundlagen der Mathematik, 10/3, pp.213{222.263. E. Or lowska (1985), A logic of indiscernibility relations. In: A. Skowron (Ed.),Computation Theory, Lecture Notes in Computer Science 208, pp. 177{186.264. E. Or lowska (1985), Logic of nondeterministic information. Studia Logica 44, pp.93{102.265. E. Or lowska (1988), Kripke models with relative accessibility and their applicationto inferences from incomplete information. In: G. Mirkowska, H. Rasiowa (Eds.),Mathematical Problems in Computation Theory, Banach Center Publications 21pp. 329{339.266. E. Or lowska (1990), Kripke semantics for knowledge representation logics. StudiaLogica 49 pp. 255{272.267. E. Or lowska (1990), Verisimilitude based on concept analysis. Studia Logica 49,pp. 307{320.268. E. Or lowska (1995), Information algebras. Lecture Notes in Computer Science936, Springer{Verlag, Berlin, pp. 55{65.269. E. Or lowska (1998), Introduction: What you always wanted to know about roughsets. In: Or lowska [270] pp. 10{29.270. E. Or lowska (Ed.) (1998), Incomplete Information, Rough Set Analysis. Physica{Verlag, Heidelberg.271. E. Or lowska, M.W. Or lowski, Maintenance of knowledge in dynamic informationsystems. In: S lowi�nski [418], pp. 315{330.272. E. Or lowska, Z. Pawlak (1984), Representation of nondeterministic information.Theoretical Computer Science 29 pp. 27{39.273. A. �hrn, S. Vinterbo, P. Szyma�nski J. Komorowski (1997), Modelling cardiac pa-tient set residuals using rough sets. Proc. AMIA Annual Fall Symposium (formerlySCAMC), Nashville, TN, USA, Oct. 25{29, pp. 203{207.274. A. �hrn J. Komorowski (1997), Rosetta { A Rough Set Toolkit for Analysisof Data. Proc. Third International Joint Conference on Information Sciences,Durham, NC, USA, March 1{5, 3, pp. 403{407.



83275. A. �hrn J. Komorowski (1998), Analyzing The Prognostic Power of Cardiac TestsUsing Rough Sets. Proc. of the Invited Session on Intelligent Prognostic Methods inMedical Diagnosis and Treatment Planning at the Computational Engineering inSystems Applications conference { CESA'98, April Nabeul-Hammamet, Tunisia,6 pages.276. A. �hrn, J. Komorowski, A. Skowron P. Synak (1998), The Design and Imple-mentation of a Knowledge Discovery Toolkit Based on Rough Sets - The Rosettasystem. In: Polkowski and Skowron [336], pp. 376{399.277. P. Pagliani (1993), From concept lattices to approximation spaces, Algebraic struc-tures of some spaces of partial objects. Fundamenta Informaticae 18/1, pp. 1{25.278. P. Pagliani (1998), Rough set theory and logic-algebraic structures. In: Or lowska[270] pp. 109{190.279. P. Pagliani (1998), Modalizing relations by means of relations: A general frame-work for two basic approaches to knowledge discovery in databases. In: Bouchon{Meunier and Yager [25], pp. 1175{1182.280. Y.-H. Pao, I. Bozma (1986), Quantization of numerical sensor data for inductivelearning. In: J. S. Kowalik (Ed.), Coupling Symbolic and Numerical Computingin Expert System. Elsevier Science Publ., Amsterdam, pp. 69{81.281. P. Paszek, A. Wakulicz{Deja (1996), Optimalization diagnose in progressive en-cephalopathy applying the rough set theory. In: Zimmermann [543] 1, pp. 192{196.282. G. Paun, L. Polkowski, A. Skowron (1996), Parallel communicating grammar sys-tems with negotiations. Fundamenta Informaticae 28/3-4, pp. 315{330.283. G. Paun, L. Polkowski, A. Skowron (1997), Rough set approximations of lan-guages. Fundamenta Informaticae 32/2, pp. 149{162.284. Z. Pawlak, Z. (1981), Information systems { theoretical foundations. InformationSystems 6, pp. 205{218.285. Z. Pawlak, Z. (1982), Rough sets. International Journal of Computer and Infor-mation Sciences 11, pp. 341{356.286. Z. Pawlak (1984), Rough probability. Bull. Polish Acad. Sci. Math. 132/9{10,pp. 607{612.287. Z. Pawlak (1984), On conicts. Int. J. of Man-Machine Studies 21, pp. 127-134.288. Z. Pawlak (1985), Rough sets and fuzzy sets. J. of Fuzzy Sets and Systems 17,pp. 99{102.289. Z. Pawlak (1989), Knowledge, reasoning and classi�cation { A rough set per-spective. Bulletin of the European Association for Theoretical Computer Science(EATCS) 38, pp. 199{210.290. Z. Pawlak (1991), Rough Sets { Theoretical Aspects of Reasoning about Data.Kluwer Academic Publishers, Dordrecht.291. Z. Pawlak (1993), Anatomy of con�cts. Bulletin of the European Association forTheoretical Computer Science 50, pp. 234-247.292. Z. Pawlak (1994), Hard and soft sets. In: Ziarko [536], pp. 130{135.293. Z. Pawlak (1994), Decision analysis using rough sets. International Trans. Opr.Res. 1/1, pp. 107{114.294. Z. Pawlak (1995), Rough sets and fuzzy sets. In: C. Jinshong (Ed.), Proceedings ofACM, Computer Science Conference, February 28 { March 2, Nashville, Tennessee,pp. 262{264.295. Z. Pawlak (1997), Conict analysis. In: Zimmermann [544], pp. 1589{1591.296. Z. Pawlak (1997), Rough set approach to knowledge{based decision support. Eu-ropean Journal of Operational Research 2933, pp. 1{10.



84297. Z. Pawlak (1998), Reasoning about data { A rough set perspective. In: Polkowskiand Skowron [338], pp. 25{34.298. Z. Pawlak, T. Munakata (1996), Rough control, Application of rough set theoryto control. In: Zimmermann [543], pp. 209{218.299. Z. Pawlak, K. S lowi�nski, R. S lowi�nski (1986), Rough classi�cation of patients afterhighly selected vagotomy for duodenal ulcer. Journal of Man{Machine Studies 24,pp. 413{433.300. Z. Pawlak, R. S lowi�nski (1994), Decision analysis using rough sets. InternationalTransactions in Operational Research. 1/1, pp. 107{114.301. Z. Pawlak, R. S lowi�nski (1994), Rough set approach to multi{attribute decisionanalysis. European Journal of Operational Research 72, pp. 443{459 (Invited Re-view).302. Z. Pawlak A. Skowron (1994), Rough membership functions. In: R. Yager, M.Fedrizzi J. Kacprzyk (Eds.), Advances in the Dempster-Shafer Theory of Evidence,Wiley, New York, pp. 251{271.303. Z. Pawlak, A. Skowron,(Ed.)(1996), Logic, algebra and computer science, HelenaRasiowa and Cecylia Rauszer in Memoriam. Bulletin of the Section of Logic 25/3{4, pp. 174{184.304. Z. Pawlak, S.K.M. Wong, W. Ziarko (1988), Rough sets: Probabilistic versus deter-ministic approach. International Journal of Man{Machine Studies 29, pp. 81{95.305. W. Pedrycz (1998), Computational Intelligence: An Introduction. CRC Press,Boca Ratou.306. W. Pedrycz (1998), Shadowed sets: Bridging fuzzy and rough sets. In this book.307. J. F. Peters III, S. Ramanna (1998), Software deployability decision system frame-work, A rough set approach. In: Bouchon{Meunier and Yager [25], pp. 1539{1545.308. J. F. Peters, A. Skowron, Z. Suraj, S. Ramanna, A. Paryzek (1998), Modellingreal { time decision { making systems with rough fuzzy Petri nets. In Proceedingsof EUFIT-98, Aachen (to appear).309. J. F. Peters, K. Ziaei, S. Ramanna (1998), Approximate time rough control, Con-cepts applications to satelite attitude control. In: Polkowski and Skowron [338], pp.491{498.310. J. F. Peters III, S. Ramanna (1998), A rough set approach to assessing softwarequality: Concepts and rough Petri net models. In this book.311. J. F. Peters III (1998), Time clock information systems: Concepts and roughlyfuzzy Petri net models. In: Polkowski and Skowron [337], pp. 387{419.312. G. I. Peterson (1994), Rough classi�cation of pneumonia patients using a clinicaldata{base. In: Ziarko [536], pp. 412{419.313. F.E. Petry, D.H. Kraft (1996), Proceedings of the Fifth IEEE InternationalConference on Fuzzy Systems (FUZZ-IEEE'96). September 8{11, New Orleans,Louisiana, pp. 1{2214.314. Z. Piasta (1993), Statistical and logical classi�ers: A comparative study. In: W.Ziarko (Ed.): Proceedings of the Second International Workshop on Rough Setsand Knowledge Discovery (RSKD'93). Ban�, Alberta, Canada, October 12{15.315. Z. Piasta (1996), Rough classi�ers in intelligent support of business decisions. In:Proceedings of the First Polish Conference on Theory Applications of Arti�cialIntelligence (CAI'96),  L�od�z, Poland, pp. 103{111.316. Z. Piasta (1998), Transforming data into engineering knowledge with rough clas-si�ers. In: A.M. Brandt (Ed.), Optimization Methods for Material Design ofCement{based Composites, Thomson Science & Professional, London (to appear).



85317. Z. Piasta (1998), Data mining knowledge discovery in marketing �nancial databa-ses with rough classi�ers. Wydawnictwo Akademii Ekonomicznej we Wroc lawiu,Wroc law (to appear, in Polish).318. Z. Piasta, A. Lenarcik (1998), Rule induction with probabilistic rough classi�ers.Machine Learning (to appear).319. Z. Piasta, A. Lenarcik (1998), Learning rough classi�ers from large databases withmissing values. In: Polkowski and Skowron [337], pp. 483{499.320. Z. Piasta, A. Lenarcik, S. Tsumoto (1997), Machine discovery in databases withprobabilistic rough classi�ers. In: S. Tsumoto (Ed.): Bulletin of InternationalRough Set Society 1/2, pp. 51{57.321. L. P lonka, A. Mr�ozek (1995), Rule{based stabilization of the inverted pendulum.Computational Intelligence: An International Journal 11/2, pp.348{356.322. L. Polkowski (1993), Mathematical morphology of rough sets. Bull. Polish Acad.Sci. Math. 41/3, pp. 241{273.323. L. Polkowski (1994), Concerning mathematical morphology of almost rough sets.Bull. Polish Acad. Sci. Tech. 42/1, pp. 141{152.324. L. Polkowski (1994), Concerning mathematical morphology of rough sets. Bull.Polish Acad. Sci. Tech. 42/1, pp. 125{140.325. L. Polkowski (1998), Rough set approach to mathematical morphology, approxi-mate compression of data. In: Bouchon{Meunier and Yager [25], pp. 1183{1189.326. L. Polkowski (1998), Approximate mathematical morphology, rough set approach.In this book.327. L. Polkowski, A. Skowron (1994), Rough mereology. In: Proceedings of the Sym-posium on Methodologies for Intelligent Systems, Charlotte, NC, October 16{19,Lecture Notes in Arti�cial Intelligence 869, Springer{Verlag, Berlin (1994) pp.85{94.328. L. Polkowski, A. Skowron (1995), Rough mereology analytical mereology, New de-velopments in rough set theory. In: M. De Glas, Z. Pawlak (Eds.), Proceedings ofthe Second World Conference on Fundamentals of Arti�cial Intelligence (WOC-FAI'95), July 13{17, Angkor, Paris, pp. 343{354.329. L. Polkowski, A. Skowron (1996), Rough mereological approach to knowledge {based distributed AI. In: J.K. Lee, J. Liebowitz, and J.M. Chae (Eds.), CriticalTechnology, Proceedings of the Third World Congress on Expert Systems, Febru-ary 5{9, Seoul, Korea, Cognizant Communication Corporation, New York, pp.774{781.330. L. Polkowski, A. Skowron (1996), Implementing fuzzy containment via rough in-clusions: Rough mereological approach to distributed problem solving. In: Petry andKraft [313], pp. 1147{1153.331. L. Polkowski, A. Skowron (1996), Rough mereology: A new paradigm for approxi-mate reasoning. International Journal of Approximate Reasoning 15/4, pp. 333{365.332. L. Polkowski, A. Skowron (1996), Adaptive decision-making by systems of cooper-ative intelligent agents organized on rough mereological principles. Journal of theIntelligent Automation and Soft Computing 2/2, pp. 121-132.333. L. Polkowski, A. Skowron (1998), Rough mereology analytical morphology. In:Or lowska [270], pp. 399{437.334. L. Polkowski, A. Skowron (1998), Towards adaptive calculus of granules. In: Pro-ceedings of the FUZZ-IEEE'98 International Conference, Anchorage, Alaska, USA,May 5{9, pp. 111{116.



86335. L. Polkowski, A. Skowron (1998), Rough sets: A perspective. In: Polkowski andSkowron [336], pp. 31{58.336. L. Polkowski, A. Skowron (Eds.) (1998), Rough Sets in Knowledge Discovery 1:Methodology and Applications. Physica-Verlag, Heidelberg.337. L. Polkowski, A. Skowron (Eds.) (1998), Rough Sets in Knowledge Discovery 2:Applications, Case Studies and Software Systems. Physica-Verlag, Heidelberg.338. L. Polkowski, A. Skowron (Eds.) (1998), Proc. First International Conferenceon Rough Sets and Soft Computing (RSCTC'98. Warszawa, Poland, June 22{27,Springer-Verlag, LNAI 1424.339. L. Polkowski, A. Skowron, J. Komorowski (1997), Towards a rough mereology-based logic for approximate solution synthesis, Part 1. Studia Logica 58/1, pp.143-184.340. L. Polkowski, A. Skowron, and J. _Zytkow (1995), Tolerance based rough sets. In:Lin and Wildberger [194], pp. 55{58.341. J.A. Pomyka la (1987), Approximation operations in approximation space. Bull.Polish Acad.Sci.Ser. Sci. Math. 35, pp. 653{662.342. J.A. Pomyka la (1988), On de�nability in the nondeterministic information system,Bull. Polish Acad. Sci.Ser. Sci. Math., 36, pp. 193{210.343. M. Quafafou (1996), Towards a transition from the crisp rough set theory to afuzzy one. In: Ras and Michalewicz [353], pp. 67{80.344. M. Quafafou (1997), �-RST: A generalization of rough set theory. In: Wang [503],pp. 173{176.345. E. Martienne, M. Quafafou (1998), Vahueness and data reduction in concept learn-ing. In: E. Prade (Ed.), Proc. of the 13th European Conference on Ari�cial Intel-ligence (ECAI'98), August 23{28, Brighton, UK, Wiley, Chichester, pp. 351{355.346. J.R. Quinlan (1986), Induction of decision trees. In: Machine Learning 1, pp.81{106.347. R.B. Rao, S.C.-Y. Lu (1993), Building models to support synthesis in early stageproduct design. In: Proceedings of the Eleventh National Conference on Arti�cialIntelligence (AAAI'93), MIT Press, Cambridge, MA, pp. 277{282.348. Z.W. Ras (1996), Cooperative knowledge{based systems. Journal of the IntelligentAutomation and Soft Computing 2/2, pp. 193{202.349. Z.W. Ras (1997), Collaboration control in distributed knowledge{based systems.Information Sciences 96/3{4, pp. 193{205.350. Z.W. Ras (1998), Answering non-standard queries in distributed knowledge{basedsystems. In: Polkowski and Skowron [337], pp. 98{108.351. Z.W. Ras, S. Joshi (1997), Query answering system for an incomplete DKBS.Fundamenta Informaticae 30/3{4, pp. 313{324.352. Z.W. Ras, A. Kudelska, N. Chilumula (1995), Can we simplify international physi-cal performance test pro�le using rough set approach? In: Wang [502], pp. 393{396.353. Z.W. Ras, M. Michalewicz, (Eds.), (1996), Proceedings of the Ninth InternationalSymposium on Methodologies for Intelligent Systems, Foundations of IntelligentSystems (ISMIS'96), October 15-18, Charlotte, NC, USA, Lecture Notes in Arti-�cial Intelligence 1079, Springer-Verlag, Berlin, pp. 1{664.354. Z.W. Ras, A. Skowron (Eds.) (1997), Proceedings of the Tenth International Sym-posium on Methodologies for Intelligent Systems, Foundations of Intelligent Sys-tems (ISMIS'97), October 15-18, Charlotte, NC, USA, Lecture Notes in Arti�cialIntelligence 1325, Springer-Verlag, Berlin, pp. 1{630.355. H. Rasiowa (1986), Rough concepts and multiple{valued logic. In: Proceedings ofthe 16th ISMVL'86, Blacksburg, VA, IEEE Computer Society Press, pp. 282{288.



87356. H. Rasiowa (1987), Logic approximating sequences of sets. In: Proceedings of Ad-vanced Intern. School and Symp. on Math. Logic and its Applications, honorablydedicated to 80th anniversary of Kurt G�odel, Plenum Press, New York, pp. 167{186.357. H. Rasiowa (1987), An algebraic approach to some approximate reasonings. In:Proceedings of the 17th ISMVL'87, Boston, MA, May 24{26, IEEE ComputerSociety Press, pp. 342{347.358. H. Rasiowa (1990), On approximation logics, A survey. Jahrbuch 1990 Kurt G�odelGessellschaft, Vienna, pp. 63{87.359. H. Rasiowa (1991), Mechanical proof systems for logic of reaching consensus bygroups of intelligent agents. Intern. Journ. of Approximate Reasoning 5/4 pp.415{432.360. H. Rasiowa, G. Epstein (1987), Approximation reasoning and Scott's informationsystems. In: Z. Ras, M. Zemankova (Eds.), Proceedings of the Second InternationalSymposium on Methodologies for Intelligent Systems, Charlotte, N.C., October14{17, North Holland, Amsterdam pp. 33{42.361. H. Rasiowa, W. Marek (1987), Gradual approximating sets by means of equivalencerelations. Bull. Polish Acad. Sci. Math. 35/3{4, pp. 233{238.362. H. Rasiowa, W. Marek (1987), Approximating sets with equivalence relations. The-oretical Computer Science 48, pp. 145{152.363. H. Rasiowa, W. Marek (1989), On reaching consensus by groups of intelligentagents. In: Z.W. Ras (Ed.), Proceedings of the Fourth International Symposiumon Methodologies for Intelligent Systems (ISMIS'89), North Holland, Amsterdam,pp. 234{243.364. H. Rasiowa, W. Marek (1992), Mechanical proof systems for logic II: Consensusprograms and their processing. Journal of Intelligent Information Systems 2/2,pp. 149{164.365. H. Rasiowa (1985), A. Skowron, Approximation logic. In: Proceedings of Mathe-matical Methods of Speci�cation and Synthesis of Software Systems Conference,Akademie Verlag 31, Berlin pp. 123{139.366. C. Rauszer (1985), Remarks on logic for dependencies. Bull. Polish Acad. Sci.Math. 33, pp. 249{252.367. C. Rauszer (1985), Algebraic properties of functional dependencies. Bull. PolishAcad. Sci. Math. 33, pp. 561{569.368. C. Rauszer (1993), Dependencies in relational databases. Algebraic and logicalapproach. Fundamenta Informaticae 19, pp. 235{274.369. C. Rauszer (1993), An equivalence between theory of functional dependencies anda fragment of intuitionistic logic. Bull. Polish Acad. Sci. Math. 33, pp. 571{579.370. C. Rauszer (1993), Communication systems in distributed information systems.In: Proceedings of the International Workshop on Intelligent Information Sys-tems, June 7{11, 1993, August�ow, Poland, Institute of Computer Science, PolishAcademy of Sciences, Warsaw, pp. 15{29.371. C. Rauszer, (1993) Approximation methods for knowledge representation systems.In: J. Komorowski, Z.W. Ras (Eds.), Proceedings of the Seventh InternationalSymposium on Methodologies for Intelligent Systems (ISMIS'93), Trondheim,Norway, June 15{18, 1993, Lecture Notes in Computer Science 689 (1993) pp.326{337.372. C. Rauszer (1994), Knowledge representation systems for groups of agents. In:J. Wole�nski (Ed.), Philosophical Logic in Poland, Kluwer Academic Publishers,Dordrecht, pp. 217{238.



88373. C. Rauszer, W. Marek (1988), Query optimization in the database distributed bymeans of product of equivalence relations. Fundamenta Informaticae 11, pp. 241{286.374. C. Rauszer, H. de Swart(1995), Di�erent approaches to knowledge, common know-ledge and Aumann's theorem. In: A. Laux, H. Wansing (Eds.), Knowledge and Be-lief in Philosophy and Arti�cial Intelligence, Akademie Verlag, Berlin, pp. 87{12.375. A. Reinhard, B. Stawski, T. Weber, U. Wybraniec{Skardowska (1992), An ap-plication of rough set theory in the control conditions on a polder. In: S lowi�nski[418], pp. 331{362.376. R.O. Rogriguez, P. Garcia, L. Godo (1995), Similarity based models: Counter-factual and belif changes. Research Report IIIA-95/5, IIIA-CSIS, University ofBarcelona, Ballaterra, Spain.377. B. Roy (1985), M�ethodologie Multicrit�ere d'Aide �a la D�ecision. Economica, Paris.378. B. Roy (1989), Main sources of inaccurate determination, uncertainty and impre-cision in decision models. Mathematical and Computer Modelling 12, pp. 1245{1254.379. B. Roy, D. Bouyssou (1993), Aide Multicrit�ere �a la D�ecision: M�ethods et Cas.Economica, Paris.380. B. Roy (1993), Decision sicence or decision aid science. European Journal ofOperational Research 86/2, pp. 184{203.381. B. Roy, R. S lowi�nski, W. Treichel (1992), Multicriteria programming of watersupply systems for rural areas. Water Resources Bulletin 28/1, pp. 13{31.382. S. Rubin, S. Vanderpooten, W. Micha lowski, R. S lowi�nski (1996), Developing anemergency room for diagnostic check list using rough sets { A case study of appen-dicitis. In: J. Anderson, M. Katzper (Eds.), Simulation in the Medical Sciences,Proceedings of the Western Conference of the Society for Computer Simulation,Simulation Councils. Inc. San Diego, CA, pp. 19{24.383. G. Ruhe (1996), Qualitative analysis of software engineering data using rough sets.In: Tsumoto, Kobayashi, Yokomori, Tanaka, and Nakamura [474], pp. 292{299.384. G. Ruhe (1996), Knowledge discovery from software engineering data: Roughset analysis its interaction with goal{oriented measurement. In: Komorowski and_Zytkow [147], pp. 167{177.385. E.H. Ruspini (1991), On truth, utility, and similarity. Proceedings of the Inter-national Fuzzy Engineering Sympsoim (IFES'91), Yokohama, Japan, November13{15, Fuzzy Engineering Towards Human Friendly Systems 1, pp. 42{50.386. E.H. Ruspini (1990), Similarity{based interpretations of fuzzy logic concepts. Pro-ceedings of the 2nd International Conference on Fuzzy Logic & Neural Networks(IIZUKA'90) Iizuka, Japan, July 20{24, 2, pp.735{780.387. M. Sarkar, B. Yegnanarayana (1998), Fuzzy{rough sets and fuzzy integrals in mod-ular neural networks. In this book.388. J.A. Schreider (1975), Equality, Resemblance and Order. Mir Publishers, Moscow.389. M. Semeniuk{Polkowska (1996), Rough sets in librarian science (in Polish). Chairof Formal Linguistics, Warsaw University, pp. 1{109.390. G. Shafer (1976), A Mathematical Theory of Evidence. Princeton University Press,Princeton.391. N. Shan, W. Ziarko, H. Hamilton, N. Cercone (1995), Using rough sets as toolsfor knowledge discovery. In: Fayyad and Uthurusamy [92], pp. 263{268.392. E. Simoudis, J. Han, U. Fayyad (Eds.) (1996), Proceedings of the Second Interna-tional Conference on Knowledge Discovery Data Mining (KDD'96). August 2{4,Portland, Oregon, USA, AAAI Press, Menlo Park, pp. 1{391.



89393. A. Skowron (1995), Synthesis of adaptive decision systems from experimental data.In: Aamodt and Komorowski [1], pp. 220{238.394. A. Skowron, J. Grzyma la-Busse) (1994), From rough set theory to evidence theory.In: R.R. Yager, M. Fedrizzi, and J. Kacprzyk (Eds.), Advances in the Dempster-Shafer Theory of Evidence, John Wiley and Sons, New York, pp. 193-236.395. A. Skowron, L. Polkowski (1996), Analytical morphology: mathematical morphol-ogy of decision tables. Fundamenta Informaticae 27/2{3, pp.255{271.396. A. Skowron, L. Polkowski (1997), Synthesis of Decision Systems from Data Tables.In: Lin and Cercone [189], pp. 259{300.397. A. Skowron, L. Polkowski (1998), Rough mereological foundations for design, anal-ysis, synthesis, and control in distributive systems. Information Sciences 104/1-2,pp. 129{156.398. A. Skowron, L. Polkowski, J. Komorowski (1996), Learning Tolerance Rela-tions by Boolean Descriptors, Automatic Feature Extraction from Data Tables.In: Tsumoto, Kobayashi, Yokomori, Tanaka, and Nakamura [474], pp. 11{17.399. A. Skowron, C. Rauszer (1992), The Discernibility Matrices and Functions inInformation Systems. In: S lowi�nski [418], pp. 331{362.400. A. Skowron, J. Stepaniuk (1991), Towards an approximation theory of discreteproblems. Fundamenta Informaticae 15/2 pp. 187{208.401. A. Skowron, J. Stepaniuk (1995), Generalized approximation spaces. In: Lin andWildberger [194], pp. 18{21.402. A. Skowron, J. Stepaniuk (1996), Tolerance approximation spaces. FundamentaInformaticae 27, pp. 245{253.403. A. Skowron, J. Stepaniuk (1998), Information granules and approximation spaces.In: Bouchon{Meunier and Yager [25], pp. 1354{1361.404. A. Skowron, Z. Suraj (1993), Rough sets and concurrency. Bull. Polish Acad. Sci.Tech. 41/3, pp. 237{254405. A. Skowron, Z. Suraj (1995), Discovery of concurrent data models from experi-mental data tables, A rough set approach. In: Fayyad and Uthurusamy [92], pp.288{293.406. A. Skowron, Z. Suraj (1996), A parallel algorithm for real{time decision making,A rough set approach. Journal of Intelligent Information Systems 7, pp. 5{28.407. D. �Sl�ezak (1996), Approximate reducts in decision tables. In: Bouchon{Meunier,Delgado, Verdegay, Vila, and Yager [24] 3, pp. 1159{1164.408. D. �Sl�ezak (1997), Attribute set decomposition of decision tables. In: Zimmermann[544] 1, pp. 236{240.409. D. �Sl�ezak (1998), Decomposition and synthesis of decision tables with respect togeneralized decision functions. In this book.410. D. �Sl�ezak (1998), Searching for dynamic reducts in inconsistent ecision tables. In:Bouchon{Meunier and Yager [25], pp. 1362{1369.411. D. �Sl�ezak, M. Szczuka (1997), Hyperplane{based neural networks for real{valueddecision tables. In: Wang [503], pp. 265{268.412. K. S lowi�nski, E.S. Sharif (1993), Rough sets approach to analysis of data of diag-nostic peritoneal lavage applied for multiple injuries patients. In: Ziarko [536], pp.420{425.413. K. S lowi�nski, R. S lowi�nski, J. Stefanowski (1988), Rough sets approach to analysisof data from peritoneal lavage in acute pancreatitis. Medical Informatics 13/3, pp.143{159.



90414. K. S lowi�nski, J. Stefanowski (1996), On limitations of using rough set approach toanalyze non-trivial medical information systems. In: Tsumoto, Kobayashi, Yoko-mori, Tanaka, and Nakamura [474], pp. 176{184.415. K. S lowi�nski, J. Stefanowski (1998), Multistage rough set analysis of therapeuticexperience with acute pancreatitis. In this book.416. K. S lowi�nski, J. Stefanowski, A. Antczak, Z. Kwas (1995), Rough sets approachto the veri�cation of indications for treatment of urinary stones by extracorporealshock wave lithotripsy (ESWL). In: Lin and Wildberger [194], pp. 93{96.417. K. S lowi�nski, J. Stefanowski, W. Twardosz (1997), Rough set theory rule induc-tion techniques for discovery of attribute dependencies in experience with multipleinjured patients. Institute of Computer Science, Warsaw University of Technology,ICS Research Report 6/97.418. R. S lowi�nski, (Ed.) (1992), Intelligent Decision Support { Handbook of Appli-cations and Advances of the Rough Sets Theory. Kluwer Academic Publishers,Dordrecht.419. K. S lowi�nski (1992), Rough classi�cation of HSV patients. In: S lowi�nski [418], pp.77{93.420. R. S lowi�nski (1993), Rough set learning of preferential attitude in multi{criteriadecision making. In: Komorowski and Ras [146], pp. 642{651.421. R. S lowi�nski (1994), Handling various types of uncertainty in the rough set ap-proach. In: Ziarko [536], pp. 366{376.422. R. S lowi�nski (1994), Rough set analysis of multi-attribute decision problems. In:Ziarko [536], pp. 136{143.423. R. S lowi�nski (1995), Rough set approach to decision analysis. AI Expert 10, pp.18{25.424. R. S lowi�nski (1995), Rough set theory and its applications to decision aid. BelgianJournal of Operation Research, Francoro 35/3-4, pp. 81{90.425. R. S lowi�nski, K. S lowi�nski (1989), An expert system for treatment of duodenalulcer by highly selective vagotomy (in Polish). Pami�etnik 54. Jubil. Zjazdu To-warzystwa Chirurg�ow Polskich, Krak�ow I, pp. 223{228.426. R. S lowi�nski, D. Vanderpooten (1995), Similarity relation as a basis for roughapproximations. In: P. Wang (Ed.): Advances in Machine Intelligence & Soft Com-puting, Bookwrights, Raleigh NC (1997) pp. 17{33.427. R. S lowi�nski, D. Vanderpooten (1999), A generalized de�nition of rough approx-imations based on similarity. IEEE Trans. on Data and Knowledge Engineering(to appear).428. R. S lowi�nski, C. Zopounidis (1995), Applications of the rough set approach toevaluation of bankruptcy risk. International J. Intelligent Systems in Accounting,Finance & Management, 4/1, pp. 27{41.429. R. S lowi�nski, C. Zopounidis (1994), Rough set sorting of �rms according tobankruptcy risk. In: M. Paruccini (Ed.), Applying Multiple Criteria Aid for Deci-sion to Environmental Management, Kluwer Academic Publishers, Dordrecht, pp.339{357.430. P. Srinivasan (1989), Approximations for information retrieval. In: Z. W. Ras,(Ed.), Methodologies for Intelligent Systems 4, Elsevier, pp. 128{136.431. P. Srinivasan (1989), Intelligent information retrieval using rough set approxima-tions. Information Processing and Management 25, pp. 347{361.432. P. Srinivasan (1991), The importance of rough approximations for informationretrieval. Journal of Man{Machine Studies 34, pp. 657-671.



91433. D. Sriram, R. Logcher, S. Fukuda (1991), Computer - aided cooperative productdevelopment. Lecture Notes in Computer Sience 492, Springer{Verlag, Berlin.434. J. Stefanowski (1998), On rough set based approaches to induction of decisionrules. In: Polkowski and Skowron [336], pp. 500{529.435. J. Stefanowski, K. S lowi�nski, R. S lowi�nski (1991), Supporting of therapeutic de-cisions based on the rough sets theory. In: Proceedings of the 16th Meeting ofthe EURO Working Group, Operational Research Applied to Health Services, theFirst Polish National Conference on Operational Research Applied to Health Sys-tems, Ksi�a_z 30.07{4.08, Wydawnictwo Politechniki Wroc lawskiej, Wroc law, pp.249{255.436. J. Stefanowski, R. S lowi�nski, R. Nowicki (1992), The rough sets approach to know-ledge analysis for classi�cation support in technical diagnostics of mechanical ob-jects. In: F. Belli, F.J. Radermacher (Eds.), Industrial & Engineering Applicationsof Arti�cial Intelligence Expert Systems, Lecture Notes in Economics Mathemat-ical Systems 604, Springer-Verlag, Berlin, pp. 324{334.437. J. Stepaniuk (1996), Similarity based rough sets and learning. In: Tsumoto,Kobayashi, Yokomori, Tanaka, and Nakamura [474], pp. 18{22.438. J. Stepaniuk (1998), Approximation spaces, reducts and representatives. In:Polkowski and Skowron [337], pp. 109{126.439. J. Stepaniuk, J. Tyszkiewicz (1991), Probabilistic properties of approximationproblems. Bull. Polish Acad. Sci. Tech. 39/3, pp. 535{555.440. Z. Suraj (1996), An application of rough set methods to cooperative informationsystems re{engineering. In: Tsumoto, Kobayashi, Yokomori, Tanaka, and Naka-mura [474], pp. 364{371.441. Z. Suraj (1996), Discovery of concurrent data models from experimental tables, Arough set approach. Fundamenta Informaticae 28/3{4, pp. 353{376.442. Z. Suraj (1997), Reconstruction of cooperative information systems under costconstraints, A rough set approach. In: Wang [503], pp. 399{402.443. Z. Suraj (1998), The synthesis problem of concurrent systems speci�ed by dynamicinformation systems. In: Polkowski and Skowron [337], pp. 420{450.444. R. Swiniarski (1993), Zernike moments: Their application for image recognition.Internal report of San Diego State University, Department of Mathematical Com-puter Sciences, USA.445. R. Swiniarski (1996), Rough set expert system for on{line prediction of volley-ball game progress for US olympic team. In: B.D. Czejdo, I.I. Est, B. Shirazi, B.Trousse (Eds.), Proceedings of the Third Biennial European Joint Conference onEngineering Systems Design Analysis, July 1{4, Montpellier, France, pp. 15{20.446. R. Swiniarski (1996), Rough sets expert system for robust texture classi�cationbased on 2D fast Fourier transormation spectral features. In: Tsumoto, Kobayashi,Yokomori, Tanaka, and Nakamura [474], pp. 419{425.447. R. Swiniarski (1998), Rough sets and principal component analysis and their ap-plications in data model building and classi�cation. In this book.448. R. Swiniarski (1997), Design of nonlinear texture data model using localized prin-cipal components and rough sets. Application to texture classi�cation. In: Proceed-ings of International Symposium on Nonlinear Theory its Applications, Hawaii,USA, November 29 { December 3 (accepted).449. R. Swiniarski (1998), Intelligent feature extraction, Rough sets Zernike momentsfor data preprocessing feature extraction in handwritten digits recognition. In: Pro-ceedings of International Symposium on Engineering of Intelligent Systems, EIS98.University of Laguna, Tenerife, Spain, February 11{13.



92450. R. Swiniarski (1998), Texture recognition based on rough sets 2D FFT featureextraction. In: Proceedings of World Automation Congress. Anchorage, Alaska,USA, May 9{14.451. R. Swiniarski. (1998), Rough sets Bayesian methods applied to cancer detection.In: Polkowski and Skowron [338], pp. 609{616.452. R. Swiniarski (1998), Rough sets and neural networks application to handwrittencharacter recognition by complex Zernike moments. In: Polkowski and Skowron[338], pp. 617-624.453. R. Swiniarski (1998), Texture feature extraction, reduction and recognition basedon rough sets. In: Symposium on Object Recognition Scene Classi�cation fromMultispectral Multisensor Pixels. Columbus, Ohio, USA, July 6{10.454. R. Swiniarski, A. Berzins (1996), Rough sets for intelligent data mining, knowledgediscovering and designing of an expert systems for on{line prediction of volleyballgame progress. In: Tsumoto, Kobayashi, Yokomori, Tanaka, and Nakamura [474],pp. 413{418.455. R. Swiniarski, F. Hunt, D. Chalvet, D. Pearson (1997), Feature selection usingrough sets and hidden layer expansion for rupture prediction in a highly auto-mated production system. In: Proceedings of the 12th International Conference onSystems Science, September 12{15, Wroclaw, Poland; see also: Systems Science23/1.456. R. Swiniarski, F. Hunt, D. Chalvet, D. Pearson (1995), Intelligent data processingand dynamic process discovery using rough sets, statistical reasoning and neuralnetworks in a highly automated production systems. In: Proceedings of the FirstEuropean Conference on Application of Neural Networks in Industry, August,Helsinki, Finland.457. R. Swiniarski, J. Nguyen (1996), Rough sets expert system for texture classi�ca-tion based on 2D spectral features. In: B.D. Czejdo, I.I. Est, B. Shirazi, B. Trousse(Eds.), Proceedings of the Third Biennial European Joint Conference on Engi-neering Systems Design Analysis, July 1-4, Montpellier, France, pp. 3{8.458. R. Swiniarski, H. Zeng (1998), A new halftoning method based on error di�usionwith rough set �ltering. In: Polkowski and Skowron [337], pp. 336{346.459. M. Szczuka (1996), Rough set methods for constructing neural network. In: Pro-ceedings of the Third Biennal Joint Conference On Engineering Systems DesignAnalysis, Session on Expert Systems, Montpellier, France, pp. 9{14.460. M. Szczuka (1998), Re�ning decision classes with neural networks. In: Bouchon{Meunier and Yager [25], pp. 370{1375.461. M. Szczuka (1998), Rough sets and arti�cial neural networks. In: Polkowski andSkowron [337], pp. 451{471.462. A.J. Szladow, W. Ziarko (1992), Knowledge{based process control using rough sets.In: S lowi�nski [418], pp. 49{60.463. H. Tanaka, Y. Maeda (1998), Reduction methods for medical data. In: Polkowskiand Skowron [337], pp. 295{306.464. J. Teghem, J.-M. Charlet (1992), Use of 'rough sets' method to draw premonitoryfactors for earthquakes by emphasing gas geochemistry: The case of a low seismicactivity context in Belgium. In: S lowi�nski [418], pp. 165{180.465. I. Tentush (1995), On minimal absorbent sets for some types of tolerance relations.Bull. Polish Acad. Sci. Tech. 43/1 pp. 79{88.466. S. Tsumoto (1997), Domain experts' interpretation of rules induced from clinicaldatabases. In: In: Zimmermann [544] 1, pp. 1639{1642.



93467. S. Tsumoto (1997), Extraction of expert's decision process from clinical databasesusing rough set model. In: Komorowski and _Zytkow [147], pp. 58{67.468. S. Tsumoto (1997), Induction of positive negative deterministic rules based onrough set model. In: Ras and Skowron [354], pp. 298{307.469. S. Tsumoto (1997), Empirical induction on medical expert system rules based onrough set model. Ph.D. dissertation (in Japanese).470. S. Tsumoto (1998), Modelling diagnostic rules based on rough sets. In: Polkowskiand Skowron [338], pp. 475{482.471. S. Tsumoto (1998), Formalization induction of medical expert system rules basedon rough set theory. In: Polkowski and Skowron [337], pp. 307{323.472. S. Tsumoto (Ed.) (1998), Bulletin of International Rough Set Society 2/1.473. S. Tsumoto (1998), Induction of expert decision rules using rough sets and set-inclusion. In this book.474. S. Tsumoto, S. Kobayashi, T. Yokomori, H. Tanaka, and A. Nakamura (Eds.)(1996), Proceedings of the Fourth International Workshop on Rough Sets, FuzzySets, and Machine Discovery (RSFD'96). The University of Tokyo, November 6{8.475. S. Tsumoto, H. Tanaka (1998), PRIMEROSE, Probabilistic rule induction methodbased on rough set theory. In: Ziarko [536], pp. 274{281 .476. S. Tsumoto, H. Tanaka (1994), Induction of medical expert system rules based onrough sets resampling methods. In: Proceedings of the 18th Annual Symposium onComputer Applications in Medical Care, Journal of the AMIA 1 (supplement),pp. 1066{1070.477. S. Tsumoto, H. Tanaka (1995), PRIMEROSE, Probabilistic rule induction methodbased on rough set resampling methods. In: Computational Intelligence: An Inter-national Journal 11/2, pp. 389{405.478. S. Tsumoto, H. Tanaka (1995), Automated selection of rule induction methodsbased on recursive iteration of resampling. In: Fayyad and Uthurusamy [92], pp.312{317.479. S. Tsumoto, H. Tanaka (1995), Automated discovery of functional components ofproteins from amino-acid sequences based on rough sets and change of represen-tation. In: Fayyad and Uthurusamy [92], pp. 318{324.480. S. Tsumoto, H. Tanaka (1996), Automated discovery of medical expert systemrules from clinical databases based on rough sets. In: Simoudis, Han, and Fayyad[392], pp. 63{69.481. S. Tsumoto, H. Tanaka (1996), Extraction of medical diagnostic knowledge basedon rough set based model selection rule induction. In: [RSFD'96] 426{436; see also:Chen, Hirota, and Yen [44], pp. 145{151.482. S. Tsumoto, H. Tanaka (1996), Automated induction of medical expert systemrules from clinical databases based on rough sets. In: Zimmermann [543], pp. 154{158.483. S. Tsumoto, H. Tanaka (1996), Domain knowledge from clinical databases basedon rough set model. In: In: Borne, Dauphin{Tanguy, Sueur, and El Khattabi [23],pp. 742{747.484. S. Tsumoto, H. Tanaka (1996), Incremental learning of probabilistic rules fromclinical databases. In: Bouchon{Meunier, Delgado, Verdegay, Vila, and Yager [24]2, pp. 1457{1462.485. S. Tsumoto, H. Tanaka (1996), Classi�cation rule induction based on rough sets.In: Petry and Kraft [313], pp. 748{754.486. S. Tsumoto, H. Tanaka (1996), Induction of expert system rules from databasesbased on rough set theory resampling methods. In: Ras and Michalewicz [353], pp.



94 128{138.487. S. Tsumoto, H. Tanaka (1996), Machine discovery of functional components ofproteins from amino{acid sequences based on rough sets change of representation.In: Journal of the Intelligent Automation and Soft Computing 2/2, pp. 169{180.488. S. Tsumoto, H. Tanaka (1996), PRIMEROSE3. Induction estimation of proba-bilistic rules from medical databases based on rough sets resampling methods. In:M. Witten (Ed.), Computational Medicine, Public Health, Biotechnology, Build-ing a Man in the Machine III, World Scienti�c, Singapore, pp. 1173{1189.489. S. Tsumoto, W. Ziarko (1996), The application of rough sets{based data miningtechnique to di�erential diagnosis of meningoencephalitis. In: Ras and Michalewicz[353], pp. 438{447.490. S. Tsumoto, W. Ziarko, N. Shan, H. Tanaka (1995), Knowledge discovery in clin-ical databases based on variable precision rough sets model. In: Proceedings ofthe 19th Annual Symposium on Computer Applications in Medical Care, NewOrleans, Journal of American Medical Informatics Association Supplement, pp.270{274.491. A. Tversky (1997), Features of similarity. Psychological Review 84/4, pp. 327{352.492. D. Vakarelov (1991), A modal logic for similarity relations in Pawlak knowledgerepresentation systems. Fundamenta Informaticae 15, pp. 61{79.493. D. Vakarelov (1991), Logical analysis of positive and negative similarity relationsin property systems. In: M. De Glas, D. Gabbay (Eds.), First World Conferenceon the Fundamentals of AI (WOCFAI'91), July 1{5, Paris, France, pp. 491{499.494. D. Vakarelov (1995), A duality between Pawlak's information systems and bi{consequence systems. Studia Logica 55/1 pp. 205{228.495. D. Vakarelov (1998), Information systems, similarity relations and modal logic.In: Or lowska [270] pp. 492{550.496. D. Van den Poel, Z. Piasta (1998), Purchase prediction in database marketingwith the ProbRough system. In: Polkowski and Skowron [338], pp. 593{600.497. D. Van den Poel (1998), Rough sets for database marketing. In: Polkowski andSkowron [337], pp. 324{335.498. I. Velasco, D. Teo, T.T. Lin (1997), Design optimization of rough{fuzzy controllersusing a genetic algorithm. In: Wang [503], pp. 313{317.499. S. Vinterbo, L. Ohno-Machado H. Fraser (1998), Prediction of acute myocardialinfarction using rough sets. Submitted for publication.500. A. Wakulicz{Deja, M. Boryczka, P. Paszek (1998), Discretization of continuousattributes of decision system in mitochondrial encephalomyopathies. In: Polkowskiand Skowron [338], pp. 483{490.501. A. Wakulicz{Deja, P. Paszek (1997), Diagnose progressive encephalopathy apply-ing the rough set theory. International Journal of Medical Informatics 46, pp.119{127.502. P.P. Wang (Ed.) (1995), Proceedings of the International Workshop on RoughSets Soft Computing at Second Annual Joint Conference on Information Sciences(JCIS'95). Wrightsville Beach, North Carolina, 28 September - 1 October, pp.1{679.503. P.P. Wang (Ed.) (1997), Proceedings of the Fifth International Workshop onRough Sets Soft Computing (RSSC'97) at Third Annual Joint Conference on In-formation Sciences (JCIS'97). Duke University, Durham, NC, USA, Rough Set &Computer Science 3, March 1{5, pp. 1{449.



95504. A. Wasilewska (1989), Linguistically de�nable concepts and dependencies. Journalof Symbolic Logic 54/2, pp. 671{672.505. A. Wasilewska (1996), On rough and LT{fuzzy sets. In: Chen, Hirota, and Yen[44], pp. 13{18.506. A. Wasilewska (1997), Topological rough algebras. In: Lin and Cercone [189], pp.411{425.507. A. Wasilewska, L. Vigneron (1998), Rough algebras and automated deduction. In:Polkowski and Skowron [336], pp. 261{275.508. A. Wasilewska, L. Vigneron (1995), Rough equality algebras. In: Wang [502], pp.26{30.509. R. Wilting (1997), Predicting card credit. A research on predictable behaviour ofclients applying for card credit by means of Rough Data Models. (in Dutch). MasterThesis, Vrije Universiteit Amsterdam.510. http://www.idi.ntnu.no/~aleks/rosetta/ { the Rosetta WWW homepage.511. D.A. Wilson, T.R. Martinez (1997), Improved heterogeneous distance functions.Journal of Arti�cial Intelligence Research 6, pp. 1{34.512. P. Wojdy l lo (1998), Wavelets, rough sets ari�cial neural networks in EEG anal-ysis. In: Polkowski and Skowron [338], pp. 444{449.513. L. Woolery, J.W. Grzyma la{Busse, S. Summers, A. Budihardjo (1991), The useof machine learning program LERSLB 2.5 in knowledge acquisition for expertsystem development in nursing. Computers nd Nursing 9, pp. 227{234.514. L. Woolery, M. Van Dyne, J.W. Grzyma la{Busse, C. Tsatsoulis (1994), Machinelearning for development of an expert system to support nurses' assessment ofpreterm birth risk. In: Nursing Informatics, An International Overview for Nurs-ing in a Technological Era, Proceedings of the Fifth International Conference onNursing Use of Computers Information Sci. June 17{22, San Antonio, TX, Else-vier, pp. 357{361.515. L. Woolery, J.W. Grzyma la{Busse (1994), Machine learning for an expert sys-tem to predict preterm birth risk. Journal of the American Medical InformaticsAssociation 1, pp. 439{446.516. S.K.M. Wong (1996), Interval structure { A qualitative measure of uncertainty.In: Lin and Wildberger [194], pp. 22{27.517. S.K.M. Wong, P. Lingras (1989), The compatibility view of Shafer{Dempster the-ory using the concept of rough set. In: Z.W. Ras (Ed.), Proceedings of the FourthInternational Symposium on Methodologies for Intelligent Systems (ISMIS'89),Charlotte, North Carolina, October 12{14, North Holland, pp. 33{42.518. S.K.M. Wong, W. Ziarko (1986), Comparison of the probabilistic approximateclassi�cation and the fuzzy set model. Fuzzy Sets and Systems 21, pp. 357{362.519. S.K.M. Wong, W. Ziarko, L.W. Ye (1986), Comparision of rough set and statisticalmethods in inductive learning. Journal of Man{Machine Studies 24, pp. 53{72.520. J. Wr�oblewski (1995), Finding minimal reducts using genetic algorithms. In: Wang[502], pp. 186{189.521. J. Wr�oblewski (1998), Genetic algorithms in decomposition and classi�cationproblems. In: Polkowski and Skowron [337], pp. 472{492.522. U. Wybraniec-Skardowska (1989), On a generalization of approximation space.Bull. Polish Acad. Sci. Math. 37, pp. 51{61.523. Y.Y. Yao (1997), Combination of rough and fuzzy sets based on alpha{level sets.In: Lin and Cercone [189], pp. 301{321.524. Y.Y. Yao (1998), Generalized rough set models. In: Polkowski and Skowron [336],pp. 286{318.



96525. Y.Y. Yao, T.Y. Lin (1996), Generalization of rough sets using modal logic. Journalof the Intelligent Automation and Soft Computing 2, pp. 103{120.526. Y.Y. Yao, S.K.M. Wong (1995), Generalization of rough sets using relationshipsbetween attribute values. In: Wang [502], pp. 30{33.527. Y.Y. Yao, S.K.M. Wong (1996), Generalized probabilistic rough set models. In:Chen, Hirota, and Yen [44], pp. 158{163.528. Y.Y. Yao, S.K.M. Wong, T.Y. Lin (1997), A review of rough set models. In: T.Y.Lin, N. Cercone [189] pp. 47{75.529. L.A. Zadeh (1971), Similarity relations and fuzzy orderings. Information Sciences3, pp. 177{200.530. L.A. Zadeh (1996), Fuzzy logic = computing with words. IEEE Trans. on FuzzySystems 4, pp. 103-111.531. L.A. Zadeh (1997), Toward a theory of fuzzy information granulation and itscertainty in human reasoning and fuzzy logic. Fuzzy Sets and Systems 90, pp.111-127.532. E.C. Zeeman (1965), The topology of brain and visual perception. In: Fort, K.M.(Ed.): Topology of 3-manifolds and related topics. Prentice Hall, Englewood Cli�sN.J., pp. 240{256.533. W. Ziarko (1991), The discovery, analysis and representation of data dependenciesin databases. In: G. Piatetsky{Shapiro, W.J. Frawley (Eds.), Knowledge Discoveryin Databases, AAAI Press/MIT Press, pp. 177{195.534. W. Ziarko (1992), Generation of control algorithms for computerized controllersby operator supervised training. In: Proceedings of the 11th IASTED InternationalConference on Modelling, Identi�cation Control. Innsbruck, Austria, pp. 510{513.535. W. Ziarko (1993), Variable precision rough set model . J. of Computer and SystemSciences, 46, pp. 39{59.536. W. Ziarko (Ed.) (1994), Rough Sets, Fuzzy Sets and Knowledge Discovery(RSKD'93). Workshops in Computing, Springer{Verlag & British Computer So-ciety, London, Berlin.537. W. Ziarko (1994), Rough sets and knowledge discovery: An overview. In: Ziarko[536], pp. 11{15.538. W. Ziarko (1998), Rough sets as a methodology for data mining. In: Polkowskiand Skowron [336], pp. 554{576.539. W. Ziarko, R. Golan, D. Edwards (1993), An application of DATALOGIC/Rknowledge discovery tool to identify strong predictive rules in stock market data.In: Proceedings of AAAI Workshop on Knowledge Discovery in Databases, Wash-ington, DC, pp. 89{101.540. W. Ziarko, J. Katzberg (1989), Control algorithms acquisition, analysis reduction,Machine learning approach. In: Knowledge{Based Systems Diagnosis, SupervisionControl, Plenum Press, Oxford, pp. 167{178.541. W. _Zakowski (1982), On a concept of rough sets. Demonstratio Mathematica XV,pp. 1129{1133.542. W. _Zakowski (1983), Approximations in the space (U;�). Demonstratio Mathe-matica XVI, pp. 761{769.543. H.-J. Zimmermann (1997), Proceedings of the Fourth European Congress on In-telligent Techniques and Soft Computing (EUFIT'96). September 2{5, Aachen,Germany, Verlag Mainz 1, pp. 1{702.544. H.-J. Zimmermann (1996), Proceedings of the Fifth European Congress on In-telligent Techniques and Soft Computing (EUFIT'97). Aachen, Germany, VerlagMainz 1, pp. 1{868.



97This article was processed using the LATEX macro package with LMAMULT style


