BULLETIN DE L'ACADEMIE
POLONAISE DES SCIENCES
Série des sciences techniques
Volume IX, No. 5 — 1961

N620

Some Remarks on Automatic Programming of Arithmetical
Formulae

AUTOMATIC COMPUTERS

by
Z. PAWLAK

Presented by P. SZULKIN on February 20, 1961

Each digital computer realizes certain formal system. This system we will call
“internal language™ of the machine or briefly “language of the machine”. Languages
of digital computers existing differ pretty much from those being in use in com-
putations executed by means of “paper and pensil”. Reasons of such a state are
obvious. Namely, structure of the language of machine being dependent on the
technical possibilities of its realization. whereas the current language was fitted
to making of use of the latter in manual computations with ease.

In order to avoid a troublesome use of the language of the machine, for some
time already an automatic programming has been applied, which is nothing else
but only an interpretation of current language (mathematical language) in the
language of the machine.

Automatic programming in a sense of the above conception has several im-
perfections. namely. it requires a lot of commands, which in consequence lower
pretty much the effective speed of operation of the machine. In other words the
machine is applied in order to perform activities, to execution of which the
construction of the machine is not fitted. Thus the question arises: cannot the
problem of “casiness” of the machine service be realized in another way? It
seems that there exist two possibilities to solve this problem.

The first is the working out of such mathematical machines, the language of
which would be better suited to direct manipulation. Of course, it would be most
convenient to construct machines working immediately in the mathematical
language being commonly in use. Such a construction is quite possible, however
from the technical point of view it would be so inadequate that there are slight
chances for building these machines on a large scale.

The idea of working out such mathematical language, which would be both
easy in manipulation and also facilitate the construction of a machine working
in this language seems to be reasonable.

Certain, elementary steps have already been taken in Poland in this domain
(see [1], [2)).

JlulBYEiiaiyczacgs |

Nr inw. J:Ag#{‘g)}l

318 Z.Pawlak

As far as 1 know this question has not been “touched’ abroad up to date.

The second way to solve the problem sct in this paper nccessitates working
out such a language, which would be simply interpreted in the language of the machine
and also casy in use.

As a whole the problem is rather difficult.

The present paper gives a certain proposal of such a language for a narrow class
of functions. called here arithmetical functions.

1. Determination of parcnthesis-free symbolism
In this section of the paper we will discuss a certain parenthesis-free symbolism
convenient for recording arithmetical functions in reference to mathematical machines.

As arithmetical functions we will consider functions defined by dyadic output
funetions: addition, subtraction multiplication. division and the rule of substitution,

We will call the “tree” the set D of dvadic operations dy, da. ..., 4y and set N,
of 2n--1 numbers a;, a2, ..., @201, such as:

i. For each operation d;, which belongs 1o £, there exists an ordered set of
numbers, ai,, ai,, ai., belonging to set N; we willcall a; the left argument of operation
#;, and then denote L {d;); a;, will be called the right argument of operation 3; and
denoted by R(8;); a;, we will call the result of operation & and denote 0 (4).

ii. For each number ay. which belongs to &, there exists exactly one such an
arithmetical operation 4. which belongs to D, that a; = L {d;5) or a; — R{d;) or
o 0 l[r':i.,-]."

iii. There exists exactly one such a number @ which belongs to . that
for no one 4;, which belongs 1o ., takes place neither a; = L (4;) nor a; R (#;).
This number we will call final result.

Each result of operation we denote by asterisk (+). An argument, which 1s simul-
tancously the result of operation is the dependent argument; other arguments are
independent ones.

Toeach element d; of the set D we associate the number A4 (d;). and to cach
element of the set NV we associate the number A (a:).

The following rule is assumed to carrving out the numeration of elements of
the set &:

i I @y 15 the final result, A (ai) = 1,
i, ACL{%)) = 24 (0 (801,
il A (R(3)) — 24 (0 (85)).

The operations will be numerated as follows:
A (i) = A (0 (1)

If A (ai) = A (a;), then we say that a; is a successor of ;. and we write a7 — a;.
If A (&) = A (d)), we say that & is “later” than d;, and we write & — 4y

Some Remarks on Automatic Programming of Arithmetical Formuloe 319

The sequence On dae.) dan du_y G| Gre_2, ... 0y a3 @ ap of all elements
of the tree we call a formula, if for each i == 2n--1, @5,y — a¢and & = A Namely,
the formulae of the trees, presented in Figs. 1 and 2 have the following form:

—edobesef—awieg 4 wex and - cd - agb-— 2 e D was,

We mayv easily notice that in the formalism given, the result of i-th operation
is i-th dependent argument. This feature enables to locate in a very simple way the
results of operations into the memory of the machine.

-

N
=

3
._'_._,_:-"-- -
_.-r-"'"-'-'-* ¥
i -
g o L ew
;_,/ -) =i
. - ",
a " ,
. ¥
L
S
Fig. 1
1]
*
7 - S
T
T ft™
T e
k. e
', \5.\ s s
. ™ b
& R -]
™ {.{
i
Fig. 2

The formalism under consideration is very comprehensive and, morcover,
from the point of practical application to mathematical machines has two gualities:

1) the operations are performed in the order of their appearance in the formula:

2) as has just been mentioned, it allows to locate without any “hindrances™
the results of operations.

In the further section of the paper. a simplified programme of onc-address
machine, interpreting the formalism discussed will be given.

320 Z. Pawlak

2. Interpretation of parenthesis-free symbolism in one-address machine

Assume one-address machine with the list of commands;

I. Ra denotes transfer of the content of address g to accumulator,
2. Aa — addition of the content of address ¢ to accumulator,
3

. 3a — subtraction of the content of address a to accumulator,
4. Ma — multiplication of the content of address & by the content
of the accumulator,
5. Da — division of the content ol address @ by the content of the
accumulator,
6. Tw - transler of the content of accumulator to the memory a.

Expression (a) denotes the address. the address of which is placed at the
address of w.

For instance, T{a) denotes the transfer of the number [rom the accumulator
into the memory to the address given at the address a.

If @ is an address, then «" is the address modified by 1.

The programme brings about the “taking™ consceutively: respective arguments,
performing of operations and transfer of the results of operations at the appropriate
locations in the memory in the following way:

If a letter is the argument of the operation performed in the formuls, the number
from the address corresponding to the given letter is taken,

If an asterisk (=) is the argument, then the number from address (/) is taken, and
after performing of command address () is modified.

On performing of each operation, the command T{j) is carcied out, causing
the transfer of successive partial results into the memory., For instance, the afo-
rementioned examples will have the following programmes:

Re, Sd. T(jy, Rb, M), T(j), Re, Mf. T(j¥, Ra, S(i)". T{j).
R(GY, Dg. T(j), RGY, A, T(j),
Re, Md, TV, Ra, Ab, T(j)'. R{iY, Se, T(j), R{), DY, T(/.
The initial value of 7 and j is the same. Of course, the programme given may
be somewhat simplified or modified. in relation to the destination in detail.
The rule and the examples given in the paper are an illustration of the general
method of realization of arithmetical formulae, and first of all show how to

locate partial results.
The programmes for a three-address machine would be simpler, of course.

INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES
{(INSTYTUT MATEMATYCZNY, PAN)

REFERENCES

[11 Z. Pawlak, OQrganization of e addressgree digital compirer for calcolaring simple
arithmetical expressions, Bull, Acad. Polon, Sci., Sér. soi, techn,, 8 (19603, 193,
2] —- o Chganizarion of adire, m:’mu‘;r:w B, ibid,, 9 (1961), 229.

