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Abstract. Bayesian confirmation theory considers a variety of non-equivalent 
confirmation measures quantifying the degree to which a piece of evidence 
supports a hypothesis. In this paper, we apply some of the most relevant con-
firmation measures within the rough set approach. Moreover, we discuss inter-
esting properties of these confirmation measures and we propose a new prop-
erty of monotonicity that is particularly relevant within rough set approach. The 
main result of this paper states which one of the confirmation measures consid-
ered in the literature have the desirable properties from the viewpoint of the 
rough set approach. 

1   Introduction  

Reasoning from data is the domain of inductive reasoning. Contrary to deductive 
reasoning, where axioms expressing some universal truths constitute a starting point 
of reasoning, inductive reasoning uses data about a sample of a larger reality to start 
inference.  

Rough set theory (Pawlak 1982, 1991) is a mathematical approach to data analysis. 
Rough-set-based data analysis starts from a data table, called information table. The 
information table contains data about objects of interest, characterized by a finite set 
of attributes. Among the attributes, condition attributes C and decision attributes D 
are distinguished, in order to analyze how values of attributes C associate with values 
of attributes D. An information table where condition attributes and decision attrib-
utes are distinguished is called decision table. From a decision table one can induce 
some relationships (patterns) in form of “if … then …” decision rules. More exactly, 
the decision rules say that if some condition attributes have given values, then some 
decision attributes have other given values. With every decision rule induced from a 
decision table, three coefficients are traditionally associated: the strength, the cer-
tainty and the coverage factors of the rule. They are useful to show that discovering 
patterns in data can be represented in terms of Bayes’ theorem (Pawlak 2002; Greco, 
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Pawlak, Słowiński 2002) in a different way from that offered by standard Bayesian 
inference techniques, without referring to prior and posterior probabilities, inherently 
associated with Bayesian inference methodology. 

Within inductive reasoning, classical Bayesian theory considers a variety of non-
equivalent confirmation measures (see (Fitelson 2001) for a survey) which quantify 
the degree to which a piece of evidence E provides, “evidence for or against” or “sup-
port for or against” a hypothesis H. In this paper, we take into account some of the 
most relevant of these confirmation measures and apply them within rough set ap-
proach to data analysis. Moreover, we discuss some interesting properties of these 
confirmation measures, which are particularly relevant within rough set approach. 

Our research is strongly related to the rich discussion about the interestingness 
measure for decision rules in data mining (see, for example, (Hilderman and Hamilton 
2002) and (Yao and Zhong 1999) for exhaustive reviews of the subject). Moreover, 
some confirmation measures considered in this paper may remember statistical inde-
pendence tests of a contingency table. Indeed, some interestingness measures of deci-
sion rules, which are based on these statistical tests, have been proposed in the spe-
cialized literature (see, for example, (Flach and Lachiche 2001), (Tsumoto 2002), 
(Zembowicz and Zytkow 1996)). It is worth stressing that the confirmation measures 
take a different perspective than the statistical approach. First, observe that the inde-
pendence (dependence) measures are symmetric while decision rules, for which these 
measures are conceived, are not symmetric. Even if some authors tried to generalize 
classical statistical analysis of a contingency table in order to handle typical asymme-
tries of rule induction (Flach and Lachiche 2001), our approach is different in nature 
because we are interested in some desirable properties of confirmation measures 
rather than in their statistical properties. 

We think that our research, besides operational impact, can also be interesting for 
philosophical research about confirmation. In fact, quantitative confirmation theory is 
strongly based on probability functions, however, there is a great and well-known 
controversy relative to interpretation, origin and status of probability. Conclusively, in 
this paper, we use the theory of quantitative confirmation theory which, instead, is 
based on observed data, without any consideration of probability functions. 

Let us also remark that the concept of confirmation we are interested in is related 
to the concept of independence of logical formulas (propositions), as presented by 
Łukasiewicz (1913). In brief, his definition of independence between two proposi-
tions Φ and Ψ amounts to say that the credibility of Ψ given Φ is the same as the 
credibility of Ψ given ¬Φ. Thus, independence means that the credibility of Φ does 
not influence the credibility of Ψ. For this definition Łukasiewicz proved the law of 
multiplication which says that if propositions Φ and Ψ are independent, then the 
credibility of Ψ given Φ is equal to the product of the individual credibilities of Φ and 
Ψ. From this law, Pawlak (2003) derived a dependency factor for flows in decision 
networks and then he applied this formula to decision rules (Pawlak 2004). The de-
pendency factors derived from the concept of Łukasiewicz and the measures of con-
firmation studied in this paper are based, however, on different desiderata.  

The article is organized as follows. Section 2 introduces confirmation measures 
and recalls some desirable properties of symmetry and asymmetry proposed by Eells 
and Fitelson. Section 3 gives some basic notions concerning decision rules and deci-
sion algorithms within rough set approach. Section 4 introduces rough set confirma-
tion measures. In section 5, we introduce a specific monotonicity property of rough 
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set confirmation measures. Section 6 investigates which one among the considered 
rough set confirmation measures satisfies the monotonicity property. Final section 
draws conclusions and some directions of future research. Proofs of theorems and 
many interesting extensions can be found in (Greco, Pawlak, Słowiński 2004). 

2   Confirmation Measures 

According to Fitelson (2001), measures of confirmation quantify the degree to which 
a piece of evidence E provides, “evidence for or against” or “support for or against” a 
hypothesis H. Fitelson remarks, moreover, that measures of confirmation are sup-
posed to capture the impact rather than the final result of the “absorption” of a piece 
of evidence. 

Bayesian confirmation assume the existence of a probability Pr. In the following, 
given a proposition X, Pr(X) is the probability of X. Given X and Y, Pr(XY) repre-
sents the probability of X given Y, i.e.  

Pr(XY) = ( ) ( )YPrYXPr ∧ . 

In this context, a measure of confirmation of a piece of evidence E with respect to 
a hypothesis H is denoted by c(E,H). c(E,H) is required to satisfy the following mini-
mal property: 

c(E,H) = 

( ) ( )
( ) ( )
( ) ( )








<<
==
>>

HPrE|HPr 
HPrE|HPr 
HPrE|HPr 

if0
if0
if0

 

The most well known confirmation measures proposed in the literature are the fol-
lowing: 

d(E,H) = Pr(H|E) – Pr(H),   r(E,H) = ( ) ( )[ ]HPrEHPrlog  

l(E,H) = ( ) ( )[ ]HEPrHEPrlog ¬ ,   f(E,H) = 
( ) ( )
( ) ( )H|EPrH|EPr

H|EPrH|EPr
¬+
¬−

 

s(E,H) = Pr(H|E) – Pr(H|¬E),   b(E,H) = Pr(H∧E) – Pr(H) Pr(E) 

Measure d(E,H) has been supported by Earman (1992), Eells (1982), Gillies 
(1986), Jeffrey (1992) and Rosenkrantz (1994). Measure r(E,H) has been defended by 
Horwich (1982), Keynes (1921), Mackie (1969), Milne (1995, 1996), Schlesinger 
(1995) and Pollard (1999). Measure l(E,H) and f(E,H) have been supported by Ke-
meny and Oppenheim (1952), Good (1984), Heckerman (1988), Pearl (1988), 
Schumm (1994). Fitelson (2001) has advocated for measure f(E,H). Measure s(E,H) 
has been proposed by Christensen (1999) and Joyce (1999). Measure b(E,H) has been 
introduced by Carnap (1962). 

Many authors have considered, moreover, some more or less desirable properties 
of confirmation measures. Fitelson (2001) makes a comprehensive survey of these 
considerations. At the end of his retrospective, Fitelson concludes that the most con-
vincing confirmation measures are l(E,H) and f(E,H). He also proves that l(E,H) and 
f(E,H) are ordinally equivalent, i.e. for all E,H and E′, H′,  

l(E,H) ≥ l(E′,H′)  if and only if  f(E,H) ≥ f(E′,H′). 
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Among the properties of confirmation measures reviewed by Fitelson (2001), there 
are properties of symmetry introduced by Carnap (1962) and investigated recently by 
Eells and Fitelson (2000). For all E and H, one can have: 

- Evidence Symmetry (ES):  c(E,H) = –c(¬E,H) 
- Commutativity Symmetry (CS): c(E,H) = c(H,E) 
- Hypothesis Symmetry (HS): c(E,H) = –c(E,¬H) 
- Total Symmetry (TS):  c(E,H) = c(¬E,¬H) 

Eells and Fitelson (2000) remarked that, given (CS), (ES) and (HS) are equivalent, 
and that (TS) follows from the conjunction of (ES) and (HS). Moreover, they advo-
cate in favor of (HS) and against (ES), (CS) and (TS). The reason in favor of (HS) is 
that the significance of E with respect to H should be of the same strength, but of 
opposite sign, as the significance of E with respect to ¬H.  

Eells and Fitelson (2000) prove that   

1) s and b satisfy (ES), while d,r,l and f do not satisfy (ES), 
2) d,s,b,f and l satisfy (HS), while r does not satisfy (HS), 
3) r and b satisfy (CS), while d,s,f and l do not satisfy (CS), 
4) s and b satisfy (TS), while d,r,f and l do not satisfy (CS). 

Thus, assuming that (HS) is a desirable property, while (ES), (CS) and (TS) are 
not, Eells and Fitelson (2000) conclude that with respect to the property of symmetry, 
d, f and l are satisfying confirmation measures while s, r and b are not satisfying con-
firmation measures.  

3   Decision Rules and Decision Algorithm 

Let S = (U, A) be an information table, where U and A are finite, non-empty sets 
called the universe and the set of attributes, respectively. If in set A two disjoint sub-
sets of condition and decision attributes are distinguished (C and D, respectively), 
then the system is called decision table and is denoted by S = (U, C, D). With every 
subset of attributes, one can associate a formal language of logical formulas L defined 
in a standard way and called the decision language. Formulas for a subset B⊆A are 
build up from attribute-value pairs (a, v), where a∈B and v∈Va (set Va is a domain of 
a), by means of logical connectives ∧ (and), ∨ (or), ¬ (not). We assume that the set of 
all formula sets in L is partitioned into two classes, called condition and decision 
formulas, respectively. 

A decision rule induced from S and expressed in L is presented as Φ→Ψ, read "if 
Φ, then Ψ", where Φ and Ψ are condition and decision formulas in L, called premise 
and conclusion, respectively. A decision rule Φ→Ψ is also seen as a binary relation 
between premise and conclusion, called consequence relation (see critical discussion 
about interpretation of decision rules as logical implications in (Greco, Pawlak, Słow-
iński 2004)). 

Let ||Φ|| denote the set of all objects from universe U, having the property Φ in S. 
If Φ→Ψ is a decision rule, then suppS(Φ,Ψ) = card(||Φ∧Ψ||) will be called the sup-

port of the decision rule and σS(Φ,Ψ) = ( ) ( )UcardΦ,ΨsuppS  will be referred to as 

the strength of the decision rule. 
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With every decision rule Φ→Ψ we associate a certainty factor cerS(Φ,Ψ) = 
( ) ( )ΦΨΦ card,suppS  and a coverage factor  covS(Φ,Ψ) = ( ) ( )ΨΨΦ card,suppS . 

If cerS(Φ,Ψ)=1, then the decision rule Φ→Ψ is called certain, otherwise the deci-
sion rule is referred to as uncertain. A set of decision rules supported in total by the 
universe U creates a decision algorithm in S.  

4   Confirmation Measures and Decision Algorithms 

Given a decision rule Φ→Ψ, the confirmation measure we want to introduce should 
give the credibility of the proposition: Ψ is satisfied more frequently when Φ is 
satisfied rather than when Φ is not satisfied. 

Differently from Bayesian confirmation, however, we start from a decision table 
rather than from a probability measure. In this context, the probability Pr of Φ is 
substituted by the relative frequency Fr in the considered data table S, i.e.  

FrS(Φ) = ( ) ( )Ucardcard Φ . 

Analogously, given Φ  and Ψ,  Pr(ΨΦ) – the probability of Ψ given Φ – is 
substituted by the certainty factor cerS(Φ,Ψ) of the decision rule Φ→Ψ.  

Therefore, a measure of confirmation of property Ψ by property Φ, denoted by 
c(Φ,Ψ),  where Φ is a condition formula in L and Ψ is a decision formula in L, is 
required to satisfy the following minimal property 

c(Φ,Ψ) = 

( ) ( )
( ) ( )
( ) ( )








<<
==
>>

ΨFrΦ,Ψcer if0
ΨFrΦ,Ψcer if0
ΨFrΦ,Ψcer if0

SS

SS

SS

  (i) 

(i) can be interpreted as follow:  
- c(Φ,Ψ)>0 means that property Ψ is satisfied more frequently when Φ is sat-

isfied (then, this frequency is cerS(Φ,Ψ)), rather than generically in the whole 
decision table (where this frequency is FrS(Ψ)), 

- c(Φ,Ψ)=0 means that property Ψ is satisfied with the same frequency when 
Φ is satisfied and generically in the whole decision table, 

- c(Φ,Ψ)<0 means that property Ψ is satisfied less frequently when Φ is satis-
fied, rather than generically in the whole decision table. 

The specific confirmation measures recalled in section 2 can be rewritten in this 
context as follows: 

d(Φ,Ψ) = cerS(Φ,Ψ) – FrS(Ψ),   r(Φ,Ψ) = 
( )
( ) 








ΨFr
Φ,Ψcerlog

S

S  

l(Φ,Ψ) = 
( )

( )






¬Ψ,Φcer
Ψ,Φcerlog

S

S ,   f(Φ,Ψ) = 
( ) ( )
( ) ( )Ψ,ΦcerΨ,Φcer

Ψ,ΦcerΨ,Φcer

SS

SS

¬+
¬−

 

s(Φ,Ψ) = cerS(Φ,Ψ) – cerS(¬Φ,Ψ),   b(Φ,Ψ) = cerS(Φ,Ψ) – FrS(Φ) FrS(Ψ) 

Clearly, all the results about confirmation measures obtained within Bayesian con-
firmation theory are valid for the confirmation measures defined in the context of 
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decision algorithms considered within rough set theory. Therefore, according to Fitel-
son’s conclusions reminded in section 2, we believe that l(Φ,Ψ) and f(Φ,Ψ) are the 
most convincing confirmation measures, which continue to be ordinally equivalent in 
this new context. Below, we call the confirmation measures presented in the above 
language of decision algorithms, the rough set confirmation measures. 

5   Desirable Properties for Rough Set Confirmation Measures 

Even if all the formal properties of the Bayesian confirmation measures hold also for 
the corresponding rough set confirmation measures, we think that there is a new prop-
erty which would be desirable for the latter measures.     

To introduce this new property, let us remark that for each formula Φ, Ψ in L, one 
can express the rough set confirmation measures in terms of the following four val-
ues:  

• a=suppS(Φ,Ψ) - number of objects in U for which Φ and Ψ hold together, 
• b=suppS(¬Φ,Ψ) - number of objects in U for which Φ doesn’t hold while Ψ holds, 
• c=suppS(Φ,¬Ψ) - number of objects in U for which Φ holds while Ψ doesn’t hold, 
• d=suppS(¬Φ,¬Ψ) - number of objects in U for which both Φ and Ψ don’t hold. 

Therefore, the rough set confirmation measures can be expressed as follows:   

d(Φ,Ψ) = ( )( )dcbaca
bcad

++++
−

,   r(Φ,Ψ) = 















+++
+









+ dcba
ba

ca
alog  

l(Φ,Ψ) = 

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s(Φ,Ψ)= ( )( )dbca
bcad
++

−
,   b(Φ,Ψ)= ( )2dcba

bcad
+++

−
 

In this context, we propose the following property of monotonicity: 

(M)  c(Φ,Ψ) = F[suppS(Φ,Ψ), suppS(¬Φ,Ψ), suppS(Φ,¬Ψ), suppS(¬Φ,¬Ψ)] is a 
function non-decreasing with respect to suppS(Φ,Ψ) and suppS(¬Φ,¬Ψ) and 
non-increasing with respect to suppS(¬Φ,Ψ) and suppS(Φ,¬Ψ).  

The monotonicity property (M) has the following interpretation. Monotonicity of 
c(Φ,Ψ) with respect to suppS(Φ,Ψ) means that any evidence in which Φ and Ψ hold 
together increases (or at least does not decrease) the credibility of the decision rule 
Φ→Ψ. Monotonicity of c(Φ,Ψ) with respect to suppS(Φ,¬Ψ) means that any evidence 
in which Φ holds and Ψ does not hold decreases (or at least does not increase) the 
credibility of the decision rule Φ→Ψ. Analogously, with respect to suppS(¬Φ,Ψ), any 
evidence in which Φ does not hold and Ψ  holds decreases (or at least does not in-
crease) the credibility of the decision rule Φ→Ψ, and with respect to suppS(¬Φ,¬Ψ), 
any evidence in which both Φ and Ψ do not hold increases (or at least does not de-
crease) the credibility of the decision rule Φ→Ψ.  

Let us remark that the monotonicity with respect to suppS(Φ,Ψ) and suppS(Φ,¬Ψ) 
is rather intuitive. In the context of automated analysis of data, Hajek and Havranek 
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(1978) suggest the same monotonicity property M, however, not for a confirmation 
measure of rule Φ→Ψ (for which they suggest the increasing monotonicity with re-
spect to suppS(Φ,Ψ) and the decreasing monotonicity with respect to suppS(Φ,¬Ψ) 
only), but for a more specific association measure. 

We can explain the monotonicity with respect to suppS(¬Φ,Ψ) and suppS(¬Φ,¬Ψ), 
considering our interpretation of property (i) from section 4:  a positive value of a 
confirmation measure c(Φ,Ψ) means that property Ψ is satisfied more frequently 
when property Φ is satisfied rather than when Φ is not satisfied. From this viewpoint, 
an evidence in which Φ is not satisfied and Ψ is satisfied (objects ||¬Φ∧Ψ||) increases 
the frequency of Ψ in the situations where Φ is not satisfied and thus it should de-
crease the value of the confirmation. Analogously, an evidence in which both Φ and 
Ψ are not satisfied (objects ||¬Φ∧¬Ψ||)  decreases the frequency of Ψ in the situations 
where Φ is not satisfied and thus it should increase the value of the confirmation. 

We want to give also a more formal justification to the monotonicty of confirma-
tion measures with respect to suppS(¬Φ,Ψ) and suppS(¬Φ,¬Ψ). Let us consider the 
following definition of confirmation: property Φ confirms property Ψ  if  

cerS(Φ,Ψ) > FrS(Ψ). (iii) 

Let us remark that definition (iii) corresponds to the definition of incremental con-
firmation introduced by Carnap (1962, new preface) under the name of "confirmation 
as increase in firmness" in the following form:  evidence Φ confirms hypothesis Ψ if 
Pr(Ψ|Φ) > Pr(Ψ). 

The confirmation measures d(Φ,Ψ), r(Φ,Ψ), l(Φ,Ψ), f(Φ,Ψ), s(Φ,Ψ) and b(Φ,Ψ) 
can be seen as quantitative generalizations of the qualitative incremental confirmation 
(Fitelson 2001).  

Redefining (iii) in terms of a=suppS(Φ,Ψ), b=suppS(¬Φ,Ψ), c=suppS(Φ,¬Ψ) and   
d=suppS(¬Φ,¬Ψ), we get: 

  ( ) ( ) ( )dcbabacaa ++++>+ . (iii′) 

The following theorem is useful for justifying the property of monotonicity. 

Theorem 1. Let us consider case α in which  

a=suppS(Φ,Ψ),   b=suppS(¬Φ,Ψ),   c=suppS(Φ,¬Ψ),   d =suppS(¬Φ,¬Ψ), 

and case α' in which  

a'=suppS(Φ',Ψ'),   b'=suppS(¬Φ',Ψ'),   c'=suppS(Φ',¬Ψ'),   d'=suppS(¬Φ',¬Ψ'). 

Let us suppose, moreover, that  
cerS(Φ,Ψ) < FrS(Ψ),   while   cerS(Φ',Ψ') > FrS(Ψ'). 

The following implications are satisfied: 

1) if a'=a+∆, b'=b, c'=c and d'=d, then ∆>0, 
2) if a'=a, b'=b+∆, c'=c and d'=d, then ∆<0, 
3) if a'=a, b'=b, c'=c+∆ and d'=d, then ∆<0, 
4) if a'=a, b'=b, c'=c and d'=d+∆, then ∆>0.  

Theorem 1 has the following interpretation. Passing from case α to case α', we 
pass from a situation in which property Φ does not confirm property Ψ, to a situation 
in which property Φ' confirms property Ψ'. Theorem 1 says that this passage from 
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non-confirmation to confirmation is permitted by an increase of suppS(Φ,Ψ) or 
suppS(¬Φ,¬Ψ), or by a decrease of suppS(¬Φ,Ψ) or suppS(Φ,¬Ψ). Thus, the theorem 
supports the claim that confirmation given by property Φ to property Ψ is positively 
related to suppS(Φ,Ψ) and suppS(¬Φ,¬Ψ), and negatively related to suppS(¬Φ,Ψ) and 
suppS(Φ,¬Ψ). 

In fact, Theorem 1 supports the monotonicity property (M) because, if the passage 
from a situation of non-confirmation to a situation of confirmation implies a specific 
sign of modifications of the four values suppS(Φ,Ψ), suppS(¬Φ,¬Ψ), suppS(¬Φ,Ψ) 
and suppS(Φ,¬Ψ), it is natural to expect that confirmation measures will react analo-
gously to modifications of the above values.   

6   Rough Set Confirmation Measures Satisfying Monotonicity 

Theorem 2. l(Φ,Ψ), f(Φ,Ψ) and s(Φ,Ψ) satisfy monotonicity property (M), while 
d(Φ,Ψ), r(Φ,Ψ) and b(Φ,Ψ) do not satisfy (M).      

The content of Theorem 2 is quite clear and immediate, however, a more detailed 
comment may be useful. From our viewpoint, the most important discovery coming 
from Theorem 2 is that the confirmation measure d(Φ,Ψ) does not satisfy the 
monotonicity property. The importance of this result is threefold: 

1) d(Φ,Ψ) is a very simple rough set confirmation measure, coherent with the defi-
nition of incremental confirmation; it is rather counterintuitive that d(Φ,Ψ) does 
not satisfy monotonicity, while other confirmation measures having as complex 
formulation as l(Φ,Ψ) and  f(Φ,Ψ) do; 

2) d(Φ,Ψ) does not satisfy monotonicity with respect to suppS(Φ,Ψ); in this case the 
monotonicity property is indeed an uncontestable principle;  

3) d(Φ,Ψ) is not ruled out by the symmetry/asymmetry test performed by Eells and 
Fitelson (2000); this means that the contribution of monotonicity property (M) in 
reducing the field of "coherent" confirmation measures is very relevant; in fact, 
the only confirmation measures which satisfy both symmetry/asymmetry proper-
ties of Eells and Fitelson and monotonicity property (M) are the two ordinally 
equivalent confirmation measures l(Φ,Ψ) and f(Φ,Ψ).    

7   Conclusions 

The main result of this paper states that, from among the confirmation measures con-
sidered in the literature and recalled in section 2, the only confirmation measures 
satisfying the desirable properties of symmetry/asymmetry of Eells and Fitelson 
(2000), as well as our monotonicity property (M) are the two ordinally equivalent 
measures l(Φ,Ψ) and f(Φ,Ψ). In particular, our property (M) rules out d(Φ,Ψ). Let us 
remark that using the symmetry/asymmetry properties, it is not possible to discard 
d(Φ,Ψ), while using our monotonicity property, it is not possible to discard s(Φ,Ψ). 
This can be interpreted in the sense that the symmetry/asymmetry properties together 
with our monotonicity property (M) can be considered as complementary basic prin-
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ciples on which a sound theory of confirmation measures can be founded. A special 
attention merits, moreover, the violation of the monotonicity property by confirmation 
measure b(Φ,Ψ) which is the corroboration measure proposed by Carnap (1962). 
From our point of view, the violation of the monotonicity property by this confirma-
tion measure is more troubling than its violation of the symmetry/asymmetry property 
proposed by Eells and Fitelson. In fact Carnap (1962) liked that his corroboration 
measure b satisfies all four symmetry properties ES, HS, CS and TS, because he was 
interested in representing quantitatively a completely symmetric relevance relation.  

We think that the quite theoretical results presented in this paper can be the basis 
for important operational development within rough set theory and, in general, within 
data analysis. Only to give some idea of interesting issues for future researches con-
sider the use of measures l(Φ,Ψ) and f(Φ,Ψ) for assessing the interest of decision 
rules induced from a data table, as well as classification with these rules. Considering 
the huge number of decision rules which can be induced from a data set, and the ne-
cessity of presenting only the most interesting rules to the users, this is a problem of 
primary importance for data analysis. We believe that the contribution of rough set 
confirmation measures to solving this problem is very important. 
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