ROUGH SETS

ZDZISŁAW PAWLAK

POLISH ACADEMY OF SCIENCES
AND
WARSAW UNIVERSITY OF TECHNOLOGY

MAIN DEFECTS OF IMPERFECT KNOWLEDGE

VAGUENESS AND UNCERTAINTY

ROUGH SET PHILOSOPHY IS BASED ON ABILITY TO CLASSIFY

MATHEMATICAL MODELS OF VAGUENESS

- FREGE'S SET THEORY
- LOGIC
- LINGUISTICS
- ROUGH SETS

A NEW APPROACH

TO

IMPERFECT

KNOWLEDGE

MATHEMATICAL MODEL OF UNCERTAINTY

- PROBABILITY
- EVIDENCE THEORY
- FUZZY SETS
- APPROXIMATE LOGICS
- ROUGH SETS

MAIN PROBLEMS

- DESCRIPTION OF CONCEPTS
- DEPENDENCY OF ATTRIBUTES
- REDUCTION OF ATTRIBUTES
- SIGNIFICANCE OF ATTRIBUTES
- DECISION RULE GENERATION

INDISCERNIBILITY

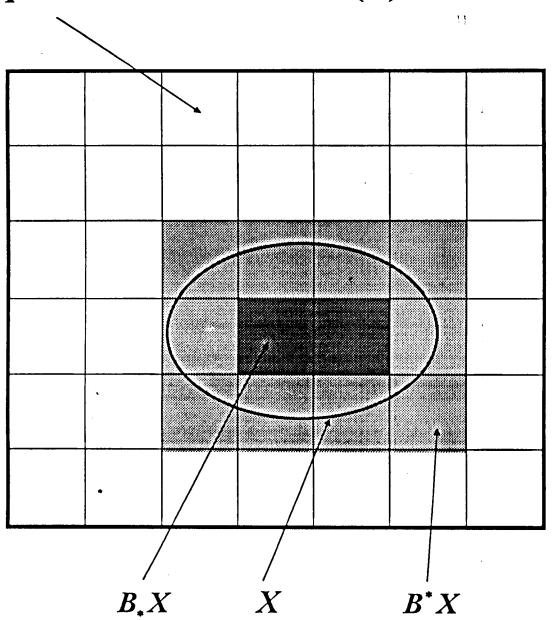
INDISCERNIBILITY RELATION

EVERY SUBSET OF ATTRIBUTES $B \subseteq A$ DETERMINES AN INDISCERNIBILITY
(EQUIVALENCE) RELATION I(B) (IN
SHORT I), ON THE UNIVERSE U:

xI(B)y IFF a(x) = a(y)

FOR EVERY $a \in B$,

WHERE a(x) DENOTES VALUE OF ATTRIBUTE $a \in B$ FOR OBJECT $x \in U$


APPROXIMATION OF SETS

APPROXIMATIONS

- LOWER APPROXIMATION OF X $B_*(X) = \{x \in U : [x]_B \subseteq X\}$
- UPPER APPROXIMATION OF X $B^*(X) = \left\{ x \in U : [x]_B \cap X \neq \emptyset \right\}$
- BOUNDARY REGION OF X $BN_B(X) = B^*(X) B_*(X)$

APPROXIMATION OF SETS

Equivalence classes of I(B)

ACCURACY OF APPROXIMATION

$$\alpha_B(X) = \frac{|B_*(X)|}{|B^*(X)|}$$

$$0 \le \alpha(X) \le 1$$

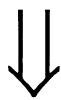
 $\alpha_B(X)$ - VAGUENESS OF X

ROUGH MEMBERSHIP

$$\mu_X^B(x) = \frac{|X \cap [x]_B|}{|[x]_B|}$$

$$0 \le \mu_X^B(x) \le 1$$

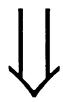
WHATARE ROUGH SETS ???


ROUGH AND CRISP SETS

• SET X IS CRISP (EXACT WITH RESPECT TO B), IF THE BOUNDARY REGION OF X IS EMPTY.

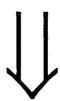
• SET X IS ROUGH (INEXACT WITH RESPECT TO B), IF THE BOUNDARY REGION OF X IS NONEMPTY.

THE UPPER APPROXIMATION


THE UPPER APPROXIMATION OF X (WITH RESPECT TO B) IS

THE SET OF ALL OBJECTS, WHICH CAN BE POSSIBLY CLASSIFIED AS X (ARE POSSIBLY X) USING B.

THE LOWER APPROXIMATION


THE LOWER APPROXIMATION OF X (WITH RESPECT TO B) IS

THE SET OF ALL OBJECTS, WHICH CAN BE FOR SURE CLASSIFIED AS X, (ARE SURELY X) USING B.

THE BOUNDARY REGION

THE BOUNDARY REGION OF X (WITH RESPECT TO B) IS

THE SET OF ALL OBJECTS,
WHICH CANNOT BE CLASSIFIED
AS X OR NOT X USING B.

EXAMPLE

Patient	Headache	Muscle-pain	Temperature	Flu
p1	no	yes	high	yes
p2	yes	no ·	high	yes
р3	yes	yes	very high	yes
p4	no	yes	normal	no
p5	yes	no	high	no
р6	no	yes	very high	yes

APPROXIMATIONS

• THE LOWER APPROXIMATION OF $X_{(flu, yes)}$

 $\{p_1, p_3, p_6\}$

• THE UPPER APPROXIMATION OF $X_{(flu, yes)}$

 $\left\{\boldsymbol{p}_{1},\boldsymbol{p}_{2},\boldsymbol{p}_{3},\boldsymbol{p}_{5},\boldsymbol{p}_{6}\right\}$

• THE BOUNDARY REGION OF $X_{(flu, yes)}$

 $\{p_2, p_5\}$

DEPENDENCY OF ATTRIBUTES

DEPENDENCY OF ATTRIBUTES

- C IS TOTALLY DEPENDENT
 ON B IF ALL ELEMENTS OF
 THE UNIVERSE CAN BE
 CLASSIFIED TO DECISION
 CLASSES OF C USING
 ATTRIBUTES B
- C IS PARTIALLY
 DEPENDENT ON B IF SOME
 ELEMENTS OF THE UNIVERSE CAN BE CLASSIFIED
 TO DECISION CLASSES OF
 C USING ATTRIBUTES B

REDUCTION OF ATTRIBUTES

REDUCT OF ATTRIBUTES

A REDUCT OF SET ATTRIBUTES B
IS A MINIMAL INDEPENDENT
SUBSET OF B PRESERVING
CLASSIFICATION OF U PROVIDED
BY B.

REDUCED TABLES

Patient	Headache	Temperature	Flu
p1	no	high	yes
p2	yes	high	yes yes
р3	yes	very high	yes
p4	no	normal	no
p5	yes	high	no
р6	no	very high	yes

Patient	Muscle-pain	Temperature	Flu
p1	yes	high	yes
p2	no	high	yes
р3	yes	very high	yes
p4	yes	normal	no
p5	no	high	no
р6	yes	very high	yes

- REDUCTS
 - TEMPERATURE, MUSCLE-PAI
 - TEMPERATURE, HEADACHE
- CORE
 - TEMPERATURE

DECISION RULES

DECISION TABLE AND DECISION ALGORITHM

- (1) (Headache, no) & (Temperature, high)→ (Flu, yes)
- (2)*(Headache, yes) & (Temperature, high)
 → (Flu, yes)
- (3) (Headache, yes) & (Temperature, very high)

 → (Flu, yes)
- (4) (Headache, no) & (Temperature, normal) → (Flu, no)
- (5)*(Headache, yes) & (Temperature, high) → (Flu, no)
- (6) (Headache, no) & (Temperature, very high → (Flu, yes)
- (1), (3), (4), (6) Consistent rules
- (2), (5) Inconsistent rules

SIMPLIFIED DECISION ALGORITHM

- (1) (Headache ,no) & (Temperature, hig)
 → (Flu, yes)
- (2)* (Headache, yes) & (Temperature, hig → (Flu, yes)
- (3,6) (Temperature, very high) \rightarrow (Flu, yes
- (4) (Temperature, normal) \rightarrow (Flu, no)
- (5)^{*} (Headache yes) & (Temperature, hig → (Flu, no)

APPLICATIONS

APPLICATIONS

- MEDICAL DATA ANALYSIS
- MARKET ANALYSIS
- IMAGE PROCESSING
- VOICE RECOGNITION
- HANDWRITTEN CHARACTE RECOGNITION
- CONFLICT ANALYSIS
- SWITCHING CIRCUITS
- CONTROL ALGORITHMS

RELATIONSHIP

- FUZZY SETS
- EVIDENCE THEORY
- STATISTICS
- NEURAL NETWORKS
- GENETIC ALGORITHMS
- NON-STANDARD ANALYSIS
- MEREOLOGY
- MATHEMATICAL MORPHOLOG'
- BOOLEAN REASONING
- PETRI NETS

ROUGH SETS AND EVIDENCE THEORY

• QUALITY OF THE LOWER APPROXIMATION

$$\gamma_*(X) = \frac{|B_*(X)|}{|U|}$$

(BELIEF FUNCTION)

• QUALITY OF THE UPPER APPROXIMATION

$$\gamma_*(X) = \frac{|B^*(X)|}{|U|}$$

(PLAUSIBILITY FUNCTION)

ROUGH SETS AND FUZZY SETS

- BOTH CONCEPTS REFER TO IMPERFECT KNOWLEDGE
- FUZZY SET PHILOSOPHY
 REFERS TO GRADUALNESS OF
 KNOWLEDGE
- ROUGH SET PHILOSOPHY
 REFERS TO GRANULARITY OI
 KNOWLEDGE
- BOTH CONCEPTS ARE NOT COMPETITIVE BUT COMPLEMENTARY

ROUGH SETS AND FUZZY SETS

- BOTH CONCEPTS REFER TO IMPERFECT KNOWLEDGE
- FUZZY SET PHILOSOPHY
 REFERS TO GRADUALNESS OF
 KNOWLEDGE
- ROUGH SET PHILOSOPHY
 REFERS TO GRANULARITY OF
 KNOWLEDGE
- BOTH CONCEPTS ARE NOT <u>COMPETITIVE</u> BUŢ <u>COMPLEMENTARY</u>

FUZZY AND ROUGH MEMBERSHIP

• FUZZY MEMBERSHIP

a)
$$\mu_{U-X}^{B}(x) = 1 - \mu_{X}^{B}(x)$$
 FOR ANY $x \in l$

b)
$$\mu_{X \cup Y}^{B}(x) = \text{MAX}(\mu_{X}^{B}(x), \mu_{Y}^{B}(x))$$

FOR ANY $x \in U$

c)
$$\mu_{X \cap Y}^B(x) = MIN(\mu_X^B(x), \mu_Y^B(x))$$

FOR ANY $x \in U$

ROUGH MEMBERSHIP

a)
$$\mu_{U-X}^{B}(x) = 1 - \mu_X^B(x)$$
 FOR ANY $x \in U$

b)
$$\mu_{X \cup Y}^{B}(x) \ge \text{MAX}(\mu_{X}^{B}(x), \mu_{Y}^{B}(x))$$

FOR ANY $x \in U$

c)
$$\mu_{X \cap Y}^{B}(x) \leq MIN(\mu_{X}^{B}(x), \mu_{Y}^{B}(x))$$

FOR ANY $x \in U$

CONCLUSION

FURTHER RESEARCH

THEORY

- ROUGH LOGIC, BASED ON THE CONCEPT OF ROUGH TRUTH
- THEORY OF ROUGH RELATIONS AND ROUGH FUNCTIONS
- COMPARISON WITH OTHER THEORIES

PRACTICE

- EFFICIENT AND WIDELY ACCESSIBLE SOFTWARE
- ROUGH SET COMPUTER
- ROUGH CONTROL

ADVANTAGES

- PROVIDES EFFICIENT ALGORITHMS FOR FINDING HIDDEN PATTERNS IN DATA
- FINDS MINIMAL SETS OF DATA (DATA REDUCTION)
- EVALUATES SIGNIFICANCE OF DATA
- GENERATES MINIMAL SETS OF DECISION RULES FROM DATA
- IT IS EASY TO UNDERSTAND
- OFFERS STRAIGHTFORWARD INTERPRETATION OF RESULTS
- IT IS SUITABLE TO PARALLEL PROCESSING