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Abstract. This paper introduces a family of discrete rough integrals defined rela-

tive to rough measures. Rough set theory yields a rough measure based on a recently
discovered rough membership set function. The particular form of rough member-
ship function given in this paper is a non-negative set function that is additive. It
is an example of a rough measure. The classical rough integral introduced by Z.
Pawlak is revisited in the context of rough measure spaces. The family of rough
integrals presented in this paper computes a form of ordered, weighted average of
the values of a measurable function. Rough integrals are useful in culling from a
collection of active sensors those sensors with the greatest relevance in a problem-
solving effort such as classification of a perceived phenomenon in the environment
of an agent. By way of practical application, an approach to fusion of homogeneous
sensors is considered. The form of sensor fusion considered in this paper consists in
selecting only those sensors considered relevant in solving a problem.

1 Introduction

.This paper presents a measure, a discrete integral, and sensor fusion defined in the

context of rough set theory [7]-[12]. In this paper, we investigate measures defined
on a family p(X) of all subsets of a non-empty, finite set X , l.e. on the power-
set of X. A fundamental paradigm in rough set theory. is set approximation [7].

- Hence, there is interest in discovering a family of measures useful in set approx-

imation. By way of practical application, an approach to fusion of homogeneous
sensors deemed relevant in a classification effort is considered (see, e.g. [13]-[14]).
Application of rough integrals has also been considered recently relative to sensor
signal classification by navigation agents [16] and by web agents [17]. This research
also has significance in the context of granular computing [13], [19]-[21]. This paper
is-organized as follows. Section 2 presents a brief introduction to classical additive

set functions. Basic concepts of rough set theory are presented in Section 3. An
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introduction to rough measures is given in Section 4. A discrete rough integral is
- defined relative to a rough measure in Section 5. Sensor fusion is covered in Section

6.

2 Classical Additive Set Functions

This section gives a brief introduction to one form of additive set functions in
measure theory [6]. Let card(X) denote the cardinality of a finite set X (i.e. the
number of elements of set X).

Definition 1. Let X be a finite, non-empty set. A function A : p(X) — R where
% is the set of all real numbers is called a set function on X.

Definition 2. Let X be a finite, non-empty set and let A be a set function on X,
The function X is said to be additive on X iff A\(AU B) = A(A) + A(B) for every
A, B € p(X) such that AN B =0 (i.e. A and B are disjoint subsets of X).

Definition 3. Let X be a finite, non-empty set and let X\ be a set 'functizon on X.
A function A is called to be non-negative on X iff A(Y') > 0 for any ¥ € p(X).

Definition 4. Let X be a set and let A be a set function on X. A function \
is called to be monotonic on X iff A € B implies that A(A) < A(B) for every
A, B € p(X).

A brief introduction to the basic concepts underlying the design of rough mem-
bership function neurons is given in this section.

3 Basic Concepts of Rough Sets
Rough set theory offers a systematic approach to set approximation [7].

3.1 Set Approximation

To begin, let S = (U, A) be an information system where U is a non-empty, finite
set of objects and A is a non-empty, finite set of attributes, where a : U — V,, for
every a € A. Foreach B C A, there is associated an equxvalence relation I nda(B)
such that

Inda(B) = {(z,2) € U | Va € B.a(x) = a(x)}

If (z,2') € Inda(B), we say that objects z and z’ are indiscernible from each
other relative to attributes from B. The notation [x|p denotes equivalence classes
of Inda(B). Further, ‘partition U /Ind4(B) denotes the famlly of all equivalence
classes of relation Ind4(B) on U. For X C U, the set X can be approximated only
from mformatlon contained in B by constructing a B-lower and B-upper approx-
imation denoted by BX and BX respectively, where BX ={z | [z]s C X} and
BX={z|[z ]BﬂX#@}



"3.2 Rough Membership Function

In this section, a set function form of the traditional rough mer_nbership function is
presented

Definition 5. Let S = (U, A) be an information system, B C A, u € U and let
[u]B be an’ ‘equivalence class of an object u € U of Inda(B). A rough membership
set function is given in (1).

card (X N [u]z)
carf([u]B) (1)

for any X € o(U ) is called a rough membersth set function. A rough membership
function prov1des a clas31ﬁcat10n measure inasmuch as it tests the degree of overlap
between the set X in p(U) and equivalence class [u]B. The form of rough member-
ship function in Def. 5 is slightly different from the classical definition where the
argument of the rough membership function is an object z and the set X is fixed

- [8].

ug: U) — [O, 1], where uZ (X)=

4 Rough Measures

Let S = (U, A) be an information system, X C U, B C A, and let Ind4(B) be the
indiscernibility relation on U.

Definition 6. The tuple (X, p(X),U/Inda(B)), where U/Ind4(B) denotes a set
of all equivalence classes determined by Inda(B) on U, is called an indiscernibility
space over X and B.

Definition 7. Let u € U. A non-negative and additive set function p, : p(X) —
o, oo) defined by pu(Y) = p'(Y N [u]g) for Y € p(X), where p' : p(X) — [0,00)
is a set function, is called a rough measure relative to U/Inda(B) and u on the
indiscernibility space (X, p(X),U/Inda(B)).

Deﬁn‘ition 8. Let p, for u € U be a rough measure on the indiscernibility space
(X, p(X), U/Inda(B)) for u € U. The tuple (X, p(X),U/Inda(B),{pu}uev) is a
rough measure space over X and B.

'E:nampie 1 (Sample Non-Negative Set Function). The rough membership function
s (X ) [0,1] is a non—negative set function.

Proposition 1. Let S = (U, A) be an information system,B C A,kand let {u]m
be an equivalence class of an object u € U of Inda(B). The rough membership
function pZ ‘as defined in Definition 5 (formula 1) is additive on U.

Proposition 2. (X, p(X) U/Inda(B),{ud }uev) is a rough measure space over
X and B. ,

5 Rough Integrals

Rough integrals of discrete functions were introduced in [9], [10] as part of a study’
of rough functions [11]. In this section, we consider a variation of the Lebesgue
integral, the discrete Choquet integral defined relative to a rough measure.




266 Z. Pawlak et al.

5.1 - Discrete Rough Integral

In what follows, let X = {z1,...,2,} be a finite, non-empty set with n, elementg
The elements of X are indexed from 1 to n. The notation X(;) denotes the set
{@), T(it1)s -, T(n)} where i > 1 and n = card(X). The subscript (2) is calleq

a permutation index because the indices on elements of X(s) are chosen after g
reordering of the elements of X. This reordering is induced by an external mechg.
nism. :

Ezample 2. Let X = {z1, z2} the function q : X — RY where R is the set of
non-negative real numbers, be defined such that a(z1) = 2001, a(z,) = 44. That is,
a(z1) > a(z2). Then, after reordering the elements of X and assigning permutatioy
indices to the reordered elements, we obtain a(z(1)) < a(z(s)) where Ty = 1,
and x5y = zy; Xy = {$1,:L'2},X(2) = {z1}. Next, we use a functional defined by
Choquet in 1953 in capacity theory [3]. ' :

Definition 9. Let p be arough measure on X where the elements of X are denoted
by z1,...,z,. The discrete rough integral of f: X — R+ with respect to the rough
measure r is defined by

/fd/? = Z (flew) = f@e-1)))p(X ()
i=1 -
where o(;) specifies that indices have been permuted so that 0 < flze) < - <

F@m), Xe) = {2@),..., 20}, and f(z©)) = 0.

The definition of the rough integral is based on a formulation‘ formulation of the
Choquet integral in Grabisch [5], and applied in [11]. The rough measure (X))
value serves as a weight of a coalition (or combination) of objects in set X (1) Telative
to f(z(;). It should be observed that in general the Choquet integral has the effect

of averaging the values of a measurable function. This averaging closely resembles
the well-known Ordered Weighted Average (OWA) operator [16].

5.2 Relevance of an Attribute

threshold.

Exzample 3. Consider the following decision tables.

Table 1(a) Table 1(b)
X\{a,e} | a [e X\{a,e} a |e
21 =0.203] 020 z2 = 0.454 | 0.45] 1
Z2'=0.454 | 0.45] 1 Z9 = 0.455 | 0.46] 1
Z3 = 0.453 | 0.45] 1 T10=0401] 041
T4 = 0.106 | 0.11] O z11 = 0407 1 041 1|
s =0.104 | 0.10] 0| [z15 = 0.429 | 0.43| 1 ’




Rough Measures, Rough Integrals and Sensor Fusion 267

Let X C U, {a} in A where a : X — [0, 0.5] where a(x) is rounded to two
decimal places. Let (Y, U — Y) will be a partition defined by an expert e and let
[u]e denote a set in this partition containing u for a fixed u € U. We assume a
decision system (X,, a, €) is given for any considered attribute (sensor) a such that
X. CUa: X, — §R+ and e is an expert decision restricted to X, defining a
partition (Y N X,, (U —Y)N X,) of X,. Moreover, we assume X, N [ule # 0.

Fig. 1. Geometric Interpretation of Case 1

After reordering the attribute values from Table 1(a), we have the followmg
computation (visualized in Fig. 1):
0 < a{zy) <alre) < alzs) < alrw) < a(zs)) where
a(z(y) = 0.10, a(z () = 0.11, a(z(3)) = 0.20, a(x(4)) = 0.45, a(z(s)) = 0.45, and
X(i) = {11:(1), Z(2), T(3); LT(4)» $(5)} = {$5, T4, 1, T2, £C3}
X =A{z@), 23), Ta), 2} = {24, 1, T2, 73}
Xy = {26), 2w, 25} = {21, T2, 73}
Xy ={z@, 25} = {22, 73}
X ={z)} = {xs} = {0.45}
Ha(X(1y)) = MZ.(X<2)) = po(X@) = pa(Xw) = §
pa(X(s)) =
fad,uu :01*2/9+(011—01)*2/9+(02—011)*2/9+(O45—02)*2/9+
(0.45 — 0.45) x 1/9 = 0.45x 2/9 = 0.1

After reordering the attribute values from Table 1b, we similarly obtain [ a du;,
0.239. From these two cases, it can be seen the relevance of attribute improves as
the value of the rough integral increases in value. For a particular [u]e, the rough in-

tegral measures the relevance of an attribute for a particular table in a classification
effort. One can observe that the following property holds for rough integrals.

I

Proposition 3. Let 0 < s <r.Ifa(z) € [s, r| for all z € Xq, then [adu; € (0,7]
where u € U. ' o :
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Proposition 4. Let Given a decision table DT = (U, C, D), where U (universe)

is a non-empty finite set of objects, C is a set of condition attributes, and D is 4 :
set of decision (action) attributes, let [u]e be a subset of U. A rough Integral valye

is computed using the following formula:

e _Z.’E;E[u],;ﬂxa(xi)
) aata, = =22

6 Multi-Sensor Fusion

Consider, next, the case where there is interest in discovering which sensor is more -

relevant among a set of sensors. The term relevance in this context denotes the
closeness of a set of experimental sensor values relative to a set of a pre-calibrated,
target sensor values that are considered important in a classification effort. The
identification of relevant sensors provides a form of sensor fusion. The term sensor
fusion generally refers to some process of combining sensor readings [1]-[2]. Further,
assume that each of the sensors have the same model with essentially the same
accuracy. At this stage, we will ignore the issue of the accuracy of a sensor, and
trust that each sensor in the set of sensors produces output with low error.

6.1 Relevant Sensors

Consider the decision table (U, A, e). Let u € U, B = {e}. Further, let 4 =
{a1 ..., an} be a set of homogeneous sensors. Next, determine [u]e, which is crucial
in assessing the relevance of the sensors in B. The set [u]. consists of objects needed
to classify sensor signal values. We can now consider a decision table with real value
attributes being integral values for given sensors and given intervals (corresponding
to different choice of u) and decision given by an expert. The relevant thresholds
and intervals for integral values we can then extract from such a data table by
discretization. Then, for example, the selection R of the most relevant sensors in a
set of sensors is found using ‘

R ={a: € B| [a:dy; € [s,7]}

where s, r are reals selected by means of discretization. In effect, the integral
[ a; dug, serves as a filter inasmuch as it filters out all sensors with integral val-
ues not belonging to the prescribed interval.

6.2 Sample Sensor Fusion

Consider the case where 46 ultrasonic sensors are used to monitor the environment
for an agent and there is interest in determining occasions when the agent wanders
into the region [15, 25]. Each sensor monitors the proximity of objects within its
field of view. Assume that each sensor has a detection range from 0.1 ¢cm to 100
~cm. Assume that sensor readings are made continuously and stored in a queue.
Let a;, a:(t) be the i*" sensor and i*" sensor reading at time ¢, respectively. Sensor
queues are analyzed for each collection of 20 readings (see Fig. 2).

"As a result, we obtain an information table with 46 columns and 20 rows of
sensor values. Each column represents a sensor signal, if we assume that sensor
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Fig. 2. Sample Sensor Readings

Fig. 3. Control Chart for Integral Valuesl

readings are made over a time interval g, ..., t19, where to is an instant in time
when the first sensor reading is made in a group of 20 readings. Further, assume
that we interested in sensor readings in the range 20 cm £ 5cm. This range provides
the basis for a definition of an indiscernibility class represented by the decision e of
an expert. That is, [20]c = {15, 15.001, 15.002, ..., 25}. A sample obtained from
sensor az is given in Fig. 2. A summary of the integral values for the 46 sensors
is given in table in the control chart in Fig. 3, where the Upper {Lower} Control
Limits 23.77{1.78} have been chosen arbitrarily. Thirteen relevant sensors appear in
this sample, namely, a2, as, a10, 20, @22, a30, a34, 35, A38, G40, A43, 45 and a4e.

Remark. Suppose we are interested in estimating for a considered period of time if
an agent was walking around region [15, 25]. The meaning of this can be estimated
by an expert looking at the plot in Fig. 3 relative to the requirement stipulated by
[20]c. We can. imagine a decision table with objects represented by sensor signals
(not single sample signal values but a set of sample signal values) where a decision
is the expert estimation if a wandering agent tends to favor walking in the region
[15, 25]. This raises the question: Does the integral value reflect (to a sufficient de-
- gree) an expert decision? Here, in answer to this question, let us observe that the
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rough integral computes the aggregative effect reflected by sensor values relative
to the "walking region” specified by an indiscernibility class. Notice that the low-
" est sample values in a signal have considerable influence in the computation, and
the higher values (outside the specified region) have little or no influence on the
outcome. In effect, whenever the lowest sample values in a signal are clustered in
the specified walking region, the value computed by the integral will reflect this
fact. In the case where a decision-maker focuses on agents near or above a walking
region, the integral does approximate an expert decision. It should also be pointed
out that an integral value reflects a decision about a wandering agent not in terms
of a single sample sensor value, but rather a decision about the proximity of an
agent to a specified region in terms of a set of sample values.

7 Conclusion

Rough set theory provides a variety of set functions that can be studied relative to
various measure spaces. In particular, the rough membership function is considered.
The particular rough membership function given in this paper is a non-negative
set function which is additive and, hence, is an example of a rough measure. We
are interested in identifying those sensors considered relevant in a problem-solving
effort. The rough integral introduced in this paper serves as a means of classifying
sensors. That is, depending on the proximity of the values of a sensor to a region
defined by the equivalence class [u]e, the rough integral computes the relevance
of a sensor in a classification effort. By careful selection of an equivalence class
[u]e, it is possible to use the rough integral given in this paper as a form of filter
inasmuch as the integral filters out sensor signals (sets of sample sensor values)
with low representation in [ule. An application of rough integration has been given
in the context of identifying one or more homogeneous sensors considered relevant
in a classification effort. Two forms of sensor fusion are implicit in the application
considered in this paper, namely, aggregation of sensor signal values in computing
_a rough integral value and culling from a set of sensors those sensors considered
relevant in a problem-solving effort. It is left for future work to consider how one
might gain by identifying relevant sensors. Notice, also, that rough measure spaces
are defined in the context of non-empty, finite universes. There is also interest in
capturing the cumulative effect of set approximation relative to an uncountable set
of points.
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