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Abstract: This paper introduces a measure defined in the context of rough sets. Rough set theory provides
a variety of set functions that can be studied relative to various measure spaces. In particular, the rough
membership function is considered. The particular rough membership function given in this paper is a non-
negative set function that is additive. It is an example of a rough measure. The idea of a rough integral is
revisited in the context of the discrete Choquet integral that is defined relative to a rough measure. This
rough integral computes a form of ordered, weighted “average” of the values of a measurable function.
Rough integrals are useful in culling from a collection of active sensors those sensors with the greatest
relevance in a problem-solving effort such as classification of a “perceived” phenomenon in the environment
of an agent. The relevance of a sensor is computed using a discrete rough integral relative to a target
interval. By way of practical application, an approach to fusion of homogeneous sensors is considered.
The form of sensor fusion considered in this paper consists in selecting only those sensors considered
relevant in solving a problem.

Keywords: additivity, fusion, measure, measure space, rough sets, rough membership function, rough
measure, rough integral.

This paper is organized as follows. Section 2 presents a
brief introduction to classical additive functions. Basic
concepts of rough set theory (set approximation and
rough membership functions) are presented in Section 3.
An introduction to rough measures is given in Section 4.

1 Introduction

This paper introduces a measure defined in the context of
rough sets [1]-[5]. In this paper, we investigate measures
defined on a family g( X) of all subsets of a finite set X,
i.e. on the powerset of X. A fundamental paradigm in
rough set theory is set approximation. Hence, there is
interest in discovering a family of measures useful in set
approximation. By way of practical application, an
approach to fusion of homogeneous sensors deemed

The discrete Choquet integral is defined relative to a
rough measure in Section 5. An application of the rough
integral is considered in Section 6 in the context of sensor
fusion (aggregating sensor signal values and identifying
relevant sensors). -

relevant in a classification effort is considered (see, also,
[10]).  Application of rough integrals has also been
considered recently relative to sensor signal classification
by intelligent agents [12] and by web agents [13]. This
research also has significance in the context of granular
computing [14]-[15] and rough neural networks [7].

2 Classical Additive Set Functions

This section gives a brief introduction to one form of
additive set functions in measure theory [8]. Let card(X)
denote the cardinality of a finite set X (i.e., the number of
elements of set X).
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Definition 1 Let X be a finite, non-empty set. A
function 4 : @ (X ) = R where R is the set of all real
numbers is called a set function on X.

Definition 2 Let X be a finite, non-empty set and let A be
a set function on X. The function A is said to be additive
on X iff A U B) = AA) + A(B) for every A, BE p(X)
such that A " B = (i.e., A and B are disjoint subsets of
X.

Definition 3 Let X be a finite, non-empty set and let A be
a set function on X. A function A is called to be non-
negative on X iff A(Y) 20 for any YE p(X).

Definition 4 Let X be a set and let A be a set function on
X. A function A is called to be monotonic on X iff A ¢ B
implies that A(A) < (B) for every A, BE p(X).

3 Basic Concepts of Rough Sets

Rough set theory offers a systematic approach to set
approximation [1]-[2].

3.1 Set Approximation

To begin, let S = (U, A) be an information system where
U is a non-empty, finite set of objects and A is a non-
empty, finite set of attributes, where a:U — V. for every
a € A. For each B c A, there is associated an
equivalence relation Ind4(B) such that

Ind ,(B) = {(x,x) e U’ | Va & B.a(x) =a(x')}

If (x, x) € Indy(B), we say that objects x and x’ are
indiscernible from each other relative to attributes from B.
The notation [x]z denotes equivalence classes of Ind,(B).
Further, partition U/ Ind,(B) denotes the family of all
equivalence classes of relation Ind,(B) on U. For X c U,
the set X can be approximated only from information
contained in B by constructing a B-lower and B-upper

approximation denoted by BX and BX respectively,
where BX={x]| [xl;c X} and
BX={x | xXlgnX=J}.

3.2 Rough Membership Function

In this section, a set function form of the traditional rough
membership function is presented.

Definition 5§ Let S = (U, A) be an information system, B
c A, ue Uand let [u]p be an equivalence class of an
object u € U of Ind,(B). The set function

card(X ﬂ[u]n)
1) o(U)—10,1],wherep? (X ) =—————2% (1)
Card([u]ﬂ)

Z. PAWLAK et al.

for any X € go(U) is called a rough membership function
(rmf). A rough membership function provides a
classification measure inasmuch as it tests the degree of
overlap between the set X in g(U) and equivalence class
[u]s. The form of rough membership function in Def. 5 is
slightly different from the classical definition where the
argument of the rough membership function is an object x
and the set X is fixed [3].

4 Rough Measures

Let S = (U, A) be an information system, X ¢ U, B C A,
and let Ind4(B) be the indiscernibility relation on U.

Definition 6 The tuple (X, @(X),U/Ind,(B)), where

U/lInd,(B) denotes a set of all equivalence classes

determined by Ind4(B) on U, is called an indiscernibility
space over X and B.

Definition 7 Letue U. A non-negative and additive set
function p, : @X) — [0, «) defined by p,(Y)=
p’(YN[ulg) for Ye p(X), where p* : @(X) — [0, o) is
called a rough measure relative to U/ Ind (B) and u on

the indiscernibility space (X, @(X), U/ Ind (B)).

Definition 8 Let p, for ue U be a rough measure on the
indiscernibility space (X, g(X), U/ Ind,(B)) (relative to

U/lInd,(B) and u e U). The tuple (X, (X)),

U/Ind,(B), {py}ucu) is a rough measure space over X
and B.

Example 1. [Sample Non-Negative Set Function]. The
rough membership function ° : ¢ (X)—[0, 1] is a non-
negative set function.

Proposition 1 Let S = (U, A) be an information system,
B C A, and let [u]5 be an equivalence class of an object u
€ U of Ind4(B). The rough membership function uf as
defined in Definition 5 ( formula (1)) is additive on U.

Proof. The proof follows from the following facts. Let
X, Ye p)and XY=, Then (X N [ulg) N (Y N
[ulg) = . Hence, from formula (1) of Definition 5 we get
M (X uY)=card(X U ¥) M [ulg) / card([ulp) =

card (X M [u]g ) / card([ulp) + card (Y M [ulp) / card([u]s)
=il X+ ul ).

(Xs sO(X), U/IndA(B)y{/é?}ue U) iS a
rough measure space over X and B.

Proposition 2
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S5 Rough Integrals

Rough integrals of discrete functions were introduced in
[5], [17] as part of a study of rough functions [18]. In this
section, we consider a variation of the Lebesgue integral,
the discrete Choquet integral defined relative to a rough
measure.

5.1 Discrete Rough Integral

In what follows, let X={x|,....x,} be a finite, non-empty
set with n elements. The elements of X are indexed from
1 to n.  The notation X denotes the set {xg . Xgis -
Xo) where i 2 1 and n = card(X).  The subscript (i) is
called a permutation index because the indices on
elements of X are chosen after a reordering of the
elements of X. This reordering is “induced” by an
external mechanism.

Let X = {x, x} the function

a:X—R*where R* is the set of non-negative real
numbers, be defined such that a(x,) = 2001, a(x;) = 44.
That is, a(x,) = a(x;). Then, after reordering the elements
of X and assigning permutation indices to the reordered
elements, we obtain a(x;y) < a(x)) where x) = x; and x,
=xp; Xay= {x1,02}, Xy= {x1}. Next, we use a functional
dgﬁned by Choquet in 1953 in capacity theory [6].

Example 2.

Definition 9 Let p be a rough measure on X where the
elements of X are denoted by x,, ..., x,. The discrete

Choquet integral of f: X — R" with respect to the rough
measure p is defined by

If dp =Z(f(xm)"f(x(H)))p(XuJ
i1

where e ;) specifies that indices have been permuted so

that 0 < ﬂ.X(,') ) <..% ‘ﬂX(n) ), X(,‘) = {X(,') 5 vee
ﬂX(O) ) = O

» X }, and

This definition of the Choquet integral is based on a
formulation in Grabisch [7], and applied in [11]. The
rough measure p( X ) value serves as a “weight” of a
coalition (or combination) of objects in set X; relative to
Sfix@). It should be observed that in general the Choquet
integral has the effect of “averaging” the values of a
measurable function. This averaging closely resembles
the well-known Ordered Weighted Average (OWA)
operator {16].

5.2 Relevance of an Attribute

In this section, we consider the measurement of the
relevance of an attribute using a rough integral. The
measure (1) is fundamental in computing an “average”
sensor value. Intuitively, we want to identify those
sensors with outputs closest to some threshold.

Consider the following decision tables.

Example 3.

Table 1(a) Table 1(b)
X\ {a,d} a e X\ {ad} a e
X1=O.203 0.2 0 Xp= 0.454 0.45 1
X>=0.454 | 0.45 1 Xo= 0.455 0.46 1
X3=0.453 0.45 1 X10= 0.401 04 1
X4=O. 106 0.11 0 X11= 0.407 0.41 1
x5s=0.104 | 0.10 0 x)=0.429 | 0.43 1

Let X c U, {a} in A where a: X — [0, 0.5] where a(x) is
rounded to two decimal places. Let (Y,U-Y) will be a
partition defined by an expert e and let [u], denote a set in
this partition containing u for a fixed u € U. We assume a
decision system (X,ae) is given for any considered
attribute (sensor) a such that X, c U, a: X,—»R" and e is
an expert decision restricted to X, defining a partition
(YnX,, (U-Y)nX,) of X,. Moreover, we assume X,"fu], #
a

After reordering the attribute values from Table 1(a), we
have case | ( see Fig. 1 ):

0< a(X([) ) < a(X(z) ) < a(X(3) ) < a(X(4) ) < a(X(S) ) where
a(xy ) =0.10, a(Xg) ) = 0.11, a(x) ) = 0.20, a(Xyy ) =
0.45, a(x(5 ) = 0.45, and

Xy =Xy X2)» X@)» X@y » X 1 = {Xs, X4, X1, X2, X3}
Xy = {X@)» X@)» X4y » X } = (X4, X, X2, X3}

Xy ={Xa), Xy » X 1 = {X1, X2, X3}

X(4) . {X(4) » X(5) } = {x2, x5}

Xisy=4x5 } = {x3} = {0.45}

,u,f(X(l))=/1,f(X(2)) =/‘:(X<3)) =/‘:(X<4))=2/9
w(X)=1/9

J-a du =
0.1*2/9 + (0.11-0.1)*2/9 + (0.2-0.11)*2/9 +
(0.45-02)*2/9+(0.45-0.45)*1/9=
0.45%2/9=0.1

a(x)

represents
area =0.1

a(x,) =0.1

€
H,
-
\

0 0.3 1
Fig. 1 Geometric Interpretation of Case 1

After reordering the attribute values from Table 1(b), we
have case 2 (see Fig. 2):

0<alxyy ) <alxp ) <alxa ) < a(xq ) < a(xes) ) where
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a(x(l) ) = 040, a(X(z) ) =041 ) a(x(3) ) = 043, a(x(4) ) =
0.45, a(x(sy ) = 0.46, and

Xoy= X0 X2 » X3) s X4y » X(5) } = {Xi0 X100 X125 X2, Xy}
Xy = (X2 X@)» X@ » X } = {X115 X125 X2, Xo}

Xo = {Xa)» X@y» X5 } = {x12, X, Xo}

X(4) = {Xw, X } = {X2, Xo}

X(5)= {X(j) } = {x¢}

X,)=5/9=056

[0.40].56+ [0.41 — 0.40].4+ [0.43-0.41]3 +
[0.45-0.43]0.2 + [0.46 — 0.45]0.1 =
0.224 +0.004 + 0.006 + 0.004 +0.001 =

0.239
a(x)
1 represents
area = 0.239
€
a(x,) = 0.4 2 'u:
0 0.56 1

Fig. 2 Geometric Interpretation of Case 2

From these two cases, it can be seen the relevance of
attribute improves as the value of the rough integral
increases in value. For a particular [u]., the rough
integral measures the relevance of an attribute for a
particular table in a classification effort. One can observe
that the following property holds for rough integrals.

Proposition 3. LetO<s<r. Ifa(x)e [s,r]forall x e
X, then .[a dy; € (0, r} whereue U.

Proof:
Since 0 < s <r, it is enough to show that (1) [a du; <r

and (2)
(1) Wehave y (X ,)<1,B={e}. Hence

)

adu; >0.

Ia dﬂ: = Z(a(x(,‘))—a(x(:—l)))lu: (X(i) ) s
i=1

n

Z(a(x(,,)—a(x(,.,,))) =alx,)=r

i=l

Z. PAWLAK et al.

(2) From the assumptions, there exists at least one x €
[ul.. Hence, 3,,, : (X(k>)> 0. After reordering of the

subsets of @(X), we know that g is a non-increasing,

non-negative set function. Hence, g (X ) > 0.
Consider the case where a(x(;; ) =s. Then compute

Ia dﬂ: = i(a(x(,‘))_a(-x(ﬁl)))ﬂ: (X(l) ) 2

i=1
(a(xy)) —a(x(m))/‘.f (Xw)=

a(xg)Hs (X, ) >0
o .
Moreover, when the set of sensor a values is close to [u].,

then ja d,u,f is close to the maximal value the integral

can take for a sensor. Measures of closeness depend on
applications and their parameters can be tuned for specific
data cases and targets.

The largest integral value we obtain when a partition
defined by singletons is exactly defined by the attribute
(sensor). The value of integral is decreasing when the
quality of the definability of this special partition (created
by singletons) by a given attribute is decreasing. The
integral (over all values for a given attribute) reflects in a
sense the degree of definability of the partition of objects
created by singletons by a partition defined by the values
of a given attribute (sensor).

Two sensors a, b are close if the following conditions are
satisfied:

max
1i<k

“(xm)‘b(yw)‘“A

1?223‘( ,Uu (X(,)) "/uu (Y(,))l <€

where A=max(a(x), b(ya) ). Then one can prove the
following proposition:

Proposition 4. If sensors a, b are close then

< 2Ag[1 +Lj = 2A€
2k

| Jo d - o

for sufficiently large k.

6 Multi-Sensor Fusion

Consider, next, the case where there is interest in
discovering which sensor is more relevant among a set of
sensors.  The term relevance in this context denotes the
“closeness” of a set of experimental sensor values relative
to a set of a pre-calibrated, target sensor values that are
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considered important in a classification effort. The
identification of relevant sensors provides a form of
sensor fusion. The term sensor fusion generally refers to
some process of combining sensor readings [19]-[20].
Further, assume that each of the sensors have the same
model with essentially the same accuracy. At this stage,
we will ignore the issue of the accuracy of a sensor, and
trust that each sensor in the set of sensors produces output
with low error.

6.1 Relevant Sensors

Consider the decision table (U, A, e). Letue U, B ={e}.
Further, let A= {a,, ..., a,} be a set of homogeneous
sensors. Next, determine [u]., which is crucial in
assessing the relevance of the sensors in B. The set [u],
consists of objects needed to classify sensor signal values.
We can now consider a decision table with real value
attributes being integral values for given sensors and
given intervals (corresponding to different choice of u)
and decision given by an expert. The relevant thresholds
and intervals for integral values we can then extract from
such a data table by discretization. Then, for example,
the selection R of the most relevant sensors in a set of
sensors is found using

Wp :{a,. € B| ja, du; e (s, r]}

where s, r are reals selected by means of discretization. In
effect, the integral ja, dy serves as a filter inasmuch as

it “filters” out all sensors with integral values not
belonging to the prescribed interval.

6.2 Sample Sensor Fusion

Consider the case where 46 ultrasonic sensors are used to
monitor the environment for an agent and there is interest
in determining occasions when the agent wanders into the
region [15, 25].  Each sensor monitors the proximity of
objects within its field of view. Assume that each sensor
has a detection range from 0.1 cm to 100 cm. Assume
that sensor readings are made continuously and stored in a
queue. Let a;, ai(t) be the i"™ sensor and i" sensor reading
at time t, respectively. Sensor queues are analyzed for
each collection of 20 readings (see Fig. 3).

100h %)

92.293

Note:

(20),= {20, 19.657, 21.137, 22.059, 19.98. ...}

a, dus, =16.567

semsorVoiues

Fig.3 Sample Sensor Readings

Volume 5, No. 1/2

4 UCL=23.77

LA f\t I‘AAXA‘ WKT‘ Avg=12.78

LCL=1.78

rough integral
>
1

Fig. 4 Control Chart for Integral Values,

As a result, we obtain an information table with 46
columns and 20 rows of sensor values. Each column
represents a sensor signal, if we assume that sensor
readings are made over a time interval ty, ..., t;o, Where t;
is an instant in time when the first sensor reading is made
in a group of 20 readings. Further, assume that we
interested in sensor readings in the range 20 cm * Scm.
This range provides the basis for a definition of an
indiscernibility class represented by the decision e of an
expert. That is, [20], = {15,15.001, 15.002,...,25}.

A sample obtained from sensor a, is given in Fig. 3. A
summary of the integral values for the 46 sensors is given
in Table in the control chart in Fig. 4, where the Upper
{Lower} Control Limits 23.77{1.78} have been chosen
arbitrarily.  Thirteen relevant sensors appear in this
sample, namely, a,, a3, a9, 0, 22, a30, 334, 333, A3g, A4,
a43, 4gs and ayg (see Table 2).

Table 2 Integral Values

Integral value Integral value

a O a;; . 8.0851
a 16.567 ap 9.9145
a; 15.828 a4 16.89

a, 11214 a;s  14.062
as 12.131 a6 10282
as 9.8963 a7 10.744
a; 13.059 aig 13.974
ag 10.211 ajg  13.682
a, 13.719 ay 16.745
ap 16.184 ay 11.983
a; 8.8464 an 16.966

Integral value Integral value

an 12,032 as  16.093
2y 13.002 aw 14.87
a 12.045 a7 14.689
ay 13.933 aw 18.06
a;; 0. Ay 14.258
ax 7.514 an 16,466
ay 14.929 a  16.639
ayp 16.805 an 0.

ay 14.729 241 16.628
apn  13.323 as 87105
amn 12.978 aas 16.069
aw 17.319 e 15.696
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Remark. Suppose we are interested in estimating for a
considered period of time if an agent was walking around
region [15,25].  The meaning of this can be estimated by
an expert looking at the plot in Fig. 4 relative to the
requirement stipulated by [20].. We can imagine a
decision table with objects represented by sensor signals
(not single sample signal values but a set of sample signal
values) where a decision is the expert estimation if a
wandering agent “tends to favor” walking in the region
[15,25]. This raises the question: Does the integral value
reflect (to a sufficient degree) the expert decision? This
problem will be discussed in our next paper. Here, in
answer to this question, let us observe that the rough
integral computes the aggregative effect reflected by
sensor values relative to the “walking region” specified
by an indiscernibility class. Notice that the lowest sample
values in a signal have considerable influence in the
computation, and the higher values (outside the specified
region) have little or no influence on the outcome. In
effect, whenever the lowest sample values in a signal are
clustered in the specified walking region, the value
computed by the integral will reflect this fact.  In the
case where a decision-maker focuses on agents near or
above a walking region, the integral does approximate an
expert decision. It should also be pointed out that an
integral value reflects a decision about a wandering agent
not in terms of a single sample sensor value, but rather a
decision about the proximity of an agent to a specified
region in terms of a set of sample values.

7 Conclusion

Rough set theory provides a variety of set functions that
can be studied relative to various measure spaces. In
particular, the rough membership function is considered.
The particular rough membership function given in this
paper is a non-negative set function which is additive and,
hence, is an example of a rough measure. We are
interested in identifying those sensors considered relevant
in a problem-solving effort. ~ The rough integral
introduced in this paper serves as a means of classifying
sensors. That is, depending on the proximity of the
'values of a sensor to an region defined by the equivalence
class [u],, the rough integral computes the relevance of a
sensor in a classification effort. By careful selection of
an equivalence class [u],, it is possible to use the rough
integral given in this paper as a form of filter inasmuch as
the integral “filters” out sensor signals (sets of sample
sensor values) with low representation in [u],. An
application of rough integration has been given in the
context of identifying one or more homogeneous sensors
considered relevant in a classification effort. Two forms
of sensor fusion are implicit in the application considered
in this paper, namely, aggregation of sensor signal values
in computing a rough integral value and culling from a set
of sensors those sensors considered relevant in a problem-
solving effort. It is left for future work to consider how
one might gain by identifying relevant sensors.
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