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Abstract. In this paper we develop a method of dealing with nondeterministic information. We
introduce the concept of knowledge representation system of nondeterministic information and
we define a language providing a means for defining nondeterministie information, We also develop
deduction methods for the language.

1. Introduction

The origin of knowledge representation methods has to do with the need to collect
and process data related to a certain part of the reality, referred to as a universe
of discourse. We assume that the universe of discourse consists of discrete objects.
An object is anything which can be spoken of in the subject position of a natural
language sentence (e.g., book, company ). Objects need not be atomic or undivisible,
They can be composed or structured, but are treated as a whole. Furthermore, we
assume that we know a priori some interesting characteristics or properties which
are meaningful for these objects. A property is denoted by a verb phrase in a natural
language sentence (e.g., is interesting, is big). To express properties we use the
notions of attribute (e.g., colour, height) and an attribute value (e.g., bloe, tall). In
general, information about values of attributes {or objects is incomplete and there-
fore to some extent ambiguous. For example, we usually do not know precisely
person's age, we can give its possible values only. In recent years several approaches
have been taken with regard to representation of incomplete information [2, 3, 4,
5, 8].

The present paper is a contribution to the work in logical formalisms for represent-
ing incomplete knowledge. The notion of knowledge representation system of
nondeterministic information introduced in the paper is a generalization of the
notions of attribute based information systems introduced in [7, §]. Information
system presented in [7] consists of a set OB of objects, a set AT of attributes, a
family {VAL,}.-sr of sets of values of attributes and an information function

FOB=AT=VAL= |_] VAL,

ac AT
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such that for each p= OB and each a< AT, flo,a)e VAL, The data definition
language for such systems was introduced in [6]. The generalization of these systems
is a many-valued information system [8]. In many-valued systems we assume that
f=OBx AT = VAL is not necessarilv a function but an arbitrary relation such that
if (o, a, v)e f, then ve VAL, However, there are situations when the characteristics
of given objects is determined neither by an information function, nor by an
imformation relation. It might be a case that the only information we have for an
object o and an attribute a is a set of possible values of a for o. To deal with such
cases, Pawlak [8] introduced the notion of an approximate information system. In
an approximate information system we consider information function f to be a
function from set OB X AT into set P(VAL) of all the subsets of set VAL such that
fle, a) e VAL,, and, moreover, we assume that there exists a unique v € VAL, such
that f{e,a)=wv. In this paper we consider a generalization of many-valued and
approximate information systems. called nondeterministic information systems.

2. System of nondeterministic information

By a system of nondeterministic information we mean a quadruple
5=(0B, ﬁ-[1{VﬁL‘| ]'.zx ATs ,lr]

where OB, AT and VAL, for each a € AT, are nonempty scts of objects, attributes
and attribute values, respectively,

F:OBXAT-= P(VAL) where VAL= | VAL,
as AT
15 a total function such that fle, a) = VAL, for every o= OB and a € AT,

The information function f does not specify a single value of an attribute for an
object. With cach object there is associated a set of possible values of every attribute.
We do not specify how many values an attribute may take for a given object. Sets
flo, a) are said to be generalized values of attribute a.

Consider, [or example, a system of medical information. Let set OB of objects
be a set of diseases, set AT of attributes be the set of some parameters of patient’s
body, e.g., temperature, blood tension, state of throat ete. Set VAL, of values of
parameter a is a set of possible values of that parameter. For example, VAL . peraune
is the set of elements of the interval 35°—42°. For a disease ¢ and a parameter a
the set f{o, a) is the set of values of a which may occur during disease o.

Given a system 8 of nondeterministic information, we define binary relations of
informational inclusion (in{5)) and informational connection (con( %)) in the set
OB as follows:

(o,0ein{8) if flo,a)cfio’, a) forallae AT,
(o,0"Vecon(8) if flo,a)mfie,a)=0 forallacAT.
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Hence, an object o is informationally included in object o' whenever for every
attribute @ € AT the possible values of a for o are among the possible values of a
for o'. For example. a disease o is informationally included in a disease o" if the
symptoms of o occur during o, or, loosely speaking, if discase o' is accompanied
by disease o, or if o' may be caused by 0. Objects o and o' are informationally
connected if for every attribute a € AT the generalized values of a for ¢ and o'
have an element in common. Such objects can be considered to be similar with
respect to the attributes of the given system.

The following properties of the relations in(S) and con(5) immediately follow
from the definition.

Theorem 2.1. (a) Relation inlS) is reflexive and transitive.
(b) Relation con(5) is reflexive and symmetric.

In the next section we present a formal language whose formulas are schemes of
sentences expressing properties of objects in systems of nondeterministic informa-
tion. We develop a deductive system for the language based on axiomatization of
propositional modal logics [1].

3. Logic ~iu of nondeterministic information

To define formulas of the language of logic N1 we admit the following nonempty,
at least denumerable, and pairwise disjoint sets of symbols:
-a set conNaT of constants representing attributes,
- a sel cONGVAL of constants representing generalized values of attributes,
-a set {1, v, a, =, +} of classical sentential operations of negation, disjunction,
conjunction, implication and equivalence, respectively,
-aset {{,},<.[, .0} of unary modal sentential operations,
-a set {{,}} of brackets,
FORNIL, the set of all formulae, is the least set satisfying the following conditions:

{aV) e ForniL for any a € coNaT and V e CONGVAL
if A, BerorniL, then A, Av B, An B, A» B, A«=+B e FORNIL
if AcrForNIL, then (A1 A, A, [A]A, OAE FORNIL.

Formulae of the form {(a V') are called nondeterministic descriptors. Let DESNIL
denote the set of all nondeterministic descriptors,

Formulae are intended to be schemes of sentences providing definitions of sets
of objects. For example, a formula of the form (aV) represents the set of those
ohjects for which the set of possible values of attribute denoted by a coincides with
the set corresponding to V. Modal operations enable us to express facts connected
with informational inclusion and informational connection of objects. They provide
4 means for considering Boolean structure of families of generalized values of
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attributes. Formula {(a V) represents the set of those objects which informationally
include at least one object assuming V. as a value of a. In particular if we consider
a system with the single attribute a, then this set coincides with the set of those
objects o for which V is included in f{o, a). Similarly, formula }HaV') corresponds
to the set of objects which are informationally included in objects assuming V' as
a value of a. If a is the only attribute of a system, then this set coincides with the
set of those objects o for which f{o, a) is included in V. Formula <{a, V') represents
the set of objects which are informationally connected with some objects assuming
V for a.

The semantics of the given language is defined by means of notions of model and
satisfiability of formulas in a model. By a model we mean a system

M=(0B, R, Q, m)

where

- OB is a nonempty set of objects,

- R is a reflexive and transitive relation in set OB,

= is a reflexive and symmetric relation in set OB,

- m :DESNIL—= P{OB) is a meaning function assigning sets of objects to nondeter-
ministic descriptors,
We say that an object o€ OB satisfies a formula A in a model M (M, o sat A) iff

the following conditions are satisfied:

M, osat (aV) iff eemiaV),

M, o sat 1.A iff not M, osat A,

Mosat AvEB iff M osat Aor M, osat B,
Mosat An B iff M, osatAand M, osat B,
Mosat A= B iff M osat—4AvB,

Mosat A«<=B iff M osatiA-=B)s(B-=-A),

M, o sat (A iff thereisan o € OB such that
(o', 0)e Rand M, o' € sat A,

M, o sat A iff  thereisan o' € OB such that
(0,01 R and M, o' sat A,

M, o sat A iff thereisan e’ e OB such that
(o, 0"t e Qand M, o' sat A,

M, osat[A iff forallo'=0OBif(o',0)le R,
then M, o' sat A,

M, o sat |A iff foralle'=OBif(o 0')eR,

then M, ¢' sat A,
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M, osat 1A iff forallo' =0Bif(a 0e 0,
then M, o' sat A.

Operations [, ] and O are dual with respect to {, } and <, respectively. They
correspond to necessity operators in modal logics.

To each formula A of the language we assign the set extyy A (extension of A in
M) of those objects which satisfy a formula in a model:

exty A={oc OB: M, o sat A}

Theorem 3.1

(a) extylaVi=mlaV).

() exty; A =—exty, A

i) EXtar A v B=exty Auext, B

(d) eXtay A A B =exty Amext, B

(el exta A=+ B =—exty Awuexty, B

(f)  exty A< B=exty Arexty Bu{—exty A) n(—exty B).

(g exta (A ={0e OB: thereis an o' € OB such that
(p'.0)e R and 0" € exty; A}

(h)  exts »A={oc OB: thereis an 0" OB such that
(o, 0" R and 0 € exty A}

i) exty A ={oe OB: there is an o' € OB such that
{0 e Qand o' cexty; Al

(j extar [A=exty 1{A.

(k) eXtyy JA =exty ) A

(#)  exty, OA=ext,, 7% A

We say that a formula A is true in a model M (=, A} iff ext,; A = OB. A formula
A is valid (EA) iff it is true in every model. A set T of formulas is satisfied by an
object o in a model M (M, esat T) iff M, osat A for every formula Ae T. A set
T is satisfiable iff there exists a model M and an object o such that M, osat T. A
formula A is a semantical consequence of a set T of formulas (TE= A) iff M, o sat A
whenever M, osat T for every model M and for every object ¢ from the set of
ohjects of M.

We admit the following axioms and inference rules for the logic NiL.

Axioms

(A1) All formulas having the form of tautologies of the classical propositional
calculus.

(A2} [(A-B)=([A-[B).
(A3} A+ B)=(]A->]B).
(Ad4) O(A-B)-=({A-UB).
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(A5) A-JA
(AB) A=A
(AT) 1A= A,
(AB) A=A,
(AD) ]A-=]]A.
(A10) A=A

Axioms (A2), (A3)and (Ad) assure that logic ni is a normal modal logic. Axioms
(AS5) and (A6) show that operation { is inverse with respect to operation ). Axioms
(A7) and (AB) provide reflexivity of relations R and @, respectively. Axioms (A9)
and (A10) provide transitivity of relation R and symmetry of relation O, respectively.

Rulfes of inference

A, A-B A
{(R1}) TR (R3) A
A A
{R2) [_A (R4 A

Rules({R2),(R3) and ( R4) are counterparts of the necessity rule in modal logics.
The given axioms and rules characterize the operations =, =, [, ] and O only,
but it is sufficient due to Theorem 3.1(f), (g), (k). (1), and the following theorem.

Theorem 3.2
(a) extay Av B=exty, A= B
(b exty, An B=ext,, 0(A->—1B].

We say that a formula A is derivable from a set T of formulas {TH A} iff it is
obtainable from the axioms and the formulas from T by repeated application of
inference rules. A formula A is said to be a theorem of logic e (—A) iff it s
derivable merely from the axioms. A set T of formulas is consistent if a formula
of the form A » A is not derivable from T.

Theorem 3.3. (Soundness theorem). (a) —A implies = A,
by TH+A implies T= A,
ic) T sarisfiable implies T consistent.

Proof. The axioms of ~iL are easily seen to be valid, and rules clearly preserve
validity. This proves (a) from which (b} and (¢} immediately follow.

Examples of theorems of logic raL are presented below,



Representation of nondeterministic information 33

Theorem 3.4
{a) +FA=-{A
by H{AvB)=({{Av{H).
(€}  H{AaABi—=({An{B).
(d)  H{AAB)={[AA[B).
el HA={A.
N ~lA=-A
(g) FlA={nA.
(h) +=—]A«<)A
(i) FOOA = A,
(i A=A,
(k) FlA LB ={{AxB).
(] 1A A)B =3 A B)

Theorems related to operations } and ] are analogous to (a)={f).
[n the following. a completeness theorem for logic ~iL will be presented. Let T
be a consistent set of formulas and let relation = in set ForniL be defined as follows:

A=08 if TH A«B

Theorem 3.5, (a) Relation = is an equivalence on set FORNIL.
(b} Relation = is a congrwence with respect to 7, v and ».
(c) IfA=B, then[A=[B, JA=]1B and DA~=0B.

Proof. The proof of conditions (a) and (b) is the same as for the classical proposi-
tional logic [9]. Condition (c) follows from Axioms (A2), (A3), (Ad) and necessity

rules.

We construct the quotient algebra

ANIL = [FORMIL|~, — v, ™, 1, 0)

where ForNIL|. is the set of the equivalence classes [A] of relation = for all formulas
A,

—[A]l=["A] 1=[AvA]
[AJu[B]=[AvB] 0=[Ar"A]
[Aln[Bl=[Ax B]
Theorem 3.6. (a) Algebra aniL is a nondegenerate Boolean algebra.
(b) [A]=[B] iff T+[A- B].

(c) T-Af[A]=1.
(d)y [CA]# 0 iff not T A,
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Let # be the family of all the maximal filters in algebra a~iL. Set # is nonempty
since the algebra is nondegenerate. We define relation R, = F x F as follows:

(F,G)e R, iff foranyformula Aif[]A]sF,
then[A]e .

Theorem 3.7. The following conditions are equivalent:
{a) (F.G)eR,.
(b} If[[Ale G, then[A]e F.
(c) If [A]l<F, then [{A]e G,
(d} If [A]l= G, then [)A]e F.

Proof. Assume condition (a), and suppose that [JA]e G and [A]# F. It follows that
[1A]e F and, by (A5),[[{"A] € F. By (a) we obtain [(mA]e G. By Theorem 3.4(k)
we have [{({A »A)]€ G, but G is a proper filter., a contradiction. Hence condition
(h) holds.

Let us now assume that condition (b) holds and suppose that [A]e Fand [{A]e G.
Hence [[1A]€ G and by (b) we have [7A]= F, a contradiction. Hence condition
ic) holds,

Assume condition (¢) and suppose that [A]e G and [)A]2 F. Then [—)A]= F and
by (c) we have [(—A]e G. By (A6),[A]< G, a contradiction. Hence condition {(d)
holds.

We also have (d) implies (a). For suppose not, then [}A]e G, and by (d).[}A]e F.
By Theorem 3.4(¢) we have [}(A » 1.A)]e F, a contradiction.

Theorem 3.8. Relation R, is reflexive and transitive,
Proof. The proof follows from (A7) and {AY),

We define a relation Q< F = F as follows:

[F,GyeQ, iff foranylormula Aif[OJA]eF,
then[A]e G

Theorem 3.9. Relation O, is reflexive and symmetric.
Proof. The proof follows from (A) and (A10).
Theorem 3.10. (a) If [}A]e F, then there exists a G € F such that (F, G)= Ryand
[Ale G.
(b) If [{A]e F, then there exists a G € F such that (G, F)e R, and [A]e G.
(c) If [CA]eF, then there exists a G F such that (F, G)e Q, and [A]l= G.

Proof. Let[}A]e F and consider set X ={[B]:[|B]e F}. Set X, is nonempty since
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1 £ X Consider filter F' generated by set Xpw{[A]}. We have F'={[B]: there
exist [Ay],. ... [A.)e X n=1, such that [A,]n -+ -~[A, ]n[A]l=[B]}. We shall
show that forany[A,],....[A.]e X wchave[Af] s m[AL ] [A]# 0. Suppose
then, conversely, T A -+ an A, = A By (A3) and (R3) we have T A a---na
A, )= 1A Since [1A],....[1A.]€ F, we have [JA A --n]A ] F. Since —]A
|B<+](AnB), we have [J{A, n-- -~ A,)]e F Hence [[0A]e F, so [)A] e F, what
contradicts the assumption. Thus, filter F' is proper. Let G be the maximal filter
containing F'. We clearly have [A]e G and (F, G)e R,. Hence condition (a) is
satisfied. The proof of conditions (b) and (c) is similar.

We define a canonical model M, as follows:

.Mu = [Gth R[I- [}(I'- nll].l

where

i DBH = .‘F,

- R, and Q, are relations defined above,
-FemylaV)iff [(aV)]eF.

Theorem 3.11. The following conditions are equivalent:
(a) My, Fsat A
ib) [Al= F

Proof. If A is of the form (a V'), then the theorem holds by the definition of meaning
function mig in the canonical model. If A is of the form 7B or B = C, we use the
definition of satisfiability and the fact that filter F is maximal and prime. If A is of
the form {B or } B, then the theorem follows from Theorems 3.7 and 3.10(a) and
by If A is of the form < B, then we use Theorem 3.100¢). Now, consider a formula
of the form ]A and suppose that M, F sat JA and []A]# F. Hence [} A]e F and
M, F sat )1 A, Thus My, F sat —1]A, a contradiction. Now assume hat []A]€ F and
consider set X ={[B]:[1B]e F}. We have [A]e X Moreover, set X is a filter,
since we have [B] and [C]e Xp it [B]~[C]=[B » C] & X for any formulas B and
. Set Xp is a proper filter, since 02 Xp. By the Kuratowski-Zorn lemma there is
a maximal filter & such that (F, G)= R and [A]e G. But X is contained in every
filter G such that (F, G) & Ry, thus [A] belongs to every such filter. By the induction
hvpothesis we have My, G sat A for all G satisfying (F, &) e Ry, Hence M, F sat ]A.
For formulas of the form [A and CA the proof is similar and uscs Theorem 3.4(h)
and (j).

Theorem 3.11 enables us to prove completeness and compactness of logic NIL.

Theorem 3.12 (Completeness theorem). {a) =A implies —A.
ib) TEA implies THA,
(¢} T consistent implies T satisfiable,
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Proof. We now prove condition (b). Suppose that not T+ A. By Theorem 3.6(d)
we have [1A]# 0. Thus there is a maximal filter F,, e # such that [A]e F,.. By
Theorem 3.11 we have M, F,sat 2A. For any formula Be T we have T— B by
Theorem 3.6(c). Hence [B] e Fj, and, by Theorem 3.11., M,, F, sat B, a contradiction.
Condition (a) follows from (b), and condition (¢} follows from Theorem 3.11,

As a corollary we obtain the following theorem.

Theorem 3.13 (Compactness theorem). The following conditions are equivalent:
{a) T is satisfiable.
(b) Every finite subset of T is satisfiable.

Deductive methods based on logic ML enable vs to determine for any formula
expressing a property of objects whether it is implied by some other formulas. In
NiL all the tautologies of classical logic are valid and hence its deductive power is
not less than that of the classical logic. The modal operations enable us 10 reason
in the presence of nondeterminism understood as indefiniteness of information about
objects. These operations enable us to penetrate in a sense a Boolean structure of
families of generalized values of attributes. In the next section we discuss languages
of systems of nondeterministic information based on the logic ~iL.

4. Languages of systems of nondeterministic information

Let §=(0B, AT, VAL, f) be given, and let in($) and con($) be, respectively,
relations of informational inclusion and informational connection determined by
system S. Let n be the function

nicoONMATUCONGYAL = ATU PIVAL)

such that

- n{coNaT) = AT,

—the range of function f is included in nicoNGvaL),
We consider model

M ={0B,in(5),con(§), m) where miaV)={o: f(o, n{a))=n{ V)}.

Next, the set rorNiL(M) of formulae of system § is the least set containing all
pairs of the form

(r(a)n(V)) foranyaeconaTand VeconGvaL

and closed with respect to operations =1, v, », =, =, {, 1, &, [, . O.
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In a natural way we define satisfiability of formulae of system 5 by objects of the
system, and extensions of formulae, namely

osatin(a)n{V)) i M, osat{aV),
ext(n{a)n{ V)l =exty(aV).

For compound formulae the respective inductive definitions are analogous to
those presented in Section 3.

A formula A € FoRNIL(M) is troe iff ext A=0B.

By using formulae from set ForNILI M) we can express many important properties
of sets of objects.

Theorem 4.1. (a) A= B is true iff ext Acext B,
(b) A« B is true iff ext A =ext B.
(e} A is trie iff ext A =@

In the following we present some properties specific for nondeterministic infor-
mation.

Theorem 4.2. (a) If {(n{a)n( V) is true, then n{ V)= flo, nla)) for all 0 OB.
(b If in(ain{ V) is true, then flo, nla))c ni V) for all 0 OB,
{c) If S{nla)niV)) is true, then flo, nia)) nn( V)£ for all o€ OB.

Formula {{(n{a)n{V}) is true iff each object o in a given system has associated
with it a certain object o which is informationally included in o and assumes
generalized value n{V) of attribute nia). It follows that nl V) is a subset of a
gencralized value of attribute nia) for object o. In a similar way it can be easily
seen that conditions (b) and (¢) hold.

Theorem 4.3. For any system such that AT={a} the following conditions are
satisfied:

(a) If ext{(mia)n( V1) =d, then there is an object assuming generalized value
nl V) for attribute n{a) and it is possible that there are objects assuming supersets of
ni V) for nia).

(b) If ext{n{aln( V))#@, then there is an object assuming n( V') for nla) and
it is possible that there are objects assuming subsets of n( V) for n{a).

ic) If ext[{n{a)n( V)] #0, then there is an object assuming n( V) for n{a) and
there are no objects assuming supersets of n( V') for nia).

id) If extJinia)ni V) =@, then there is an object assuming n( V) for nia) and
there are no objects assuming subsets of n{'V) for nia).

Let us consider the following system of medical information:
-DB=4{D1,..., D6} is a set of diseases,
- AT={al, a2} is a set of symptoms occurring during diseases from OB,
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-VAL,, ={vl, ©d, v3, v4, 05},

-VAL,»={ul, u2, ul},

-VAL=VAL,,uVAL,,,

=f:OBxAT-P(VAL) is given by the following table:

al al
D1 fel, v3} {ul, w2, ui}
D2 {2, u5} ful}
D3 {rl, v3, vd} {ul, w2}
D4 {el} {ul, u2}
Ds {el, v3} {ul}
D {e5} jul}

The relation of informational inclusion of the given system consists of the following
pairs of diseases:

All pairs (D4, D)) for i=1,....6,
(D4, D1) (D5, D1) (D, D2y (D4, D3) (D5, D3),

In the following we list extensions of some formulae of the language of the system
and we give their intuitive interpretation:

ext{{al{vl})={D1, D3, D4}: Diseases D1, D3 and D4 can be caused by a
discase in which symptom al assumes value ©l: in other words if a patient suffers
from one of diseases 01, D3 or [34, then sometime in the past he (she) possibly
suffered from a disease satisfying (a l{v1}).

ext al{vl, 03, v4})={D3, D4, D5} Diseases D3, D4 and D5 are possibly
followed by a disease in which possible values of al are among ¢1, ©3 and v4; or
if a patient suffers from D3, D4 or D5, then sometime in the future he (she) will
possibly suffer from a discase satisfying (al{v1, v3, vd}).

ext [{a2{ul})={D2, D6}: Each disease causing D2 or D6 assumes value ul of
symptom a2,

ext Jla2{ul, u2}) ={D3}: Each disease caused by D3 assumes ul or u for
symptom a2,

Let us observe that

ext{{al{v3}) =0,

since in our system there is no object which assumes generalized value {v3} of
attribute a 1. This means that although in our system {3} is a subset of generalized
values of a1 for diseases D1, D3 and D35, knowledge given in the system does not
enable us to point out a disease which satisfies {a 1{v3}) and possibly causes diseases
D1, D3 or D3.

The relation of informational connection of the given system consists of the
following pairs:
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All pairs (D, 1) fori=1,...,6
(D21, D3 (D1, D4) (D1, D5) (D2, D&Y (D3, D4)
(D3, D5) (D4, DS).

All pairs ( Di, 1)) for ( Dj, Di} given above,

Consider, for example, the following extensions:

ext &lalivl, v3}) ={D1, D3, D4, D5}: For diseases D1, D3, D4 and D5 there
are diseases informationally connected with them which may take vl or v2 as the
values of symptom al.

ext dla2ul}y=1D2, D6} All diseases similar to D2 or D6 in the sense of
informational connection may assume value ul for attribute a2,

By using modal operations of the language we can express those relationships
between objects of a system which are determined by the algebraic structure of
families of generalized values of attributes. Although these relationships are not
stated explicitly in the system, they are given implicitly by the choice of generalized
values of attributes. The presented language provides a means for accessing this
kind of information.
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