
 

ROUGH SET THEORY AND ITS APPLICATIONS TO DATA ANALYSIS 

Zdzisław Pawlak 
 
 
Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, ul. Baltycka 5, 44 
100 Gliwice, Poland 
 

ABSTRACT 

The paper gives basic ideas of rough set theory - a new approach to data analysis. The lower and the 
upper approximation of a set the basic operations of the theory, are intuitively explained and for-
mally defined. Some applications of rough set theory are briefly outline and some future problems 
pointed out. 

INTRODUCTION 

Rough set theory [7] is a new mathematical approach to data analysis and data mining. After 15 
year of pursuing of rough set theory and its application the theory has reached a certain degree of 
maturity. In recent years we witnessed a rapid grow of interest in rough set theory and its applica-
tion, world wide. Many international workshops, conferences and seminars included rough sets in 
their programs. A large number of high quality papers have been published recently on various as-
pects of rough sets.   
 The notion of a set is a fundamental concept for a whole contemporary mathematics, and set 
theory  introduced by George Cantor in 1883 is, no doubt, a mile stone in development of modern 
mathematical thinking. 
 A set is defined by its elements, i.e. it is defined if all its elements are uniquely determined. For 
example, the set of all odd (even) numbers is determined uniquely and every integer can be classi-
fied, without any doubt, as „odd” or „even”. This kind of notions are usually refereed to as crisp. 
Obviously all mathematical notions are crisp, otherwise it would be impossible to prove any 
mathematical theorem.  
 But in many other fields the situation in not so pleasant. For example, in medicine the notion of 
a ”healthy  (or ill) person” cannot be uniquely defined. Similarly in law the notion of „guilty” („not 
guilty”) cannot be precisely defined. These kind of imprecise notions are called  vague. Vague no-
tions are notoriously used, not only in medicine or law, but almost everywhere; for example, econ-
omy and politics are other exemplary domains where vague concepts are intrinsically adhered to 
method of thinking and debates.  
 Vague concepts are characterized by a „boundary region”,  which consists of all elements which 
cannot be classified to the concept or its complement. For example, the concept of an odd (even) 
number is precise, because every number is either odd or even - whereas the concept of a beautiful 
women is vague, because for some women we cannot decide, with certainty, whether they are beau-
tiful or not. 
 This approach is know in a philosophical literature as boundary-line approach to vagueness and 
is attributed to German logician Gotlob Frege, who first formulate this idea in 1894.   
Thus vague concepts form basis for common sense reasoning in many fields connected with real 
life situations.  
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 Vagueness for many years attracted attention of philosophers and logicians. Recently, computer 
scientist also got interested in vagueness, for many computer applications, in particular referring to 
„artificial intelligence”, badly need use of vague notions, and vague concepts based reasoning 
methods.  
 The most successful theoretical  approach to vagueness is no doubt fuzzy set theory proposed by 
Zadeh. Basic idea of  fuzzy set theory hinges on fuzzy membership function, which allows partial 
membership of elements to a set, i.e. it allows that elements can belong to a set to „a degree”. 
 Rough set theory is another mathematical approach to vagueness. 
 In the rough set approach vagueness is due to the lack of information, about some elements of 
the universe.  
 If with some elements the same information is associated, in view of this information these ele-
ments are indiscernible. For example, if some patients suffering from a certain disease display the 
same symptoms, they are indiscernible with respect to the information about them. It turns out that 
the indiscernibility leads to the boundary-line cases, i.e. that some elements cannot be classified to 
the concept or its complement in view of the available information. 
 Because vague concepts  have  boundary-line cases, i.e. elements which cannot be with certainty 
classified as elements of the concept, hence vagueness is strictly connected with the idea of cer-
tainty (or uncertainty). 
 Rough set theory seems to be well suited as a mathematical model of vagueness and uncertainty. 
Vagueness is a property of sets (concepts) and is strictly related to the existence of the boundary 
region of a set, whereas uncertainty is a property of elements of sets. In the rough set approach both 
concepts are closely related and are due to the indiscernibility caused by insufficient information 
about the world we are interested in.  
 The connection of rough set theory and many other theories has been clarified. Particularly in-
teresting is the relationship between fuzzy set theory and Dempster-Shafer theory of evidence. The 
concepts of  rough set and fuzzy set are different since they refer to various aspects of  imprecision 
[10], whereas the connection with theory of evidence is more substantial [12]. Besides,  rough set 
theory is related to  discriminate analysis [4], Boolean reasoning methods [13] and others. The rela-
tionship between rough set theory and decision analysis is presented in [11,15]. Several extension 
of  the "basic" model of rough set have been proposed and investigated. 
 Rough set theory has found many interesting applications. The rough set approach seems to be 
of fundamental importance to AI and cognitive sciences, especially in the areas of machine learn-
ing, knowledge acquisition, decision analysis, knowledge discovery from databases, expert systems, 
inductive reasoning and pattern recognition. It seems of particular importance to decision support 
systems and data mining. The main advantage of rough set theory is that it does not need any pre-
liminary or additional information about data - like probability in statistics, or basic probability as-
signment in Dempster-Shafer theory and grade of membership  or the value of possibility in fuzzy 
set theory. Rough set theory has been  successfully applied in many real-life problems in medicine, 
pharmacology, engineering, banking, financial and market analysis and others. In particular, in 
pharmacology  the analysis of relationships between  the chemical structure and the antimicrobial 
activity of drugs has been successfully investigated. Banking applications include evaluation of a 
bankruptcy risk and market research. Very interesting results have been also obtained  in speaker 
independent speech recognition and acoustics. The rough set approach seems also important for 
various engineering applications, like material sciences, diagnosis of machines using vibroacoustics 
symptoms (noise, vibrations) and process control. Application in linguistics, environment and data-
bases are other important domains. More about applications of rough set theory can be found in [5, 
6,9,14,17,18,20,22] and others. 
 Very promising new areas of application of the rough set concept seems to emerge in the near 
future. They include rough control, rough data bases, rough information retrieval, rough neural net-
work and others. 
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 Application of rough sets requires a suitable software. Many  software systems for workstations 
and personal computers based on rough set theory have been developed. The most known include 
LERS [1], Rough DAS and Rough Class [16] and  DATALOGIC [17]. Some of them are available 
commercially. 

BASIC PHILOSOPHY 

Rough set philosophy is based on the assumption that, in contrast to the classical set theory,  we 
have some additional information (knowledge, data) about elements of a set. Consider, for example, 
a group of patients suffering from a certain disease. In a hospital treating the patients there are data 
files containing information about patients − such as, e.g., body temperature, blood pressure, name, 
age, address and others.  All patients revealing the same symptoms are indiscernible (similar) in 
view of  the available information and form blocks, which can be understood as elementary gran-
ules of knowledge about patients (or types of patients). These granules are called elementary sets or 
concepts, and can be considered as elementary building blocks (atoms) of our knowledge about 
reality we are interested in. Elementary concepts can be combined into compound concepts, i.e. 
concepts that are uniquely defined in terms of elementary concepts. Any union of elementary sets is 
called a crisp set, and any other sets are referred to as rough (vague, imprecise). With every set X 
we can associate two crisp sets, called the lower and the upper approximation of X. The lower ap-
proximation of X is the union of all elementary set which are included in X, whereas the upper ap-
proximation of X  is  the union of all elementary set which have non-empty intersection with X. In 
other words the lower approximation of a set is the set of all elements that surely belongs to X, 
whereas the upper approximation of X is the set of all elements that possibly belong to X. The dif-
ference of the upper and the lower approximation of X is its boundary region. Obviously a set is 
rough if it has non empty boundary region whatsoever; otherwise the set is crisp. Elements of the 
boundary region cannot be classified, employing the available knowledge, either to the set or its 
complement. Approximations of sets are basic operation in rough set theory and are used as main 
tools to deal  with vague and uncertain data. 

EXAMPLE 

Let us depict the above idea by means of a simple example. 
 Data are often presented as a table, columns of which are labeled by attributes, rows by objects 
of interest and entries of the table are attribute values. Such tables are known as information sys-
tems, attribute-value tables, data tables or information tables. 
 Usually we distinguish in information tables two kinds of attributes, called  condition and deci-
sion attributes. Such tables are known as decision tables. Rows of a decision table are referred to as 
“if...then...” decision rules, which give conditions necessary to make decisions specified by the de-
cision attributes. An example of a decision table is shown in Table 1. 

Pipe   C   S P    Cracks 
1 
2 
3 
4 
5 
6 

high 
avg.  
avg. 
low 
avg. 
high 

high 
high 
high 
low 
low 
low 

 low 
 low 
 low 
 low 
 high 
 high 

yes 
no 
yes 
no 
no 
yes 

            Table 1 
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 The table contains data concerning six cast iron pipes exposed to high pressure endurance test.  
In the table C, S and  P are condition attributes, displaying the percentage content in the pig-iron of 
coal, sulfur and phosphorus respectively, whereas the attribute Cracks revels the result of the test. 
The values of condition attributes are as follows (C, high) > 3.6%, 3.5% ≤ (C, avg.) ≤ 3.6%,  
(C, low) < 3.5%, (S, high) ≥ 0.1%, (S, low) < 0.1%, (P, high) ≥ 0.3%, (P, low) < 0.3%. 
 Main problem we are interested in is how the endurance of the pipes depend on the compounds 
C, S and P comprised in the pig-iron, or in other words, if there is a functional dependency between 
the decision attribute Cracks and  the condition attributes  C, S and P. In rough set theory language 
this boils down to the question, if the set {2,4,5}of all pipes  having no cracks after the test (or the 
set {1,3,6}of pipes having cracks), can be uniquely defined in terms of condition attributes values. 
 It can be easily  seen that this is impossible, since pipes 2 and 3 display the same features in 
terms of attributes C, S and P, but they have different values of the attribute Cracks. Thus informa-
tion given in Table 1 is not sufficient to solve our problem. However we can give a partial solution. 
Let us observe that if the attribute C has the value high for a certain pipe, then the pipe have cracks, 
whereas if the value of the attribute C is low, then the pipe has no cracks. Hence employing attrib-
utes C, S and P, we can say that pipes 1 and 6 are surly good, i.e., surely belong to the set {1, 3, 6}, 
whereas pipes 1, 2, 3 and 6 are possible good, i.e., possible belong to the set {1, 3, 6}.Thus the sets 
{1, 6}, {1, 2, 3, 6} and {2, 3} are the lower, the upper approximation and the boundary region of 
the set {1, 3, 6} respectively. 
 This means that the quality of pipes cannot be determined exactly by the content of coal, sulfur 
and phosphorus in the pig-iron, but can be determined only with some approximation. 
In fact approximations determine the dependency (total or partial) between condition and decision 
attributes, i.e., express relationship between values of condition and decision attributes. The degree 
of dependency between condition and decision attributes can be informally defined as the ratio of 
all rows in which values of condition attributes uniquely determine values of decision attributes − to 
all rows in the table. For example, the degree of dependency between cracks and  the composition 
of the pig-iron is 4/6 = 2/3. That means that four out of six (ca. 60%) pipes can be properly classi-
fied as good on the basis of  their composition. 
 We might be also interested in reducing some of the condition attributes, i.e. to know whether 
all conditions are necessary to make decisions specified in a table. To this end we will employ the 
notion of a reduct (of condition attributes). By a reduct we understand a minimal subset of condi-
tion attributes which preserves degree of dependency between decision and condition attributes. It 
is easy to compute that in Table 1 we have two reducts {C, S} and {C, P}. Intersection of all reducts 
is called the core. In our example the core is the attribute C. 
 That means that in view of the data coal is the most important factor causing cracks and cannot 
be eliminated  from our considerations, whereas sulfur and phosphorus  play a minor role and can 
be mutually exchanged as factors causing cracks. 
 
INDISCERNIBILITY 
 
As mentioned in the introduction, the starting point of rough set theory is the indiscernibility rela-
tion, generated by information about objects of interest. The indiscernibility relation is intended to       
express the fact that due to the lack of knowledge we are unable to discern some objects employing 
the available information. That means that, in general, we are unable to deal with single objects but 
we have to consider clusters of indiscernible objects, as fundamental concepts of knowledge. 
 Now we present above considerations more formally.   
 Suppose we are given two finite, non-empty sets U and A, where U is the universe, and A − a set 
attributes. With every attribute a ∈ A  we associate a set Va, of its values, called the domain of a. 
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 The pair S = (U, A) will be called an information system. Any subset B of A determines a binary 
relation IB on U, which will be called an indiscernibility relation, and is defined as follows: 

xIBy if and only if  a(x) = a(y) for every a ∈ A,  
where a(x) denotes the value of attribute a for element x.  

 Obviously IB is an equivalence relation. The family of all equivalence classes of IB, i.e., the par-
tition determined by B,  will be denoted by U/IB, or simply U/B; an equivalence class of IB, i.e., the 
block of the partition U/B, containing  x will be denoted  by B(x).  
 If (x, y) belongs to IB  we will say that x and  y are B-indiscernible. Equivalence classes of the 
relation IB (or blocks of the partition U/B) are referred to as B-elementary concepts or B-granules. 
As mentioned previously in the rough set approach the elementary concepts are the basic building 
blocks (concepts) of our knowledge about reality. 
 For example pipes 1, 2 and 3, as well as pipes 5 and 6, are indiscernible in terms of S and P; 
pipes 1 and 2, as well 2, 3 and 5 are indiscernible in terms of attribute C. 

APPROXIMATIONS OF SETS 

The indiscernibility relation will be used next to define basic concepts of rough set theory. Let us 
define now the following two operations on sets 

 
B X x U B x X∗ = ∈ ⊆( ) { : ( ) },  

B X x U B x X∗ = ∈ ∩ ≠ ∅( ) { : ( ) },  
 
assigning to every subset X of the universe U two sets and called the B-lower and the 
B-upper approximation of X, respectively. The set 

B X∗ ( ) B X∗ ( )

 
BN X B X B XB ( ) ( ) ( )= −∗

∗  
 

will be referred to as the B-boundary region of X. 
 If the boundary region of X is the empty set, i.e., , then the set X is crisp (exact) 

with respect to B; in the opposite case, i.e., if , the set X is referred to as rough (inex-
act) with respect to B. 

BN XB ( ) = ∅

BN XB ( ) ≠ ∅

 The example which follows will show how to compute the lower, the upper and the boundary 
region of a set. 
 Let us denote  the set of an condition attributes C, S and P by B, and let Xyes = {1, 3, 6}, Xno = 
{2, 4, 5} denote sets of pipes having cracks and having no cracks respectively. B-elementary sets in 
our example are the following sets: {1}, {2, 3}, {4}, {5} and {6}. 
 Hence we get 

B X yes∗ ( ) { } { } { ,= ∪ =1 6 1 6}

}

}

}

}

, 

B X yes
∗ ( ) { } { , } { , } { } { , , ,= ∪ ∪ ∪ =1 2 3 2 3 6 1 2 3 6 , 

B X no∗ ( ) { } { } { ,= ∪ =4 5 4 5 , 

B X no
∗ = ∪ ∪ =( { , } { } { } { , , ,2 3 4 5 2 3 4 5 , 

BN X BN XB yes B no( ) ( ) { ,= = 2 3 . 

 One   can   easily  show  the  following properties of approximations:   
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(1)    B X X B X∗
∗⊆ ⊆( ) ( ),

(2)    B B B U B U∗
∗

∗
∗∅ = ∅ = ∅ = =( ) ( ) , ( ) ( ) ,U

∗ ),

∗ ),

∗ ),
∗ ),

,

,

,

≠ B X yes
∗ ( ) ≠ ∅

(3)    B X Y B X B Y∗ ∗∪ = ∪( ) ( ) (

(4)    B X Y B X B Y∗ ∗∩ = ∩( ) ( (

(5)    X Y B X B B X B Y⊆ ⊆ ⊆∗ ∗
∗ ∗ implies (Y) and ( ) ( ) ( ),

(6)    B X Y B X B Y∗ ∗∪ ⊇ ∪( ) ( ) (

(7)    B X Y B X B Y∗ ∗∩ ⊆ ∩( ) ( ) (

(8)    B X B X∗
∗− = −( ) ( )

(9)    B X B X∗
∗− = −( ) ( )

(10)  B B X B B X B X∗ ∗
∗

∗ ∗= =( ( )) ( ( )) ( ),

(11)  B B X B B X B X∗ ∗
∗

∗ ∗= =( ( )) ( ( )) ( )

where −X denotes U − X .   
 Let us observe that due to the properties (6) and (7) approximations cannot be computed step by 
step, because the lower approximation of union of sets is not necessarily equal to union of the lower 
approximations of the constituent sets; similarly the upper approximation of intersection of sets 
needs to be equal to the intersection of the upper approximation of the constituent sets.  
That means, that in general, the data table cannot be decomposed into smaller parts (or that tables 
cannot be combined together), for the results obtained from decomposed (or integrated) tables may 
differ. 
 One can define the following four basic classes of rough sets, i.e., four categories of vagueness:  

a)  iff X is roughly B-definable, B X B X U∗
∗≠ ∅ ≠( ) ( ) , and 

b)  iff X is internally B-indefinable, B X B X U∗
∗= ∅ ≠( ) ( ) , and 

c)  iff X is externally B-definable, B X B X U∗ ∗≠ ∅ =( ) ( ) , and 

d)  iff X is totally B-indefinable. B X B X U∗
∗= ∅ =( ) ( ) , and 

 The intuitive meaning of this classification is the following.  
 If X is roughly B-definable, this means that we are able to decide for some elements of U 
whether they belong to X or −X, using B.  
 If X is internally B-indefinable, this means that we are able to decide whether some elements of 
U belong to −X, but we are unable to decide for any element of U, whether it belongs to X or not, 
using B.   
 If X is externally B-indefinable, this means that we are able to decide for some elements of U 
whether they belong to X, but we are unable to decide, for any element of U whether it belongs to 
−X or not, using B. 
 If  X  is  totally  B-indefinable,  we are unable to decide for any element of U whether it belongs 
to X or −X, using B. 
 In our example   and B* (Xno) ≠ U, B* (Xno) ≠ ∅ hence both Xyes and 
Xno are roughly B-definable. 

B X Uyes∗ ( ) ,

  Rough set can be also characterized numerically by the following coefficient 
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( ) ( )
( )

α B X
B X

B X
= ∗

∗
, 

 
called the accuracy of approximation, where |X| denotes the cardinality of X. Obviously 

 If  X is crisp with respect to B (X is precise with respect to B), and oth-
erwise, if  X is rough with respect to B. 
0 1≤ ≤α B X( ) . α B X( ) ,= 1

( )α B X < 1,
 For example, for Xyes we have 

α αB yes B noX X( ) ( ) / /= = =1 4 1 2 . 

ROUGH SETS AND MEMBERSHIP FUNCTION 

 Rough sets can be also defined using a rough membership function, defined as  

μ X
B x X B x

B x
( )

| (

| ( ) |
.=

∩ ) |

X

U

U

U

 

Obviously  
μ X

B x( ) [ , ].∈ 0 1  

 Value of the membership function μX (x) is kind of conditional probability, and can be inter-
preted as a degree of certainty to which x belongs to X (or 1 − μX (x),as a degree of uncertainty). 
 The rough membership function, can be used to define approximations and the boundary region 
of a set, as shown below:  

B X x U xX
B

∗ = ∈ =( ) { : ( ) },μ 1  

B X x U xX
B∗ = ∈ >( ) { : ( ) },μ 0  

BN X x U xB X
B( ) { : ( ) }.= ∈ < <0 1μ  

 
 The  rough membership function has the following properties [35]:  

a)   iff  , μ X
B x( ) = 1 x B X∈ ∗( )

b)  iff   μ X
B x( ) = 0 x B X∈− ∗( ),

c) 0 1  < < ∈μ X
B

Bx x BN( ) ( ),  iff  

d) If  then   is the characteristic function of  X, ( ) {( , ): },B x x x U= ∈ μ X
B x( )

e) If   xI B y x y I BX
B

X
B( ) , ( ) ( ) ( ),  then    provided  μ μ=

f)  μ μU X
B

X
Bx x x− = − ∈( ) ( ) ,1   for any  

g)  μ μ μX Y X
B

Y
Bx x x x∪ ≥ ∈( ) ( ( ), ( )) ,max   for any  

h)  μ μ μX Y
B

Y
B

Y
Bx x x x∩ ≤ ∈( ) ( ( ), ( )) ,min   for any  

i) If X is a family of pairwise disjoint sets of U, then  μ μ∪
∈

= ∑X
B

X

B

X

x( ) ( )X x  for any x ∈ U. 

 The above properties show clearly the difference between fuzzy and rough memberships. In 
particular properties g) and h) show that the rough membership can be regarded formally as a gen-
eralization of fuzzy membership, for the max and the min operations for union and intersection of 
sets respectively for fuzzy sets are special cases of that for rough sets. But let us recall that the 
„rough membership”, in contrast to the „fuzzy membership”, has probabilistic flavor. 
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 For example the rough membership of pipes to Xyes is shown below: 

μ
X
B

yes
p( ) ,1 1=   

μ
X
B

yes
p( ) / ,2 1 2=   

μ
X
B

yes
p( ) / ,3 1 2=   

 μ
X
B

yes
p( ) ,4 0=  

μ
X
B

yes
p( ) ,5 0=   

μ
X
B

yes
p( ) .6 1=   

 That means that if, for example, a pipe has high content of coal and sulfur and low content of 
phosphorus, then it has cracks, whereas if content of coal, sulfur and phosphorus is average, high 
and low respectively, the probability that the pipe has cracks equals 1/2. 
 It can be easily seen that there exists a strict connection between vagueness and uncertainty. As 
we mentioned above vagueness is related to sets (concepts), whereas uncertainty is related to ele-
ments of sets. 

DEPENDENCY OF ATTRIBUTES 

Approximations of sets are strictly related with the concept of dependency (total or partial) of at-
tributes. 
 Intuitively, a set of attributes D depends totally on a set of attributes C, denoted C D⇒ , if all 
values of attributes from D are uniquely determined by value of attribute form C. In other words, D 
depends totally on C, if there exists a functional dependency between values of D and C. In Table 1 
there are no total dependencies whatsoever.  
 We would also need a more general concept of dependency of attributes, called the partial de-
pendency of attributes. Partial dependency means that only some values of D are determined by 
values of C. 
 Formally dependency can be defined in the following way. Let D and C be subsets of  A. 
 We will say that D depends on C in a degree ( )k k0 ≤ ≤ ,1 denoted C D if  k⇒ ,
 

( ) ( )
k C D

POS D
U

C= =γ , , 

where 
( ) ( )POS D C XC

X U D
=

∈
∗U

/
, 

 
called a positive region of the partition U/D with respect to C, is the set of all elements of U that can 
be uniquely classified to blocks of the partition U/D, by means of C. 
Obviously 
 

( ) ( )
γ C D

C X
UX U D

, .
/

= ∗

∈
∑  

 
 If k = 1 we say that D depends totally on C, and if k < 1, we say that D depends partially (in a 
degree k) on C.  
 The coefficient k expresses the ratio of all elements of the universe, which can be properly clas-
sified to block of the partition U/D, employing attributes C and will be called the degree of the de-
pendency which can be also interpreted as a probability that  x ∈ U belongs to one of the decision 
classed determined by decision attributes 
 For example {Cracks}depends on {C, S, P }in the degree k = 4/6 = 2/3. 
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 That means that only two third of pipes can be property classified as having cracks or not using 
attributes C, S and P. 

REDUCTION OF ATTRIBUTES 

We often face a question whether we can remove some data from a data-table preserving its basic 
properties, that is − whether a table contains some superfluous data. For example, it is easily seen 
that if we drop in Table 1 either the attribute S or P we get the data set which is equivalent to the 
original one, with regard to lower approximations and the degree of the dependency. 
 Let us express this idea more precisely. 
 Let C D , be sets of condition and decision attributes, respectively. We will say that 

is a D-reduct (reduct with respect to D) of C, if 
A, ⊆

′ ⊆C C ′C is a minimal subset of C such that 
 

( ) ( )γ γC D C D, ,= ′ . 
 

 For example in Table 1 we have two reducts {C, S} and {C, P}with respect to attribute Cracks. 
That means, that either the attribute S or P can be eliminated from the table and consequently in-
stead of Table 1 we can use either Table 2 

Pipe   C   S    Cracks 
1 
2 
3 
4 
5 
6 

high 
avg.  
avg. 
low 
avg. 
high 

high 
high 
high 
low 
low 
low 

yes 
no 
yes 
no 
no 
yes 

                Table 2 

 
or Table 3 

Pipe   C P    Cracks 
1 
2 
3 
4 
5 
6 

high 
avg.  
avg. 
low 
avg. 
high 

 low 
 low 
 low 
 low 
 high 
 high 

yes 
no 
yes 
no 
no 
yes 

               Table 3 
 
 The intersection of all D-reduct is called D-core (core with respect to D). 
Because the core is the intersection of all reducts, it is included in every reduct, i.e., each element of 
the core belongs to some reduct. Thus, in a sense, the core is the most important subset of attributes, 
for none of its elements can be removed without affecting of the classification power of attributes. 
In Table 1 the core of {C, S, P}, with respect to Cracks is C. 
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DISCERNIBILITY MATRICES AND FUNCTIONS 

To compute easily reducts and the core we will use discernibility matrix [42], which is defined next. 
 By a discernibility matrix of B ⊆ A we will mean n × n matrix defined as: 

δ( , ) { : ( ) ( )}.x y a B a x a y= ∈ ≠  

 Thus δ (x,y) is the set of all attributes which discern objects x and y. 
 The discernibility matrix for Table 1 and the set of attributes B = {C, S, P}is given in Table 4. 

 
 1 2 3 4 5 6 
1       
2 C      
3 C ∅     
4 C,S C,S C,S    
5 C,S,P S,P S,P C,P   
6 S,P C,S,P C,S,P C,P C  

Table 4 

 The discernibility matrix assigns to each pair of objects x and y a subset of attributes δ (x, y) ⊆ 
B, with the following properties: 

i)   δ( , ) ,x y = ∅  
ii)  δ δ( , ) ( , ),x y y x=  
iii) δ δ δ( , ) ( , ) ( , ).x z x y y z⊆ ∪  

 These properties resemble properties of semi-distance, and therefore the function δ may be re-
garded as qualitative semi-metric and δ (x, y) − qualitative semi-distance. Thus the discernibility 
matrix can be seen as a semi-distance (qualitative) matrix. 

 Let us also note that for every x, y, z ∈ U we have 

iv) | ( , )| ,δ x x = 0  
v)  | ( , )| | ( , )|,δ δx y y x=  
vi) | ( , )| | ( , ) | | ( , )|.δ δ δx z x y y z≤ +  

 In order to compute D-reducts of condition attributes C, we will need slightly modified dis-
cernibility matrix, called the (C, D)-matrix, which is given next 

δ( , ) { : ( ) ( ) ( , )},x y a C a x a y w x y= ∈ ≠  and  

where  w x y x POS D y POS DC C( , ) ( ) ( )≡ ∈ ∉ and  or

                          x POS D y POS DC C∉ ∈( ) ( ) and  or 

                          x y POS D x y IC D, ( ) ( , )∈ ∉ and 
for x y U, ∈ . 
 If the partition defined by D is definable by C then the condition w(x, y) in the above definition 
can be reduced to ( ,  ) .x y I D∉
 Thus entry δ( is the set of all attributes which discern objects x and y that do not belong to 
the same equivalence class of the relation ID. 

, )x y

 The (C, D)-matrix for Table 1 with condition attributes C, S, P and decision attribute cracks is 
given in Table 5. 
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 1 2 3 4 5 6 
1       
2 C      
3 − ∅     
4 C,S C,S C,S    
5 C,S,P − S,P    
6 − C,S,P − C,P C  

Table 5 

 Set is the D-reduct of C, if C′ is the minimal (with respect to inclusion) subset of C such 
that 

′ ⊆C C

′ ∩ ≠ ∅ ≠ ∅C c c c C D for any nonempty entry  of the ( , ) - discernibility matrix.( )  

 Thus D-reduct is the minimal subset of attributes that discerns all equivalence classes of the 
relation ID discernible by the whole set of attributes. Every (C, D)-discernibility matrix defines 
uniquely a discernibility (Boolean) function fD (C) defined as follows. 

 Let us assign to each attribute a a binary Boolean variable, a and let Σ δ (x, y) denotes Boolean 
sum of all Boolean variables assigned to the set of attributes δ (x, y). Then the discernibility func-
tion can be defined by the formula 

−

f C x y x y U x yD
x y U

( ) { ( , ):( , ) ( , ) }.
( , )

= ∈
∈
∏ Σδ 2

2

 and δ ≠ ∅  

 The following property establishes the relationship between disjunctive normal form of the 
function fD (C) and the set of all D-reducts of C. 

 All constituents in the minimal disjunctive normal form of the function  are all D-reducts 
of C.  

f CD ( )

 In other words, a reduct is a minimal subset of attributes that discerns all objects discernible by 
the whole set of attributes. 
 The (C, P)-discernible function for the (C, D)-discernible matrix shown in Table 5 is the follow-
ing 

fD (C) =  C ⋅ (C + S) ⋅ (C + S + P) ⋅ (C + S) ⋅ (C + S + P) ⋅ (C + S) ⋅ (S + P) ⋅ C = C ⋅ (S + P),   

where „+” and „⋅”denote Boolean addition and multiplication, respectively. Because the disjunctive 
normal from of the function is 

fD (C) =  C ⋅ S + C ⋅ P 

hence we have two D-reducts {C, S} and {C, P} of the set of condition attributes {C, S, P}. 
Let us also observe that the D-core is the set of all single element entries of the discernibility ma-
trix, i.e., 

CORE C a C x y a x yD ( ) { : ( , ) { }, , }.= ∈ =δ  for some  

 For very large data tables the proposed method of computing reducts is not efficient enough and 
more sophisticated approaches are used. For details the reader is advised to consult the references. 
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SIGNIFICANCE OF ATTRIBUTES 

As it follows from considerations concerning reduction of attributes, they can be not equally impor-
tant, and some of them can be eliminated from an information table without loosing information 
contained in the table. The idea of attribute reduction can be generalized by introduction a concept 
of significance of attributes, which enables us to evaluate of attributes not only by two-valued scale, 
dispensable − indispensable, but by assigning to an attribute a real  number from the closed interval  
[0,1], expressing how important is an attribute in an information table.  
 Significance of an attribute can be evaluated  by measuring effect of  removing the attribute 
from an information  table on classification defined by the table. Let C and  D be sets of condition 
and  decision attributes respectively and let a be a condition attribute. As shown previously the 
number     γ (C, D) expresses the degree of dependency between attributes C and D. We can ask 
how the coefficient γ (C, D) changes when removing an attribute a, i.e., what is the difference be-
tween γ (C, D) and γ ((C - {a}, D). We can normalize the difference and define the significance of 
an attribute a as 

σ γ γ
γ

γ
γ

CD a C D C a D
C D

C a D
C D

( )
( ( , ) ( { }, ))

( , )

( { },

( , )
=

− −
= −

−1 ) , 

and denoted  simple by σ (a), if C and D are understood. 

 Obviously  0 ≤ σ (a) ≤ 1. The more important is the attribute a the greater is the number σ (a).  
 For example for condition attributes in Table 1 we have the following results: 

σ (C) = 0,75,  
σ (S) = 0,00, 
σ (P) = 0,00. 

 Because the significance of  the attributes S and P are zero, removing either of the attribute from 
condition attributes does not effect the dependency, whatsoever. Hence the attribute C is the most 
significant one in the table. That means that by removing the attribute C, 75% (three out of four) of 
pipes cannot be properly classified. 
 However for reduced date table, e.g., Table 2 we get   

σ (C) = 1,00, 
σ (S) = 0,25. 

 In this case, removing the attribute S from the reduct, i.e., using only the attribute C,  25% (one 
out of four) objects can be properly classified, while dropping the attribute C, i.e., using only the 
attribute S, 100 % objects (all) cannot be classified. 
 That means that in this case  making decisions is impossible at all, whereas by employing only 
the attribute C some decision can be made.  
 Thus the coefficient σ(a) can be understood as an error which occurs when attribute a is 
dropped. The significance coefficient can be extended to set of attributes as follows: 

σ γ γ
γ

γ
γ

CD B C D C B D
C D

C B D
C D

( )
( ( , ) ( , ))

( , )

( ,

( , )
=

− −
= −

−1 )  

denoted  by σ(B), if C and D are understood, where B is a subset of C.  
 If  B is a reduct of C, then σ(B) = 1, i.e., removing any reduct from a set of decision rules un-
ables to make decisions with certainty, whatsoever.  
 Any subset B of C  will be called an approximate reduct of C, and the number 
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ε γ γ
γ

γ
γ

CD B C D C B D
C D

C B D
C D

( )
( ( , ) ( , ))

( , )

( ,

( , )
=

− −
= −

−1 )

D

 

denoted simply as ε(B), will be called an error of reduct approximation. It expresses how exactly 
the set of attributes B  approximates the set of  condition attributes C. Obviously ε (B) = 1 − σ (B) 
and  ε (B) =  1 − ε (C − B).  
 For any  subset  B of C we have ε (B) ≤ ε (C). If B is a reduct of C, then ε (B) = 0.  
 For example, either of  attributes S and C can be considered  as approximate reducts of {C, S}, 
and 

 ε (C) = 1,00. 

 But for the whole set of condition attributes {C, S, P}we have also the following approximate 
reduct 

 ε (S, P) =  0.75. 

 The concept of an approximate reduct is a generalization of  the concept of a reduct considered 
previously. A minimal subset B of condition attributes C, such that γ(C,D) = γ(B,D), or ε (C,D)(B) = 0 
is a reduct in the previous sense. 
 The idea of an approximate reduct can be useful in cases when a smaller number of condition 
attributes is preferred over accuracy of classification. 

DECISION RULES AND DEPENDENCY 

With every dependency C  we can associate a set of decision rules, specifying decisions that 
should be taken when certain condition are satisfied. In other words every decision table determines 
a set of formulas of the form: 

k⇒

„if ... then”. 

 For example, Table 1 determines the following set of decision rules: 

(1) if (C, high) and (S, high) and (P, low) then (Cracks, yes), 
(2) if (C, avg.) and (S, high) and (P, low) then (Cracks, no), 
(3) if (C, avg.) and (S, high) and (P, low) then (Cracks, yes), 
(4) if (C, low)  and (S, low)  and (P, low)  then (Cracks, no), 
(5) if (C, avg.) and (S, low)  and (P, high) then (Cracks, no), 
(6) if (C, high) and (S, low)  and (P, high) then (Cracks, yes). 

 From logical point of view decision rules are implications built up form elementary formulas of 
the form (attribute name, attribute value) and combined together by means of proportional connec-
tives „and”, „or” and „implication” in a usual way. 
 Predecessor of the implication specifies conditions, which should be fulfilled in order to per-
form decisions determined by the successor of the implication. 
 Decision rule is deterministic (certain, sure) if its conditions uniquely determine decisions, oth-
erwise the decision rule is nondeterministic (uncertain, possible). 
In the example above rules (1) , (4), (5) and (6) are deterministic, whereas rule (2) and (3) are non-
deterministic. 
 Obviously only deterministic rules determine unambiguous decisions. 
 Because decision rules are logical formulas they can be simplified using standard logical meth-
ods not presented here. Besides, they can be also simplified employing rough set approach. For ex-
ample, the concept of the reduct leads to elimination of superfluous condition attributes. Hence, 
instead of Table 1 we can use Table 2 or Table 3 to obtain simplified decision rules.  
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For Table 2 we obtain 

(1) if (C, high) and (S, high) then (Cracks, yes), 
(2) if (C, avg.) and (S, high) then (Cracks, no), 
(3) if (C, avg.) and (S, high) then (Cracks, yes), 
(4) if (C, low)  and (S, low)  then (Cracks, no), 
(5) if (C, avg.) and (S, low)  then (Cracks, no), 
(6) if (C, high) and (S, low)  then (Cracks, yes), 

and for Table 3 we have 

(1’’)  if (C, high) and (P, low) then (Cracks, yes), 
(2’’)  if (C, avg.) and (P, low) then (Cracks, no), 
(3’’)  if (C, avg.) and (P, low) then (Cracks, yes), 
(4’’)  if (C, low) and (P, low) then (Cracks, no), 
(5’’)  if (C, avg.) and (P, high) then (Cracks, no), 
(6’’)  if (C, high) and (P, high) then (Cracks, yes). 

 Using the rough set techniques, not presented in this paper, the decision rules can be simplified 
further, e.g., for Table 2 we get 

(1’’’)  if (C, high) then (Cracks, yes), 
(2’’’)  if (C, avg.) and (S, high) then (Cracks, no), 
(3’’’)  if (C, avg.) and (S, high) then (Cracks, yes), 
(4’’’)  if (C, low)  then (Cracks, no), 
(5’’’)  if (C, avg.) and (S, low) then (Cracks, no), 

      (6’’’)  if (C, high) and (S, low) then (Cracks, yes). 

 In order to express certainty of decision specified by a decision rule we would need numerical 
characterization of the rule, showing to what extend the decision can be trusted. To this end we de-
fine a certainty factor of the rule. 
 Let Φ and Ψ be logical formulas representing conditions and decisions, respectively and let        
Φ →Ψ be a decision rule, where.ΦS denote the meaning of Φ in the system S, i.e., the set of all ob-
jects satisfying Φ in S, defined in a usual way. 
 With every decision rule Φ →Ψ we associate a number, called the certainty factor of the rule, 
and defined as 

μ( , )
| |

| |
Φ Ψ

Φ Ψ
Φ

=
∩S S

S

. 

 Of course 0 ≤ μ(Φ, ψ) ≤ 1; get the rule Φ →Ψ is deterministic then μ(Φ, ψ) = 1, and for nonde-
terministic rules μ(Φ, ψ) < 1. 
 For example, the certainty factor for decision rules consider previously are as follows: 

μ (Φ1, Ψ1) = 1, 
μ (Φ2, Ψ2) = 1/2, 
μ (Φ3, Ψ3) = 1/2, 

μ (Φ4, Ψ4) = 1, 
μ (Φ5, Ψ5) = 1, 
μ (Φ6, Ψ6) = 1, 

 
where Φi, Ψi denote conditions and decisions of the rule i. 
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 Let us notice that the certainty factor can be viewed as a generalization of the rough member-
ship function and can  be also interpreted as a conditional probability that an object x satisfies deci-
sion provided it satisfies condition of the rule. 
 In fact decision rules obtained from a data table are logical inference rules which allow to dis-
cover patterns hidden in data, and can be used to reason about reality, or − as a starting point for 
implementation of computer support decision systems, expert systems, control algorithms etc. 
 Hence with every decision rule Φ →Φ one can associate a rough deduction rule called rough 
modus ponens 

π μ
π

( ); ( , )

( )

Φ Φ Ψ
Ψ

 , 

where π( )
| |

| |
Φ

Φ
= S

U
 and π (Ψ ) = π (∼Φ ∧Ψ ) + π (Φ ) ⋅ μ (Φ,Ψ ). 

 
 This rule allows to compute the probability of decisions in terms of probability of conditions 
and conditional probability of the decision rule. 
 For example, it is easy to compute that if Φ = (C, avg.), (S, high) (P, low) and Ψ = (Cracks, yes) 
then we have π(Φ) = 1/3, μ(Φ, Ψ) = 1/2 and  π(Ψ) = 1/3; for Φ = (C, high) and Ψ = (Cracks, yes) 
we get π(Φ) = 1/3, μ(Φ, Ψ) = 1 and  π(Ψ) = 1/3, whereas for Φ = (S, low) and  Ψ = (Cracks, yes) 
we obtain π(Φ) = 1/2, μ(Φ, Ψ) = 1/6 and π(Ψ) = 1/4. 
 The problem considered above is a part of a wider question  pursued for many years in AI and is 
related to common-sense reasoning  methods. In classical logic basic rule of inference is grounded 
on the assumption that if a premise Φ and the implicationΦ Ψ→  are true then the conclusion Ψ 
must be also true. This deduction rule is known as modus ponens. However in the common-sense 
reasoning methods we must admit that a premise and a inference rule are often not known with cer-
tainty, but with some probability and therefore the conclusion must be also equipped with a proper 
probability measure. Classical logic does not offer methods to solve this dilemma and paradigm of 
classical logic is no more valid in this case. Consequently modus ponens  cannot be  postulated as a 
fundamental reasoning rule for common-sense reasoning.  
     Very many mathematical models have been proposed to solve this problem and master uncer-
tainty in reasoning. The presented rough set approach seems to be a very natural answer to this 
problem and it has a very inherent interpretation in data sets 

APPLICATIONS  METHODOLOGY 

 Rough set theory is mainly meant as a new mathematical approach to discover patterns in data, 
i.e., we are given a data set as a result of observations of some real-life phenomena and our task is 
to find out hidden patterns in the data. The patterns are usually represented in a form of a set of de-
cision rules. The rules can be used to explain the data, i.e., to explain the phenomena or processes 
underlying the data and are usually interpreted as a description of some „cause-effect” relations. 
The example of the endurance test of cast iron pipes, given in the introduction, is a very good illus-
trative example of this kind of applications. 

 However there are many other possibilities of application of rough set theory. Beside analysis of 
data  specially interesting seems the rough set approach to processes specification, which will be 
discussed briefly next, by means of a simple example of a distributed traffic signal control. 
 Let us consider a very simple intersection (T-intersection) shown in Fig 1. 
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 We would like to design a distributed control algorithm which will supervise the traffic on the 
basis of local conditions. We assume that the conditions are determined by sensors placed in lanes 
and indicating the desired turn of a car approaching the intersection. For the sake of simplicity we 
omit many important factors, needed in real-life control and assume that the specification of the 
control admissible is situations is given in Table 6 below 

 
 a b c 
1 
2 
3 

1 
0 
0 

1 
2 
0 

0 
0 
2 

Table 6 

where 

 0 − red 
 1 − green 
 2 − green arrow (left turn) 

 Let us observe that Table 6 is not a result of observations but, a specification of requirements for 
a special discrete systems behavior (e.g., controller, program etc.). 
 Using methods shown previously we get from the table the following control rules 

 if (b, 0) or (b, 2) then (a, 0) 
 if (b, 1) then (a, 1) 
 if (c, 2) then (b, 0} 
 if (a, 1) then (b, 1} 
 if (a, 0) and (c, 0) then (b, 2) 
 if (b, 1) or (b, 2) then (c, 0) 
 if (b, 0) then (c, 2) 

 The corresponding switching circuits for the set of control rules is shown in Fig. 2 
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and the corresponding controller is depicted in Fig. 3 

 
Fig. 3 

 
 In the example above in fact we specify by means of rough set techniques some kind of concur-
rent process. This class of processes play a very important role in many domains, in particular in 
industrial environment, and  no doubt, the most successful formal model of concurrent processes 
are Petri Nets. Rough set methodology can be also useful to specification of concurrent processes 
and synthesis of complex control systems. But this area of applications need more research.  Some 
results in this domain can be found in many research papers.  
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CONCLUSION 

Rough set approach to data analysis has many important advantages. Some of them are listed below. 

• Provides efficient algorithms for finding hidden patterns in data. 

• Identifies relationships that would not be found using statistical methods. 

• Allows both qualitative and quantitative data. 

• Finds minimal sets of data  (data reduction).  

• Evaluates significance of data. 

• Generates sets of decision rules from data. 

• It is easy to understand. 

• Offers straightforward interpretation of obtained results.    

• Most algorithms based on the rough set theory are particularly suited for parallel processing, but 
in order to exploit this feature fully, a new computer organization based on rough set theory is 
necessary.  

 Although rough set theory has many achievements to its credit, nevertheless several theoretical 
and practical problems require further attention.   
 Especially important is widely accessible efficient software development for rough set based 
data analysis, particularly for large collections of data.  
 Despite of many valuable methods of  efficient, optimal decision rule generation methods from 
data,  developed in recent years based on rough set theory - more research here is needed, particu-
larly, when quantitative attributes are involved. In this context also new discretization methods for 
quantitative attribute values are badly needed. Also an extensive study of a new approach to missing 
data is very important. Comparison to other similar methods still requires due attention, although  
important results have been obtained  in this area. Particularly  interesting seems to be a study of  
the relationship between neural network and rough set approach to feature extraction from data.  
 Last but not least, rough set computer is badly needed for more advanced applications. Some 
research in this area is already in progress. 
 For basic ideas of rough set theory the reader is referred to [8,9,15,18].  
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