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Abstract

The functional mapping of material structure to properties, processing, and use is the principal driver for all scientific and engineering
endeavors. Given the high cost of experimentation and the computational intractability of ab initio materials research, more efficient and
accurate predictions of yet-to-be-made materials is an equally prominent endeavor, if not a preeminent materials research frontier.
Because of the vast amounts of information to be considered in the pursuit of either, the automation of search-based methods for
augmenting more analytic approaches is receiving increasing attention. Given the computational challenges to automation and to
retrieving data from complex databases, search-based methods offer an expeditious approach to providing a researcher both insight and
perspective. Rough sets is discussed relative to these objectives, as is current research to address its limitations and difficulties in
application. Several materials related examples are offered to illustrate the application of the method.  1998 Elsevier Science S.A. All
rights reserved.
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1. Introduction 3. large scale molecular dynamics applied to property
prediction,

Materials, and therein materials design, has evolved over e.g., defects as they relate to microstructure and related
two millennia from the macromonolithic and composite properties,

213materials toward the ‘atomic-scale’ control of lattices, 4. atomic-scale (10 seconds) structure evolution during
surfaces and interfaces sometimes referred to as ‘crystal material processing,
engineering’, [1] the intricacies and difficulties of which e.g., epitaxial growth of thin film semiconductor materi-
are most notably manifested in the material processing als.
associated with their manufacture.

Currently, crystal engineering involves a sundry of The development of a theory to support atomic-scale
empirically-driven approaches. Although a more math- materials design may take decades, and when available it
theoretic approach is desirable, computational intractability may still be impractical at the desired scale. An example,
precludes their practical application. Even with the advent relative to the above ‘atomic-level’ structure evolution,
of adequate computational speed, the marketplace will illustrates both a research goal in materials design and an
invariably reward those methods which yield profitable opportunity for new search-based methods in the process
results and are refined autonomously via experimental modeling and growth control of thin-film epitaxy.
and/or empirical data. Such methods will need to be used The ultimate goal of semiconductor thin-film epitaxy is
in conjunction with and/or augment, or when necessary. the ability to produce structures where every atom is
supplant the below computational approaches for a lack of exactly positioned in its designed location. This would
fundamental theory: allow for the greatest degree of semiconductor device

miniaturization possible (e.g., single electron transistors,
1. large scale 1st principle calculations, CRAY supercomputers on a single chip). A more realistic

e.g., density functional theory as applied to multi- near term goal is the ability to produce atomically abrupt
element property calculations, interfaces between different materials (e.g., GaAs and

2. global optimization of ‘n’ dimensional materials design, AlGaAs). This would enable the production of optimal
quantum effect devices, leading to revolutionary advances

*Corresponding author. for a host of electronic and optical applications.
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Achieving the level of control required for atomically
abrupt interfaces is a considerable challenge. The state-of-
the-art process for producing these heterostructures is
molecular beam epitaxy (MBE). MBE currently suffers
from a lack of reproducibility and from limited real-time in
situ sensing. Typically, prolonged trial-and-error experi-
ments are required to develop such new material structures
and to both develop and/or validate the theory of ‘atomic-
level’ processing physics.

Theoretical models aid in understanding growth pro-
cesses at the atomic-scale, but due to the disparate time
scales associated with important growth parameters, at
least two models are required. One, the atomic-scale ab
initio calculations, can provide the surface structure and
the physical mechanisms (with corresponding activation
energy barriers) required by the other model. But the other
more macro-scale model, effusion cell growth, is based
upon process geometry and associated constraints involv-
ing variations in temperatures, and therein flux pressures

23which occur at 10 seconds resolution. Consequently, ab Fig. 1. Cellular automata thin film growth rule.
213initio calculations at the 10 seconds cannot be used for

in situ models of the actual growth (one monolayer per
second), because the disparate time scales would require composition, flux density, and thickness, then the requisite

1310 computationally intense time steps per simulated layer data would be available to link the two time scales.
grown. For any reasonable surface area each time step, ab Although, initially, the sensed data would be limited to a
initio calculation, may typically require 1 s to compute. representative set of points on the wafer surface, eventually
Hence, one monolayer of growth would take over 300 000 data acquisition and processing speed would enable a
years to simulate. Although more accurate, computational- detailed two-dimensional (2D) view of each parameter
ly viable ab initio algorithms for the dynamics and across the wafer surface.
energetics of semiconductor surfaces need to be developed,
the key modeling research question is, how do we effec-
tively link the two time scales [2]?

2. Structure–property–process relationsPerusal of the literature [3] suggests linking of the time
scales may be both achievable and more tractable via

To bridge the gap in computational tractability, re-cellular automata concepts, i.e., in lieu of massively
searchers are using visualization tools for understandingparallel hardware, a massively parallel software im-
increasingly complex data. In fact, data acquisition andplementation of a finite state machine. Our research, on the
analysis (software) applications have even exceeded theuse of cellular automata concepts applied to the modeling
use of computer-aided design (CAD), mechanical model-of thin film deposition, represents an approach to the
ing, image analysis, and mathematical function applica-problem of atomistic modeling of deposition processes
tions [4]. As a consequence, it is expected that morebased on the application of discretized linear models or
efficient and visually stimulating search-based methodsrules. The use of rules, such as depicted in Fig. 1, to model
will be sought to view and compare data, e.g., multiplea deposition process (i.e., the film growth behavior) is
growth runs (10–20 minute growths at 1 s increments) of acomparable to ballistic and random deposition models
specific recipe with data resolution limited to discernibleinvolving complex differential equations. The simplicity
step-changes in sensed parameters. Successive increases inafforded using rules in conjunction with a parallelized
resolution will be automatically evaluated, looking forsoftware implementation of a finite state machine enables a
patterns in the data which identify regularities and/ormore tractable modeling of complex film growth/behavior,
irregularities. Once these characteristic patterns are iden-particularly in three dimensions.

23tified, still greater resolution (up to 10 seconds today andBecause these process rules are based upon empirical
213observations, a second challenge and the principal focus of projected to improve to 10 seconds as necessary) will

this paper, is the discovery of these rules for new materi- be used for correlating film and growth process parameters.
als /processes and their subsequent refinement to more Eventually these patterns will be compared in near real-
accurately represent growth processes. If growth processes time with ab initio models and, in time, begin to close the
such as MBE were augmented with real-time data acquisi- gap between new materials model development and valida-
tion involving in situ sensing of substrate temperature, film tion.
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In order to compare these characteristic dynamic pro- programs. A large number of high quality papers have
213 21cessing patterns at 10 or even 10 seconds, search- been published recently on various aspects of rough sets.

based methods of large static data sets will need to be The distinction between rough set theory and many
extended and automated. This work has already begun as other theories has been clarified. Particularly interesting is
applied to existing and moderately large data sets of the relationship with fuzzy set theory and the Dempster-
material structure-property-process data [5–7]. Such ‘min- Shafer theory of evidence. The concepts of rough sets and
ing’ of large static data sets is but the first step toward the fuzzy sets are similar but differ in their contribution to
frontier of on-line property-process discovery. Not only modeling with imprecision [12], i.e., a rough set estab-
will the temporal order and volume of process data present lishes and qualifies the consistency of the relationship
new challenges, but also automated search-based methods between the membership across two or more fuzzy sets.

6will need to be 10 faster to achieve what humans are Therein, the relationship of rough sets with the theory of
already capable of involving visual 2D and 3D imagery evidence is obviously more substantial [13]. In addition,
pattern recognition. rough set theory is related to discriminant analysis [14],

Search-based methods have their origin in the field of Boolean reasoning methods [15] and others. The relation-
database technology where query languages typically ship between rough set theory and decision analysis is
involve prepositional and/or predicate logic engines for presented in [16,17]. Several extensions of the ‘basic’
deductive reasoning capability operating on data with model of rough sets have been proposed and investigated.
either exact or greater-than / less-than condition. More Various real life-applications of rough set theory have
recently, various methods have been added to such query shown its usefulness in many domains. Very promising
languages to recognize patterns generated using a variety new areas of application of the rough set concept will
of statistical and other inductive reasoning capabilities. emerge in the near future. These include rough control,
The latter problem, to discover a pattern from instances rough data bases, rough information retrieval, rough neural
which are similar, is constrained by fundamental principles networks and others, and it is clear, that rough set theory
of randomness, noise, and independence. The search-based can contribute significantly to materials research.
methods addressed herein complement statistical methods
where interdependence between variables, linear and non-
linear, is assumed to be limited to a subrange of a 3.2. Basic concepts
variable(s), and therein, the task is to quickly identify and
distinguish the subrange linear, nonlinear, and nonexistent Rough set philosophy is founded on the assumption that
relationships. with every object of the universe of discourse we associate

The research objective is to devise a computationally some information (data, knowledge). Objects characterized
efficient pattern recognition capability to enable classifica- by the same information are indiscernible (similar) in view
tion, functional mapping, and prediction. Of the various of the available information about them. The indiscernibili-
methods, neural nets [8], genetic algorithms [9], fuzzy ty relation generated in this way is the mathematical basis
logic, rough sets [10], and pyramidal nets-various combi- of rough set theory. Any set of all indiscernible (similar)
nations appear to show the greatest promise. objects is called an elementary set, and forms a basic

To be presented in this paper is the application of rough granule (atom) of knowledge about the universe. Any
sets to materials data which builds upon an earlier publi- union of some elementary sets is referred to as a crisp
cation [10]. The discussion that follows is intended to (precise) set-otherwise the set is rough (imprecise, vague).
address the issue of rough sets as a method, the basic Each rough set has boundary-line cases, i.e., objects
principles on which it has been constructed, and some of which cannot be classified with certainty, by employing
the open research problems associated with its develop- the available knowledge, as members of the set or its
ment and application to materials discovery. complement. Rough sets, in contrast to precise sets, cannot

be characterized in terms of information about their
elements. In the proposed approach, with any rough set is

3. Rough sets associated a pair of precise sets called the lower and the
upper approximation of the rough set. The lower approxi-

3.1. Origins of rough sets mation consists of all objects which surely belong to the
set, and the upper approximation contains all objects which

Rough set theory [11] is a new mathematical approach possibly belong to the set. The difference between the
to data analysis and data mining. After 15 years of upper and the lower approximation constitutes the bound-
pursuing rough set theory and its application the theory has ary region of the rough set. These approximations are the
reached a certain degree of maturity. In recent years we two basic operations used in rough set theory.
witnessed a rapid grow of interest in rough set theory and Data are often presented as a table, columns of which
its application, world wide. Many international workshops, are labeled by attributes, rows by objects of interest and
conferences and seminars included rough sets in their entries of the table are attribute values. Such tables are
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known as information systems, attribute-value tables, data In fact, approximations determine the dependency (total
tables, or information tables. or partial) between condition and decision attributes, i.e.,

Usually we distinguish in information tables two kinds they express a functional relationship between values of
of attributes, called condition and decision attributes. Such condition and decision attributes.
tables are known as decision tables. Rows of a decision The degree of dependency between condition and
table are referred to as ‘if...then...’ decision rules, which decision attributes can be defined as a consistency factor of
give conditions necessary to make decisions specified by the decision table, which is the number of conflicting
the decision attributes. An example of a decision table is decision rules to all decision rules in the table. By
shown in Table 1. conflicting decision rules, we mean rules having the same

The table contains data concerning six cast iron pipes conditions but different decisions. For example, the consis-
exposed to high pressure endurance tests. In the table C, S tency factor for Table 1 is 4 /652/3; hence the degree of
and P are condition attributes, displaying the percentage dependency between cracks and the composition of the
content of coal, sulfur and phosphorus respectively in pig-iron is 2 /3. That means that four out of six (ca. 60%)
pig-iron, whereas the attribute Cracks reveals the result of pipes can be properly classified as good or not good on the
the test. The values of condition attributes are as follows basis of their composition.
(C, high).3.6%, 3.5%#(C, avg.)#3.6%, (C, low),3.5%, We might be also interested in reducing some of the
(S, high)$0.1%, (S, low),0.1%, (P, high)$0.3%, (P, condition attributes, i.e., to know whether all conditions
low),0.3%. are necessary to make decisions specified in a table. To

The physical problem we are interested in is how the this end we will employ the notion of a reduct (of
endurance of the pipes depends on the amount of C, S and condition attributes). By a reduct we determine a minimal
P present in the pig-iron. In rough set terms, the problem subset of condition attributes which preserves the consis-
is determining if there is a functional dependency between tency factor of the table. It is easy to compute, that in
the decision attribute Cracks and the condition attributes C, Table 1, we have two reducts: hC,Sj and hC,Pj. The
S and P. In the language of rough set theory this leads to intersection of reducts is called the core. In our example
the question—given the set h2,4,5j of all pipes having no the core is the attribute C. This means, that in view of the
cracks after the test (or the set h1,3,6j of pipes having data, coal is the most important factor causing cracks and
cracks), can cracks be uniquely defined (and thus pre- cannot be eliminated from our considerations, whereas
dicted) in terms of these condition attribute values. sulfur and phosphorus play a minor role and can be

It can be easily seen that this is impossible, since pipes 2 mutually exchanged as factors causing cracks.
and 3 display the same features in terms of attributes C, S Now we present the basic concepts more formally.
and P, but they have different values of the attribute Suppose we are given two finite, non-empty sets U and A,
Cracks. Thus, information given in Table 1 is not sufficient where U is the universe, and A a set of attributes. With
to solve our problem. However, we can give a partial every attribute a[A we associate a set V of its values,a

solution. We observe that if the attribute C has the value called the domain of a. Any subset B of A determines a
high for a certain pipe, then the pipe has cracks, whereas if binary relation I(B) on U which will be called an indiscer-
the value of the attribute C is low, then the pipe has no nibility relation, and is defined as follows:
cracks. Hence, employing attributes C, S, and P, we can

x(B)y if and only if a(x) 5 a( y) for every a [ A,say that pipes 1 and 6 surely are good, i.e., surely belong
to the set h1,3,6j, whereas pipes 1, 2, 3 and 6 possibly are where a(x) denotes the value of attribute a for element x.
good, i.e., possibly belong to the set h1,3,6j. Thus, the sets Obviously I(B) is an equivalence relation. The family of
h1,6j, h1,2,3,6j, and h2,3j are the respective lower, upper all equivalence classes of I(B), i.e., partition determined by
and boundary approximation region of the set h1,3,6j. B, will be denoted by UB(B), or simply UB; an equival-

This means that the quality of pipes cannot be de- ence class of I(B), i.e., block of the partition UB, con-
termined exactly by the content of coal, sulfur and taining x, will be denoted by B(x).
phosphorus in the pig-iron, but can be determined only If (x,y) belong to I(B) we will say that x and y are
with some approximation. B-indiscernible. Equivalence classes of the relation I(B) (or

blocks of the partition UB) are referred to as B-elementary
Table 1 sets. In the rough set approach the elementary sets are the
Example of an information system in the form of a decision table basic building blocks of our knowledge about reality.
Pipe C S P Cracks The indiscernibility relation will be used next to define

basic concepts of rough set theory. Let us define now the1 High High Low Yes
2 Avg. High Low No following two operations on sets
3 Avg. High Low Yes

B (X) 5 hx [ U : B(x) # Xj,4 Low Low Low No *
5 Avg. Low High No
6 High Low High Yes *B (X) 5 hx [ U : B(x) > X ± [j,
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assigning to every subset X of the universe U two sets material sciences, particularly interesting to this communi-
*B (X) and B (X) called the B-lower and the B-upper ty, can be found in [10,18]. Rough set applications to*

approximation of X, respectively. The set materials research provides a new algorithmic method for
autonomous discovery of relations between material prop-

*BN (X) 5 B (X) 2 B (X)B * erties and/or processing conditions, which can be very
useful in designing new materials and/or their associatedwill be referred to as the B-boundary region of X. If the
processing conditions [10]. More about applications of theboundary region of X is the empty set, i.e., BN (X) 5 [,B
rough set theory can be found in [19–25].then the set X is crisp (exact) with respect to B; in the

Application of rough sets requires suitable software.opposite case, i.e., if BN (X) ± [, the set X is referred toB
Many software systems for workstations and personalas rough (inexact) with respect to B.
computers based on rough set theory have been developed;A rough set can be also characterized numerically by the
these include LERS [26], Rough DAS, Rough Class [27],following coefficient
and DATALOGIC [28]. Some of them are available

uB (X)u commercially.*
]]]a (X) 5B *uB (X)u

3.4. Example
called accuracy of approximation, where uXu denotes the
cardinality of X. Obviously 0#a (X)#1. If a (X)51, X A data set from Jackson et al. [32] was analyzed usingB B

is crisp with respect to B (X is precise with respect to B), rough sets. The purpose of this experiment was to de-
and otherwise, if a (X),1, X is rough with respect to B. termine if rough sets could predict behavior qualitativelyB

Approximation can be employed to define dependencies similar to the curve fit obtained and demonstrated in [32].
(total or partial) between attributes, reduction of attributes, Analysis was accomplished using a unique implementation
decision rule generation and others. For details we refer the of rough sets prepared by D. Ress [33].
reader to the references. [15–33]

3.4.1. Background information on the data set
3.3. Applications The data set, as depicted in Table 2 and Fig. 2, consists

of empirical data collected on a number of semiconductor
Rough set theory has found many interesting applica- and ionic compounds of interest because of their optical

tions. The rough set approach seems to be of fundamental properties. The band gap range from 0.1 to about 10 eV
importance to AI and cognitive sciences, especially in the represents wavelength transparencies ranging from the
areas of machine learning, knowledge acquisition, decision ultra violet (UV) to the far infrared (IR). Within this range
analysis, knowledge discovery from databases, expert there are a number of subranges related to atmospheric
systems, inductive reasoning and pattern recognition. It effects, absorption of solids, excitation of second har-
seems of particular importance to decision support systems monics, and other phenomena. The issue is to be able to
and data mining. choose a material based on knowledge of its band gap

The main advantage of rough set theory is that it does value that has good nonlinear optical properties. In [32] it
not require any preliminary or additional information about is shown that there is a relationship between band gap and
the data to be analyzed, unlike probability in statistics, or the nonlinear second-order optical coefficient (x(2)) of a
basic probability assignment in Dempster-Shafer theory material compound that is generally logarithmic, but
and grade of membership or the value of possibility in curiously has two distinct behaviors. At low band gap
fuzzy set theory. The rough set theory has been successful- values (,1.2 eV) the slope of the x(2) vs gap curve is
ly applied in many real-life problems in medicine, pharma- lower than for band gap values above 1.2 eV. Such
cology, engineering, banking, financial and market analysis behavior is not predicted theoretically from present
and others. Some exemplary applications are listed below. models, and hence this empirical-derived relationship was

There are many applications in medicine. In pharma- something of a surprise. The curve is used for selecting
cology the analysis of relationships between the chemical candidate compounds based on their gap values.
structure and the antimicrobial activity of drugs has been Qualitatively, therefore, the behavior exhibited by the
successfully investigated. Banking applications include experimental data divides the compounds into two groups,
evaluation of a bankruptcy risk and market research. Very one associated with each slope and the band gap dividing
interesting results have been also obtained in speaker value of 1.2 eV. As a minimum, one would expect rough
independent speech recognition and acoustics. The rough sets or any other classification scheme to obtain the same
set approach seems also important for various engineering qualitative behavior.
applications, like diagnosis of machines using vibroacous- The problem one has with such methods is determining
tics symptoms (noise, vibrations) and process control. the type of transformation of the numeric data into
Application in linguistics, environment and databases are meaningful symbols, since rough sets operates on symbols
other important domains. First application of rough sets to with logical operators. The simplest approach is to take an



A.G. Jackson et al. / Journal of Alloys and Compounds 279 (1998) 14 –21 19

Table 2
Optical and band energy gap data [32] used in the rough sets analysis

21 2Compound Gap (eV) x(2) (pm V )

InSb 0.23 3234
Te 0.33 2581
GeSn 0.36 2308
InAs 0.36 838
CdGeAs 0.57 4722

GaSb 0.72 1030
SiSn 0.84 1010
SiGe 0.9 674
SnC 1.2 556
AgInSe 1.2 7.62

InP 1.35 287
GaAs 1.4 180
CdTe 1.5 336
CuInS 1.53 142

CuGaSe 1.7 602

Se 1.7 258 Fig. 2. Plot of x(2) against energy gap values for compounds listed in
CdGeP 1.72 2182 Table 2 (From ref. [1]].
ZnSiAs 1.74 1462

AgGaSe 1.8 662

CdSe 1.8 108 analogical difficulty with neural nets training and generali-
Ag SbS 1.93 263 3 zation may be relevant here. If the number of bins is so
Ag AsS 2 503 3 large that every object is unique, then the dependence may
GaSe 2.021 176

be 100%, but the behavior is trivial. Reducing the numberZnGeP 2.05 1502
of bins will change the dependence, because the numericGeC 2.1 76

HgS 2.1 110 data is ‘blurred’ as the number of bins decreases. At the
AgAsS 2.14 502 other extreme of 1 bin, the dependence is also 100%, and
b-SiC 2.26 60 is also a trivial result. So the task is to find a set of bins
GaP 2.3 210

between these extremes.ZnTe 2.3 184
This problem has been approached by use of geneticCuGaS 2.43 202

CdS 2.485 88 algorithms to search the possible bin sets to find those
AgGaS 2.638 362 values which will produce the highest dependence. Such
ZnSe 2.7 156 automatic search of the bin space is efficient in the sense
AgI 2.8 16

that the user is not required to choose a bin set based onCuBr 2.91 16
intuition or previous knowledge.CuI 2.95 16

CdGa S 3.05 50 Using a combined rough set-evolutionary method, a2 4

CuCl 3.17 14 genetic algorithm used in conjunction with rough sets [33]
ZnO 3.3 3.6 identified relatively high dependencies for a two-bin
ZnS 3.9 74

dependent variable and seven-bin independent variable.LiNbO 4 10.93
The dependence was relatively low (0.33), which isKDP 7 1

SiO 8.4 0.8 somewhat troublesome for interpretation purposes. How-2

InSe 1.25 248 ever, the selection of 2 bins for x(2) is appropriate, since
GaS 2.5 270 this reflects the two-slope behavior seen in the experimen-
map 2.6 12.6

tal data. The number of bins selected for band gap was 7, apom 3 6
value not unreasonable. It is believed by the authors, thatLiIO 4 103

urea 5.9 2 the lack of a high dependence value is a consequence of
SiC 6 17.2 the scatter in the data set.
AlN 6.2 15 To illustrate how scatter or ‘noise’ affects the depen-
BBO 6.3 1.2

dence, a simple two-slope function was created whichHgGa S 2.79 602 4
mimics the behavior of the experimental data (Fig. 3).
With no noise present, the dependence was 1. This is an

arbitrary number of intervals and divide the range of expected result and both validates the rough set program
values into these intervals and assign a symbol to the and lends evidence to our hypothesis. Adding random
interval (or ‘bin’). Although this is acceptable, the trans- noise to the function induces a spread in the values of the
formation is not necessarily the best relative to an analysis. function and reduces the dependence by spreading the
The bin ranges may be so gross as to mask any important standard deviation. The accuracy for these four runs
behavior, or they may be so fine as to be useless. The degraded from absolute certainty for the no or low noise
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• Finds minimal sets of (independent data to predict
dependent) data, i.e., data reduction.

• Evaluates the significance (distinguishing between
levels of consistency) of data.

• Generates sets of decision rules (based on relations)
from data.

• Is easy to understand (does not require mathematics
background), e.g., statistics.

• Offers straightforward (lower vs. upper approximation)
interpretation of results.

• Well suited for parallel processing.

Although rough set theory has many achievements to its
credit, there are, nevertheless, several theoretical and
practical problems which require further attention. Par-
ticularly noteworthy is the lack of widely accessible
software for rough set based data analysis, particularly for

Fig. 3. Plot of test function with exact (solid line) and noisy values. The large collections of data.
function is designed to have the same behavior as the experimental data Despite the many valuable methods of decision rule
analyzed by rough sets.

generation (ID3, pyramidal networks, clustering algo-
rithms, fuzzy sets, Dempster-Shafer, etc.), to include rough
set theory, more research is needed, particularly when

case to 0.20 accuracy for the large noise case. In each case quantitative attributes are involved. In this context, new
the number of bins selected as best for the dependent discretization methods for quantitative attribute values are
variable was two. The number of bins selected for the badly needed. Also, an extensive study of a new approach
independent variable depended on the noise level. For low to missing data is very important. Comparison to other
noise the bin number was 18, dropping to 14 for the next similar methods still requires due attention, although
higher noise, and rising again to 18–19 for the high to very important results have been obtained in this area. Par-
high noise levels. Thus, the RS method successfully ticularly interesting is a study of the relationship between
identifies the presence of two slopes in the curve (2 bins), neural networks and the rough set approach to feature
the essential feature of this function. The number of bins extraction from data. Last but not least, a rough set
chosen for the dependent variable (14–19) samples the computer is badly needed for more serious applications.
range satisfactorily. Some research in this area is already in progress. For

The behavior of this simulation provides some insight further investigation of the fundamental theory and basic
into the electro-optical data results, suggesting that the low concepts of rough set theory, the reader is referred to
accuracy is connected to the spread in the values of the [17,29–31].
data. But the essential feature of the x(2) data, the break in
the slope at about 1.2 eV, is reproduced in the RS results.
Hence, RS is useful for identifying such aspects of 5. Conclusions
behavior in this data.

The rough sets approach to data analysis provides a
method for analysis of materials data that has some distinct
advantages, particularly when used in conjunction with

4. Discussion other data analysis approaches. Search for hidden patterns
in data can be accomplished efficiently in terms of the

The rough sets approach to data analysis has many algorithms of rough sets. Relationships present in the data
important advantages: can be revealed using qualitative representations as well as

numerical. Reduction of the number of variables of
• Provides an efficient, and when combined with a importance for a particular class of objects is possible, an

genetic algorithm, an autonomous method for finding important advantage when experimental materials systems
patterns in data. involve a large number of variables. A direct result of

• Identifies relationships, although qualitative that include rough sets analysis is an evaluation of the significance of
nonlinear, that would not be found using statistical the data, and also the generation of rules suited to decision
methods. making about the data. As a preprocessing tool, rough sets,

• Allows both qualitative and quantitative data to be therefore, offers good potential for materials design and
analyzed. process design.



A.G. Jackson et al. / Journal of Alloys and Compounds 279 (1998) 14 –21 21

Theory, Kluwer Academic Publishers, Boston, London, Dordrecht,Acknowledgements
1992, p. 471.

[16] Z. Pawlak, R. Slowinski, Eur. J. Oper. Res. 72 (1994) 443.
AGJ acknowledges the support provided under AF [17] R. Slowinski, AI Expert 10 (1995) 18.

Contract F33615-94-D-5801 with the Wright Laboratory, [18] A.G. Jackson, M. Ohmer, H. Al-Kamhawi, in: T.Y. Lin (Ed.), The
Materials Directorate. The authors express their thanks to Third International Workshop on Rough Sets and Soft Computing

Proceedings (RSSC’94), San Jose State University, San Jose,Dr. W. Ziarko for discussions on rough sets. Also, our
California, USA, 1994.thanks to D. Ress for use of the rough sets analysis

[19] T.Y. Lin, N. Cercone, Rough Sets and Data Mining - Analysis of
application developed by him. Z. Pawlak gratefully ack- Imperfect Data, Kluwer Academic Publishers, Boston, London,
nowledges the support of the Air Force Contract Dordrecht, 1997, p. 430.
F6 1 708-97-WO 196. [20] T.Y. Lin, A.M. Wildberger, The Third International Workshop on

Rough Sets and Soft Computing Proceedings RSSC’94), San Jose
State University, San Jose, California, USA, 1995.

[21] R. Slowinski, Intelligent Decision Support. Handbook of Applica-
References tions and Advances of the Rough Set Theory, Kluwer Academic

Publishers, Boston, London, Dordrecht, 1992, p. 471.
[1] H. Koinuma, Why Crystal Engineering of Oxides?, MRS Bulletin, [22] 5. Tsumoto, S. Kobayashi, T. Yokomori, H. Tanaka, A. Nakamura,

Sept. 1994, pp 21–24. Proceedings of the Fourth International Workshop on Rough Sets,
[2] D. Dorsey, Internal Memoranda on New World Vistas, May 1995. Fuzzy Sets and Machine Discovery, The University of Tokyo, 1996,
[3] A.I. Adamatzky, Mathematical Computer Modeling 23(4) (1996) p. 465.

51–56. [23] P.P. Wang, Proceedings of the Second Annual Joint Conference on
[4] Visualization Tools Linked to Data Acquisition and Ease of Use, R Information Sciences, Wrightsville Beach, North Carolina, USA,

and D Magazine, December, (1995) 43–44. 1995.
[5] M.F. Ashby, Materials Selection in Mechanical Design, Materials [24] P. Wang, Joint Conference of Information Sciences, Vol. 3, Rough

and Process Selection Charts, Pergamon Press, London, 1992. Sets and Computer Sciences, Duke University, 1997, p. 449.
[6] N. Kiselyova, J. Alloys Comp. 197 (1993) 159–165. [25] W. Ziarko, Rough Sets, Fuzzy Sets and Knowledge Discovery.
[7] E. Savitskii, V.B. Gribulya, N.N. Kiselyova, M. Ristich. Z. Nikolich, Proceedings of the International Workshop on Rough Sets and

Z. Stoyilkovich, M. Zhivkovich, I.P. Arsenteva, [Prediction of Knowledge Discovery (RSKD’93), Banff, Alberta, Canada, October
Material Properties using IBM Computers], Pro gnoztrovanije b 12–15, Springer-Verlag, Berlin, 1993, p. 476.
Materialovedeniij c primeneniem EBM, Nauka Moskva, 1990. [26] J.W. Grzymala-Busse, in: R. Slowinski (Ed.), Intelligent Decision

[8] S. Thaler, Neural Networks that Autonomously Create and Discover, Support. Handbook of Applications and Advances of the Rough Set
unpublished paper, 1995. Theory, Kluwer Academic Publishers, Boston, London, Dordrecht,

[9] D. Wood and J. Park, Discovery Systems for Manufacturing, Wright 1992, p. 471.
Laboratory Technical Report, WL-TR-94-4008, January 1994. [27] R. Slowinski, J. Stefanowski, in: R. Slowinski (Ed.), Intelligent

[10] A.G. Jackson, S.R. LeClair, M.C. Ohmer, W. Ziarko, H. Al-Kam- Decision Support. Handbook of Applications and Advances of the
liawi, Rough Sets Applied to Materials Data, Acta Metallurgica et Rough Set Theory, Kluwer Academic Publishers, Boston, London,
Materialia 44(11) (1996) 4475–4484. Dordrecht, 1992, p. 471.

[11] Z. Pawlak, Int. J. Computer Info. Sci. 11 (1982) 341. [28] A. Szladow, PC AI 7(1) (1993) 40.
[12] Z. Pawlak, A. Skowron, in: R.R. Yaeger, M. Fedrizzi, J. Kacprzyk [29] Z. Pawlak, Rough Sets-Theoretical Aspects of Reasoning about

(Eds.), Advances in the Dempster Shafer Theory of Evidence, John Data, Kluwer Academic Publishers, Boston, London, Dordrecht,
Wiley and Sons, Inc., New York, Chichester, Brisbane, Toronto, 1991, p. 229.
Singapore, 1994. [30] Z. Pawlak, J.W. Grzymala-Busse, R. Slowinski, W. Ziarko, Commun.

[13] A. Skowron, J.W. Grzymala-Busse, in: R.R.M. Fedrizzi, J. Kacprzyk ACM 38 (1995) 88.
(Eds.), Advances in the Dempster-Shafer Theory of Evidence, John [31] A. Szladow, W. Ziarko, AI Expert 7 (1993) 36.
Wiley and Sons, Inc., New York, Chichester, Brisbane, Toronto, [32] A.G. Jackson, M.C. Ohmer, S.R. LeClair, IR Phys. Techn. 38
Singapore, 1994. (1997) 233–244.

[14] E. Krusifiska, R. Slowinski, J. Stefanowski, Applied Stochastic [33] D. Ress, North Carolina State University, 1997, Application in
Models Data Analysis 8 (1992) 43. Hypercard for analysis of rough sets and selection of optimum bins

[15] A. Skowron, C. Rauszer, in: R. Slowinski (Ed.), Intelligent Decision to produce highest dependency.
Support. Handbook of Applications and Advances of the Rough Set


