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Abstract

Rough set theory is a new approach to
vagueness and uncertainty. The theory of rough
sets has an overlap with ntiny other theories.
Specially interesting is the relationship to fuzzy
set theory and the theory of evidence. Recently,
it turned out that the theory has very interesting
connections with Bayes' theorem. The look on
Bayes' theorem offered by rough set theory
reveals that any data set (decision table) satisfies
total probability theorem and Bayes' theorem.
These properties can be used directly to draw
conclusions from objective data without
referring to subjective prior knowledge and its
revision if new evidence is available. Thus the
rough set view on Bayes' theorem is rather
objective in contrast to subjective "classical"
interpretation of the theorem. It is interesting
that Bayes' theorem can be interpreted as a flow
conservation equation in a flow graph. However
the flow graphs considered here are different
from those introduced by Ford and Fulkerson.
This property gives new perspective for
applications of Bayes' theorem.

1 Infroduction

Rough set theory is a new approach to
vagueness and uncertainty, Rudiments of the
theory can be found in [5]. The theory has found
many applications, in particular in data analysis
and data mining, offering new look and tools for
these domains. )

The theory of rough sets has an overlap with
many other theories. Specially interesting is the
relationship to fuzzy set theory and the theory of
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MOTTO:

“It is a capital mistake to theorize before one has data”

Sherlock Holmes
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evidence. Recently, it turned out that the theory
has very interesting connections with Bayes'
theorem. This link gives a new look on Bayes'
theorem which is significant not only from
philosophical point of view but also offers new
methods of data analysis.

- The look on Bayes' theorem offered by rough set

theory reveals that any data set (decision table)
satisfies total probability theorem and Bayes'
theorem. These properties can be used directly
to draw conclusions from objective data without
referring to subjective prior knowledge and its
revision if new evidence is available. Thus the
rough set view on Bayes' theorem is rather
objective in contrast to subjective “classical”
interpretation of the theorem [1,2,3].

It is also interesting that Bayes' theorem can be
interpreted as a flow conservation equation in a
flow graph. However the flow graphs considered
here are different from those introduced by Ford
and Fulkerson {4].

More about rough sets, Bayes' theorem and flow
graph can be found in {6].

2 Rough set theory - Basic concepts

In this section we define basic concepts of rough
set  theory: information  system  and
approximation of sets.

An information system is a data table, whose
columns are labeled by attributes, rows are
labeled by objects of interest and entries of the
table are attribute values.

Formally, by an information system we will
understand a pair § = (U, 4), where U and 4, are
finite, nonempty sets called the universe, and the



set of attributes, respectively. With every
attribute @ € 4 we associate a set V,, of its
values, called the domain of a. Any subset B of
A determines a binary relation /(B) on U, which
will be called an indiscernibility relation, and
defined as follows: (x, y)l(B) if and only if a(x)
= qg(y) for every acd, where a(x) denotes the
value of attribute a for element x. Obviously
I(B) is an equivalence relation. The family of all
equivalence classes of I(B), ie., a partition
determined by B, will be denoted by U/KBY), or
simply by U/B; an equivalence class of I(B), i.e.,
block of the partition U/B, containing x will be
denoted by B(x).

If (x, y) belongs to I(B) we will say that x and y
are B-indiscernible (indiscernible with respect to
B). Equivalence classes of the relation /(B) (or
blocks of the partition U/B) are referred to as B-
elementary sets or B-granules. If we distinguish
in an information system two disjoint classes of
attributes, called condition and decision
attributes, respectively, then the system will be
called a decision table and will be denoted by S
= (U, C, D), where C and D are disjoint sets of
condition and decision attributes, respectively.-

Thus the decision table determines decisions
which must be taken, when some conditions are
satisfied. In other words each row of the of the
decision table specifies a decision rule which
determines decisions in terms of conditions.

Observe, that elements of the universe are in the
case of decision tables simply labels of decision
rules. '

Suppose we are given an information system S =
(U, 4), XcU, and BcA. Our task is to describe
the set X in terms of attribute values from B. To
this end we define two operations assigning to
every XcU two sets B«(X) and B (X) called the
B-lower and the B-upper approximation of X,
respectively, and defined as follows:

B.(X)={B(x): Blx)c X},

xel

B (X)=J{B(x): B(x)nx # 2}

xeU

Hence, the B-lower approximation of a set is the
union of all B-granules that are included in the
set, whereas the B-upper approximation of a set
is the union of all B-granules that have a
nonempty intersection with the set. The set

.BN,(X)=B"(X)-B.(X)
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. will be referred to as the B-boundary region of

X

If the boundary region of X is the empty set, i.e.,
BNp(X) = @, then X is crisp (exact) with respect
to B; in the opposite case, i.e., if BNy(X) = &, X

is referred to as rough (inexact) with respect to
B.

Rough sets can be also defined employing
instead of approximations rough membership
function [7], which is defined as follows:

psiU— [0,1]
and
_ ‘B(x)m XI
FON

where X € U, B ¢ 4 and |X] denotes the
cardinality of X.

px (x)

The function measures the degree that x belongs
to X in view of information about x expressed by
the set of attributes B.

The rough membership function has the
following properties {7]:

px(x)=1iff x e B.(X)
2. pi(x)=0iff xeU-B"(X)

—

3. 0<pd(x)<1iff xe BN,(X)

4. pub_(x)=1-ps(x)forany xeU

5. tar(x)2 max (18 (x) 2 (3) for amy
xelU

6. Hyny(x)<min (J»‘f((x)a H?(X)) forany xeU

Compare these properties to those of fuzzy
membership. Obviously rough membership is a
generalization of fuzzy membership.

The rough membership function, can be used to
define approximations and the boundary region
of a set, as shown below:

B.(X)={ceU i (x)=1},
B'(X)=1er: 15(x) >0},

BN,:,(X')Z{XEUI 0<p(x) <l}, :




3 Decision rules

Every decision table describes decisions
determined, when some conditions are satisfied.
In other words each row of the decision table
specifies a decision rule which determines
decisions in terms of conditions.

Let us describe decision rules more exactly.

Let § = (U, C, D) be a decision table. Every
xelU determines a sequence c¢y(x),...,cn(X),

di(x),...,dn(x) where {c,...c.} = C and
{d\,....dn} =D.

The sequence will be called a decision rule
induced by x (in S) and denoted by

c1(X),-.Cn(X) = di(x),...,dnlx) or in short
C—->D

The number supp,(C, D) = |C(x) N D(x)| will be
called the support of the decision rule C —, D
and the number '

supp,(C,D)
will be referred to as the strength of the decision
rule C —, D. With every decision rule C =, D

we associate the certainty factor of the decision
rule, denoted cer,(C, D) and defined as follows:

[C(x)m D(xl supp (C,D) -

Gx(C’D)":

cerx(C,D)= IC(x] = [C(xl
_s.(c.D)
n(Cx)”
_1Cx)
where n(C(x)) = Ul

The certainty factor may be interpreted as
conditional probability that y belongs to D(x)
given y belongs to C(x), symbolically z(D|C). If
cer(C, D) = 1, then C —, D will be called a
certain decision rule in S; if 0 < cer(C, D) < 1
the decision rule will be referred to as an
uncertain decision rule in S.

Besides, we will also use a coverage factor of
the decision rule, denoted cov(C, D) and

defined as
cov Ic)n D) _ supp,(C.D)
ORI ok
s.(c.D)

(o)
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1DG)
h D(x))=
where n(D(x))= U]
Similarly
cov,(C,D)=n_(C|D).

If C -, D is a decision rule then D —, C will1
called an inverse decision rule. The inver
decision rules can be used to give explanatio
(reasons) for decisions.

Let us observe that
cer,(C,D)= u,c,(,)(x) and cov, (C,D)= pg(x)(x

That means that the certainty factor express
the degree of membership of x to the decisic
class D(x), given C, whereas the coverage fact:
expresses the degree of membership of x
condition class C(x), given D.

Decision rules are often represented in the for
of “if...then...” implications. Thus any decisic
table can be transformed in a set of “if...then..
rules, called a decision algorithm. Generation
minimal decision algorithms from decisic
tables is rather difficult. Many methods f
solving this problem have been proposed but v
will not discuss this problem in this paper.

4  Properties of decision rules

Decision rules have important probabilist
properties which are discussed below.

Let D —, C be a decision rule in S. Then tl
following properties are valid:

Zcery(C,D)=1 (1
yeC(x)
> cov,(C,D)=1 @
‘ yeD{(x)
n(D Zcer (C D n(C(y))—
yeC(x) (3
= ch(C,D
yeC(X)
()= Teov, (C.0)-(D(r)-
)ED(X (4
Zc (C D



cov,(C,D)-n(D(x))

er,(C,D)= ;iovy(c,D)W(D(y»:
. c,(c,D)y _o.(C.D) ¥
: Z(())'y(C’D)— T[(C(x))
__cer,(c,D)-n{C(x)) =
ov,(C,D)= Zcer,(C-D)'“(c(y))
yeClz) (6)

,(c,D) _o,C.D)
>5,(C.5)” Dk)
yeC(x)
bserve that (3) and (4) refer to the well known
total probability theorem, whereas (5) and (6)
‘fer to Bayes' theorem.

ws in order to compute the certainty and
werage factors of decision rules according to
rmulas (5) and (6) it is enough to know the
‘ength (support) of all decision rules only. The
-ength of decision rules can be computed from
ta or can be a subjective assessment.

Flow graphs

ith every decision table we associate a flow
aph, i.e., a directed, connected, acyclic graph
fined as follows: to every decision rule C—D
s assign a direcfed branch x connecting the
mt node C(x) and the output node D(x).
ength of the decision rule represents a
oughflow of the corresponding branch. The
oughflow of the graph is governed by
mulas (1),...,(6), and can be considered as a
w conservation equation similar to that
roduced by Ford and Fulkerson [4]. However,
us observe that flow graphs presented in this
ser are different from flow networks of Ford
1 Fulkerson.

‘mulas (1) and (2) say that the outflow of an
ut node or an output node is equal to their
‘ows. Formula (3) states that the outflow of

output node amounts to the sum of its
ows, whereas formula (4) says that the sum
outflows of the input node equals to its
ow. Finally, formulas (5) and (6) reveal how
wghflow in the flow graph is distributed
veen its inputs and outputs.

s obvious that the idea of flow graph can be
» formulated more generally, independently
lecision tables, but we will not consider this
e here.
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6 Anexample

Let us now consider an example shown in

Table 1.
Table 1: Decision table

FACT {DIS. | AGE | SEX | TEST [SUPP.
1 yes |old man + 400
2 yes imiddle |woman| + 80
3 no fold man - 100
4 yes |old man - 40
no [young |woman| - 220
6 yes |middle |woman| - 60

Attributes DISEASE,

AGE and_ SEX are

condition attributes, whereas TEST is the
decision attribute.

Below a decision algorithm associated with
Table 1 is presented.

1.
2.

3.
4.
5.

if (disease, yes) and (age, old) then (test, +)
if (disease, yes) and (age, middle) then
(test, +)

if (disease, no) then (test, -) .

if (disease, yes) and (age, old) then (test, -)
if (disease, yes) and (age, middle) then
(test, -)

The certainty and coverage factors for the above
algorithm are given in Table 2.

Table 2: Certainty and coverage factors

RULE [STRENGTH | CER. | COV.
1 0.44 0.92 0.83
2 0.09 0.56 0.17
3 0.35 1.00 0.76

4 0.04 0.08 0.10
5 0.07 0.44 0.14

The certainty factors of the decision rules lead to
the following conclusions:

92% ill and old patients have positive test
result

56% ill and middle aged patients have
positive test result

all healthy patients have negative test result




— 8% ill and old patients have negative test
result

—~  44% ill and middle aged have negative test
result

In other words:

— ill and old patients most probably have
positive test result (probability = 0.92)

— ill and middle aged patients most probably
have positive test result (probability = 0.56)

— healthy patients have certainly negative test
result (probability = 1.00)

The inverse decision algorithm is given below:

1. if (test, +) then (disease, yes) and (age, old)
2'. if (test, +) then (disease, yes) and (age,
middle)
3. if (test, -) then (disease, no)
4'. if(test, ~) then (dfigzase, yes) and (age, old)
S'. if (test, -) then: (disease, yes) and (age,
middle)

Employing the inverse decision algorithm and
the coverage factors we get the following
explanation of test result:

— reasons for positive test results are most
probably disease and old age (probability =
0.83)

~ reason for negative test result is most
probably lack of the disease (probability =
0.76)

The flow graph for the decision algorithm is

cov = 0.83 12 )o=053

I =016

Zu=035@ cor=1.08_0=035 cov=0.76

presented in Fig. 1.

34,56 JLo=047

Figure 1: Flow graph

Each input node of the flow graph represents a
condition of corresponding decision rule,
~whereas each output node reveals decisions of
the rules. The associated numbers are to be
understood as probabilities of conditions and
decisions respectively. Branches of the graph are
labeled by strength of associated decision rules.
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The flow graph of a decision algorithm shows
how probabilities of decisions and conditions
are related.

Each node of the graph satisfies equations
(1)..(6). Observe, that in order to compute all
the conditional and total probabilities it is
enough to know the strength of the decision
rules only, which makes the computations very
easy, and gives also clear insight into the
structure of the decision algorithm.

It is also possibly a completely different
interpretation of the flow graph, which gives rise
to many new applications, but this will be not
discussed here and we leave it to another study.

It is clearly seen from the example the
difference between Bayesian data analysis and
the rough set approach. In the Bayesian
inference the data is used to update prior
probability (knowledge) into a posterior
probability, whereas rough set based Bayesian
inference is used to reason directly from data.

7 Conclusion

Rough set theory gives new insight into
vagueness and uncertainty. Besides through its
numerous connections to others disciplines it
enriches our understanding of many theories.

Particularly the relationship with Bayes' theorem
and flow graphs gives new look on Bayesian
inference and leads to efficient algorithms for
data analysis.
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