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Summary. In this chapter, the basics of the rough set approach are presented, and an outline
of an exemplary processor structure is given. The organization of a simple processor is based
on elementary rough set granules and dependencies between them. The rough set processor
(RSP) is meant to be used as an additional fast classification unit in ordinary computers or as
an autonomous learning machine. In the latter case, the RSP can be regarded as an alternative
to neural networks.

1 Introduction

Rough set theory [4] has proved its effectiveness in drawing conclusions from data
[6]. However, to take full advantage of the theory in data analysis, adequate pro-
cessor organization is necessary. The architecture of such processors was proposed
first in [4]. In this chapter, another proposal for rough set processor organization is
presented.

Rough-set-based data analysis starts from a decision table, which is a data table.
The columns of a decision table are labeled with attributes; the rows are labeled
with objects of interest; and attribute values are entered in the data cells of the table.
Attributes of the decision table are divided into two disjoint groups called condition
and decision attributes, respectively. Each row of a decision table induces a decision
rule, which specifies the decision (action, results, outcome, etc.) if some conditions
are satisfied. If a decision rule uniquely determines a decision in terms of conditions,
the decision rule is certain. Otherwise the decision rule is uncertain. Decision rules
are closely connected with approximations, which are basic concepts of rough set
theory. Roughly speaking, certain decision rules describe the lower approximation
of decisions in terms of conditions, whereas uncertain decision rules refer to the
upper approximation of decisions.

Two conditional probabilities, called the certainty and the coverage coefficient, are
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associated with every decision rule. The certainty coefficient expresses the condi-
tional probability that an object belongs to the decision class specified by the deci-
sion rule, given that it satisfies the conditions of the rule. The coverage coefficient
gives the conditional probability of the reasons for a given decision.

It turns out that the certainty and coverage coefficients satisfy Bayes’ theorem. This
gives new insight into the interpretation of Bayes’ theorem, showing that Bayes’
theorem can be used differently for drawing conclusions from data than the use of-
fered by classical Bayesian inference philosophy [5].

This idea is at the foundation of rough set processor organization. In this chapter,
the basics of rough set theory are presented, and an outline of an exemplary pro-
cessor structure is given. The rough set processor is meant to be used as a “rough”
classifier, or as a learning machine, and can be regarded as an alternative to neural
networks.

2 Information Systems and Decision Tables

In this section we define the basic concept of rough set theory: information systems.
The rudiments of rough set theory can be found in [4, 6]. An information system is
a data table whose columns are labeled with attributes, rows are labeled with objects
of interest, and attribute values are entered in the data cells of the table.

Formally, the information system is a pair S = (U,A), where U and A are nonempty
finite sets called the universe of objects and the set of attributes, respectively, such
that a : U — V,, where V,, is the set of all values of a, called the domain of a, for
each a € A. Any subset B of A determines a binary relation /(B) on U, which will
be called an indiscernibility relation, and is defined as follows:

(x,y) €I(B) ifandonlyif a(x)=a(y) forevery a€A,

where a(x) denotes the value of the attribute a for the element x. Obviously I(B) is
an equivalence relation. The family of all equivalence classes of I(B), i.e., a partition
determined by B, will be denoted by U /I(B), or simply by U/B; an equivalence
class of I(B), i.e., the block of the partition U /B containing x will be denoted by
B(x).

If (x,y) belongs to I(B), we will say that x and y are B-indiscernible objects (in-
discernible with respect to B). Equivalence classes of the relation /(B) (or blocks of
the partition U /B) are referred to as B-elementary sets or B-elementary granules.

If we distinguish in the information system two disjoint classes of attributes, called
condition and attribute decision, respectively, then the system will be called a deci-
sion table and will be denoted by S = (U,C,D), where C and D are disjoint sets of
condition and decision attributes, respectively, and CUD = A. C(x) and D(x) will
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be referred to as the condition class and the decision class induced by x, respectively.
Thus the decision table describes decisions (actions, results etc.) taken when some
conditions are satisfied. In other words, each row of the decision table specifies a

decision rule that determines decisions in terms of conditions.

An example of a simple decision table is shown in Table 1. In the table, age, sex,
and profession are condition attributes, whereas disease is the decision attribute.

Table 1. Decision table

Decision rule Age Sex Profession  Disease
1 old Male Yes No
2 Med.  Female No Yes
3 Med.  Male Yes No
4 old Male Yes Yes
5 Young Male No No
6 Med.  Female No No

The table contains data on the relationship among age, sex, and profession and a cer-
tain vocational disease. Decision tables can be simplified by removing superfluous
attributes and attribute values, but we will not consider this issue in this chapter.

3 Decision Rules

In what follows, we will describe decision rules more exactly. Let S = (U,C,D) be
a decision table. Every x € U determines a sequence
Cl (x)7 M Cn(x)7d1 (x)7 e 7dm(-x)9
where {cy,...,c,} =Cand {d,...,d,} = D. The sequence will be called a decision
rule induced by x (in S) and denoted by
c1(x),...,cn(x) = di(x),...,dn(x),
or in short, C — D. The number suppx(C,D) = |A(x)| = |C(x) N D(x)| will be called

the support of the decision rule C ?D, and the number,

suppx(C,D)

GX(C7D) = |U‘ )

will be referred to as the strength of the decision rule C — D, where |X| denotes
the cardinality of X. Another decision table is shown in Table 2. This decision table
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can be understood as an abbreviation of a bigger decision table containing 1100
rows. Support of the decision rule means the number of identical decision rules in
the original decision table.

Table 2. Support and strength

Decision rule Age Sex Profession  Disease  Support Strength
1 old Male Yes No 200 0.18
2 Med.  Female No Yes 70 0.06
3 Med.  Male Yes No 250 0.23
4 old Male Yes Yes 450 0.41
5 Young Male No No 30 0.03
6 Med.  Female No No 100 0.09

With every decision rule C— D, we associate the certainty factor of the decision
X

rule, denoted cer,(C, D) and defined as follows:

|C(x) ND(x)| _ suppx(C,D) _ 6.(C,D)
|C(x)] |C(x)] T[C(x)]

cery(C,D) =

[C)|
-

where Tt [C(x)] =

The certainty factor may be interpreted as a conditional probability that y belongs to
D(x), given y belongs to C(x), symbolically mt,(D|C). If cery(C,D) = 1, then C —D
will be called a certain decision rule; if 0 < cer,(C,D) < 1, the decision rule will
be referred to as an uncertain decision rule. We will also use a coverage factor of
the decision rule, denoted cov,(C,D) [7] defined as

B |C(x)ND(x)| B suppx(C,D) B 6x(C,D)
ol CD) =50 T T bM)  mbw)]”

where D(x) # 0 and ©[D(x)] = ‘l‘)l(/x‘)‘ . Similarly,
covy(C,D) =7, (C|D).

If C TD is a decision rule, then D TC will be called an inverse decision rule.

Inverse decision rules can be used to give explanations (reasons) for a decision.

4 Approximation of Sets

Suppose we are given an information system S = (U,A), X C U, and B C A. Our
task is to describe the set X in terms of attribute values from B. To this end, we
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define two operations assigning to every X C U two sets B,(X) and B*(X) called
the B-lower and the B-upper approximation of X, respectively, and defined as

B.(X)= [ J{B(x):B(x) C X} and
xeU

B*(X) = |J{B(x) : B(x)NX # 0}.
xeU

Hence, the B-lower approximation of a set is the union of all B-granules that are
included in the set, whereas the B-upper approximation of a set is the union of all
B-granules that have a nonempty intersection with the set. The set

BNg(X) = B*(X) — B.(X),
will be referred to as the B-boundary region of X.
If the boundary region of X is the empty set, i.e., BNg(X) = 0, then X is crisp

(exact) with respect to B; in the opposite case, i.e., if BNp(X) # 0, X is referred to
as rough (inexact) with respect to B.

There is an interesting relationship between approximations and decision rules. Let
C — D be a decision rule. The set,
X

U {c):ck) D)},
y€D(x)

is equal to the lower approximation of the decision class D(x), by condition classes
C(y), whereas the set,

U {€k):ck)nD(x) # 0},
y€D(x)
is equal to the upper approximation of the decision class by condition classes C(y).
That means that approximations and decision rules are two different methods for
expressing imprecision. Approximations are better suited to expressing topological

properties of decision tables, whereas rules describe hidden patterns in data in a
simple way.

5 Probabilistic Properties of Decision Tables

Decision tables have important probabilistic properties that are discussed next.

Let C— D be a decision rule, and let I' = C(x) and A = D(x) . Then the follow-

ing properties are valid:

Zcery(C,D): 1, (1)

yell
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Z covy(C,D) =1, 2
YEA
TC[D(X)] = ;cery(C,D)%[C(y)] = ;c)'(CvD)a (3)
ye ye
TC[C()C)] = ZCOV)’(C7D) TE[D(y)] = ZG}‘(CvD)7 (4)
YEA YEA

covy(C,D) - n[D(x)] (C,D)

eniens X con€D) D] RICE)]” o
o _ cery(C,D) -n[C(x)] :GX(C’D)
P centeD) AlCK]  wDW) ©

that is, any decision table satisfies (1) — (6). Observe that (3) and (4) refer to the
well-known total probability theorem, whereas (5) and (6) refer to Bayes’ theorem.
Thus, to compute the certainty and coverage factors of decision rules according to
formula (5) and (6), it is enough to know only the strength (support) of all decision
rules. The strength of decision rules can be computed from data or can be a subjec-
tive assessment.

These properties will be used as a basis for the rough set processor organization.

The certainty and coverage factors for the decision table presented in Table 2 are
shown in Table 3.

Table 3. Certainty and coverage factors

Decision rule  Strength  Certainty  Coverage

1 0.18 0.31 0.34
2 0.06 0.40 0.13
3 0.23 1.00 0.43
4 0.41 0.69 0.87
5 0.03 1.00 0.06
6 0.09 0.60 0.17

Let us observe that, according to formulas (5) and (6), the certainty and coverage
factors can be computed employing only the strength of decision rules. In Table 2,
decision rules 3 and 5 are certain, whereas the remaining decision rules are uncer-
tain. This means that middle-aged males having a profession and young males not
having a profession are certainly healthy. Old males having a profession are most
probably ill (probability = .69), and middle-aged females not having a profession
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are most probably healthy (probability = .60).

The inverse decision rules say that healthy persons are most probably middle-aged
males having a profession (probability = .43) and ill persons are most probably old
males having a profession (probability = .87).

6 Decision Tables and Flow Graphs

With every decision table, we associate a flow graph, i.e., a directed acyclic graph
defined as follows: to every decision rule C — D, we assign a directed branch x con-
X

necting the input node C(x) and the output node D(x). The strength of the decision
rule represents a throughflow of the corresponding branch. The throughflow of the
graph is governed by formulas (1) — (6).

Formulas (1) and (2) say that the outflow of an input node or an output node is
equal to their respective inflows. Formula (3) states that the outflow of the output
node amounts to the sum of its inflows; whereas formula (4) says that the sum of
the outflows of the input node equals its inflow. Finally, formulas (5) and (6) reveal
how throughflow in the flow graph is distributed between its inputs and outputs.
The flow graph associated with the decision table presented in Table 2 is shown in
Fig. 1.

26 =0.47

20 =0.23
Yo =10.53

26 =0.03

Fig. 1. Flow graph

The application of flow graphs to represent decision tables gives very clear insight
into the decision process. The classification of objects in this representation boils
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down to finding the maximal output flow in the flow graph; whereas, the explanation
of the decisions is connected to the maximal input flow associated with the given
decision (see also [1] and [6]).

7 Rough Set Processor

To make the most of rough set theory in data analysis, a special microprocessor, the
RSP, is necessary, to speed up the classification process. The RSP should perform
operations pointed out by the flow graph of a decision table, that is, first it should
compute its strengths from the supports of decision rules and afterward compute the
certainty and coverage factors of all decision rules. Finally, the maximal certainty
(coverage) factor should be computed, pointing out the most probable decision class
(reason) for the classified object.

Many hardware implementations of this idea are possible. An example of a sim-
plified RSP structure is depicted in Fig. 2.

DTM DDR |&—u"— INPUT
<

DTM - Decision Table
DRR - Decision Rule Register
AR - Arithmometer

AR

Fig. 2. RSP structure

The RSP consists of decision table memory (DTM), a decision rule register (DRR)
and an arithmometer (AR). Decision rules are stored in the DTM. The word structure
of the decision table memory is shown in Fig. 3.

Condition| Decision | Support | Strength | Certainty | Coverage

Fig. 3. Word structure

At the initial state, only conditions, decisions, and support of each decision rule are
given. Next, the strength of each decision rule is computed. Afterward, certainty and
coverage factors are computed. Finally, the maximal certainty (coverage) factors are
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ascertained. They will be used to define the most probable decision rules (inverse
decision rules) induced by data. Let us also observe that the flow graph can easily
be implemented as an analogue electrical circuit.

8 Conclusion

Rough-set-based data analysis consists of discovering hidden patterns in decision
tables. It is shown that decision tables display basic probabilistic features; parti-
cularly, they satisfy the total probability theorem and Bayes’ theorem. Moreover,
rough set theory allows us to represent the above theorems in a very simple way
using only the strengths of the decision rules. This property allows us to represent
decision tables in the form of a flow graph and interpret the decision structure of the
decision table as throughflow in the graph. The flow graph interpretation of decision
tables can be employed as a basis for rough set processor organization.
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