[NFORMATION AND conTRoL 41, 9-28 (1979)

Programs for Instruction Machines
Z. PAwWLAK
Computer Center of the Polish Academy of Sciences, Warsme, Poland
. ROZENBERG
Department of Mathematics, University of Awtweerp, U1 A, Wilriik, Belgium
ANL
W. J. Savirce*

Computer Seience Division, Department of Applied Physics and Information Science,
Umwiversity of Califorsia at San Diepo, La Jalla, California 82003

Formal medels for a computer and for programs are introduced. These
madels are used to develop a theory for programs based on the underlving
computational structure of the computer to be programmed. Several notons of
“well-behaved" programs are intreduced. Necessary and sufficient conditions
for converting arhitrary programs to “well-behaved”” programs are derived.,

1. INTRODUCTION

One of the goals of theoretical computer science 1s to provide a systematic
understanding of the basic phenomena of information processing. Among the
many different approaches to this task, one can distinguish a machine-dependent
zpproach which goes roughly as follows. Since a computer is a central unit in
many information-processing systems, it seems reasonable to assume that some
of the underlying principles of “how computers operate’ are important to the
understanding of information processing in peneral. One natural approach
= to try to express these underlying principles of how computers operate
through properties of the set of all computations possible on a computer. This
philosophy can be expressed as follows: Once a computer is given to us, the
szt of all possible computations {runs) on it is fixed. The only thing we do when
we execute a particular task on a computer (load a program) is to pick out a
particular computation from the set of all possible computations.

* Part of this work was done while at the Mathematisch Centrum, Amsterdam. This
research was supported, in part, by NSF Grant MCS-74-02338.
9
01 9-9958 79 /04 0009=20202.00/0

Copyright © 1972 by Academic ress, Inc.
All pights of reproduction in any form reserved,

10 PAWLAK, ROZENBERG, AND SAVITCH

One point of departure in building up a theory along these lines is to model
the classical von Neumann concept of a stored program computer with indirect
addressing. One such model, among others, was proposed in Pawlak (1969).
The underlying wlea was to provide a model which would help to explain how
the various possible states of a computer relate to one another. In this context,
a state is a function from the set of addresses to the set of possible contents
of memory locations. One special memory location (the counter) contains the
address of the location holding a coding of the current control step (statement)
to be executed next. This statement is decoded by the control unit of the com-
puter and executed, resulting in a new state, A computation is then a sequence
of states. When observing a particular computation, one can distinguish a
sequence of pairs <address, contents’s activated in consecutive states. The second
clement of the pair is, approximately, the statement executed. The set of all
such pairs is, in essense, the program determining this computation, To simplify
the theory, let us consider only programs without self-modification. In this case,
such a program is a subset of every state included in the compiutation sequence.
Now, if we collect all the computation sequences that contain the given program,
then we get the set of states associated with the given program. Similarly,
with each “statement” of this program, we can associate a set of states; namely,
those states which contain this statement in the activated location. In other words,
each statement is associated with the set of states which represent the machine
about to execute this statement, This leads us to a possible approach to inves-
tigating programs. Each program is a set of statements and, in turn, each
statement is a set of states. The various statements will thus be pairwise disjoint
sets of states,

Thus a natural approach to investigating programs is to forget about the
burdensome, technical details of the definition of such address machines and
to define a computer to be a set of states with several transition functions. Each
transition function corresponds to an instruction (family of instructions),
A program is then defined to be a collection of mutually disjoint subsets of the
set of states, each subset lying within the domain of a single instruction. This
approach is taken in this paper. In particular, we concentrate on the topics
which are “well-haved” programsz and, when it is possible, to construct such
programs. We establish several results indicating that the possibilitv of writing
“nice programs’’ iz dependent on simple properties of the set of all computations
available on the machine. This partially justifies our view that a theory for infor-
mation processing can be based on simple, basic properties of the set of all
computations available on a computer.

The order of topics presented is as follows. After introducing the necessary
formal definitions, we present necessary and sufficient conditions for a machine
to have the property that every program can be converted to an equivalent
“well-behaved” program. We then go on to describe canonical forms for certain
tvpes of well-behaved programs. Finally, we consider quotient machines

INSTRUCTION MACHINES 11

abtained 'b-}' idfntif}'ing maci:iru: states which are in SOIME SENse r,'nmputatinnall}’
equivalent. The relationship of the programming structure of a machine and
its quotient machines is studied under this topic,

2, Bazic DEFIsrrions
We now formalize our notations of machine and program.
2.1 DerFINITION.

2.1.1. A P machine iz a pair M = (8, #), where § is a set of statez and =
is a partial function from § to S. Whenever =(s,) = s, , then we say that the
machine M goes from states 5, to 5, in one step.

212, A state 5 is called a hafting state if =(¢) is undefined. The set of all
halting states of MW is denoted HAL'T{A).

213, A computation of M is a finite or infinite sequence ¢, , ¢, , 5. ,... of
states such that ={s;) = 5, for all i, except the last 5; in case the sequence is
finite. A complete computation is a computation that either iz infinite or is finite
and ends with a halting state.

2.1.4. An instruction machine (I machine) is a system M = (8,1, . 1, I}
such that

(1) 5 is a set of states (possibly infinite)
(ii) eachJt;, 1 =i = m, is a partial function from S to S, and

(i) for 1 =i < j = m, DOM(I;) and DOM([,) are disjoint, where
DOM{I;) denotes the domain of the partial funetion T, .

The partial functions I, are called the instructions of the machine M. On an
intuitive level, we may think of the f; as the instructions available on the
machine M. So, for example, I, might be the plus instruction, I, might be the
multiplication instruction, f; the store instruction, I the fetch instruction and
s0 on. Since we are modeling stored program machines which hold their program
in storage, the program and “instruction counter’” are part of the machine state.
Hence, for any state of the machine there should be at most one applicable
nstruction. This is the reason for econdition (i1i) above.

It iz worth noting that the I, are not completely determined by the “hardware”
of the machine M, but also represent our way of viewing the machine 1.
For example, instead of making each arithmetic operation a separate J, , we
might have a single instruction I, for all arithmetic operations.

12 FAWLAK, ROZENBERG, AND SAVITCH

2.1.5. The P machine associated with the £ machine M = (S, 0, , Iy ooy £y)
is the machine M’ = (5, %), where « is the union of all the J;, 1 << ¢ < m.
By a computation, complete computation, or halting state of M, we will mean
a computation, complete computation, or halting state, respectively, of the
associated P machine A7

Having defined I machines, we now go on to define programs for I machines,
Since we are modeling stored-program machines, the program and “instruction
counter” are completely determined by the state of the machine. The approach
that we will take is that, in this abstract context, a statement of a program is
identified with the set of all states which represent this machine, holding this
program in storage and about to execute this statement. So a program statement
is, for us, just a set of states. Since a program statement is a refinement of a
machine instruction (for example a refinement of the store instruction to store
in location 20), each statement must lie within a single instruction domain.
With this notion of program statement, we can define a program to be a set of
statements, There is no need to order the statements of a program or to add
any other mechanism for How of control. The definition of a machine program
is such that each state lie in at most one program staterment and hence the state
will determine which statement is executed next. We now make these ideas
formal,

2.2 Deriwrrion. Let M = (5, 1;,1,,...,1,) be an I machine and let
M" = (8, «) be the P machine associated with M.

2.2.1. A program for M iz a finite collection, P = {B, , B, ..., B,}, of non-
empty sets of states such that

(i) the B; are pairwise disjoint,
(ii)y for each 4, 1 =X { =< n, either there is an instruction I; such that B;
is a subset of DOM{T;) or else B; consists entirely of halting states.

The sets B; are called the stalements of the program P. If B; consists entirely
of halting states, then B, is called a halt statement.

2.2.2. The support of the program P is defined and denoted by SUP(P) =
\isa B;. P is said to be closed provided that, for all states § in SUP(P), cither
wis) is undefined or (s} is in SUP{P). T'wo programs P, and P, for M are said
to be (computationally) equivalent if SUP(P)) = SUP(F,). Notice that two pro-
grams are equivalent if and only if they realize exactly the same set of compu-
tations,

2.2.3. The program P is said to be a universal program for the machine MM
provided SUP(P) = 5. Clearly, every I machine has a universal program,
For example, P = {DOM(I,), DOM(I,), DOM(I,,), HALT(M]}} is a uni-

INSTRUCTION MACHINES 13

versal program for M. This particular universal program P will be called the
natural universal program for M,

3, Trer DecoMposITIONS

In this section, we investigate conditions under which a program can be
converted to an equivalent “well-structured” program. By “‘well-structured”
we mean that the program statements can be arranged in a tree-like structure
which exhibits the flow of control in a specific, simple and organized way. A
formal definition of what we will take to be a “well-structured” program follows,

3.1 Derwrrion. Let P = {B,, By ,.., 8} be a program for an I machine
M=(51I,5,..1,)and let M' = (&, =) be the P machine associated with M,

3.1.1. For any set B of states of M, the closure, respectively exit set, of B
iz defined and denoted by CLOS({B) = {5 | for some ¢ Z= 0, there is a compu-
tation §y, 8 4o 5 Such that 5515 in B and s = s}, respectively EXIT{B) =
7| 5is not in B and there is a state 5 in B such that #{s') = 5.} In the definition
of CLOS(B), the case ¢ = 0 is to be interpreted to mean s is in B. So B is a
a subsct of CLOS(B).

3.1.2. P is said to be tree decompasable provided that the statements of P
can be arranged in a tree such that

(i) every node of the tree iz a unique statement B, and each B, is some
node of the tree,
(i) for each B;, CLOB(B;) contains all B, such that B; is a descendant
of B; in the tree,
(iii} if B, is a direct descendant of B, , then EXIT(B;) N B, is nonempty,
znd

(iv} for each B, EXIT(B,) is contained in the union of all B; such that
either B, is a direct descendant of B, or B, is an ancestor of B; .

3.1.3. Pis said to be forward tree decomposable if the statements of P can
be arranged in a tree such that this tree satisfies (i), (ii), (iii) above and
(iv)) for each B;, EXIT(B,) is contained in the union of all B, such that
By 15 a direct descendant of B; .

Note that if a program has a tree decomposition, then it must be closed.
For this reason we will confine our discussion to closed programs.

In a tree decomposition, we can think of the subtrees that hang below a node
2= subprograms of the statement at that node. With this intuitive view, a tree

14 FAWLAK, ROZENBERG, AND SAVITCH

decomposition exhibits the program as a hierarchy of subprograms. Control
may pass, from a given statement, down to @ subprogram at the next level or
up to any calling subprogram which is above the statement in the hierarchy.
A forward tree decomposition has a particularly simple structure in that control
can only pass down and never up in the hierarchy.

We next define some notions which will help to characterize when a closed
program may be converted into an egquivalent tree decomposable program.

3.2 DeFmvrmioN. Let M = (8 1,1, 1) be an I machine and let
M' = (8, %) be its associated P machine.

32.1. An instruction I; of M is said to be a start instruction provided that
(1) if 5is in DOM(Z;), then there is no state 5* such that ={s') = 5, and
(ii) if 5 is any state in S, then there is a computation s, , 5, ..., 5 such that
5 15 in DOM(L}) and 5, = s

The states in DOM(L) are called start states, Clearly, if M has a start instruction,
then it is unique. If M has a start instruction, we will denote it by START(M).

322, Assume M has a start instruction and P = {B, , B, ,..., B,} is a pro-
gram for M. A statement B, is said to be a start statement for P provided that
(i} B, is a subset of DOM{START({M)) and
(ii) if 5 is any state in SUP(P), then there is a partial computation
Sy 4 Sy g Sesuch that sy is in B, , 5, is in SUP(P) for 0 << j < £, and 3, = .

Note that if P has a start statement, then it is unique. In such a case we denote
it by START(P).

3.23. Let 5,5, 5% ,.., 5 be a computation of M. The instruction history
of this computation is the sequence L .1 1 ... 1 of instructions such that
5 is in DDI‘I.-I{I‘-J]. If 5 is a halting state, then we end the sequence with H,
where H is a new formal object used to denote “halting instruction.” The trace
of this partial computation is the subsequence of its instruction history obtained

by deleting allf; suchthatl;, =1, .

3.2.4. M is said to be frace consistent provided that
(i) M has a start instruction, and

(i) any two partial computations which start with a start state and end
with the same state have the same trace.

The proof of the next lemma is routine and hence omitted,

3.3 Lemsaa. Lef M obe an T machine woith a start instruction,

INSTRUCTION MACHINES 15

(1) If Pis a program will a starl statement and P hat a tree decomposition,
then thiz tree decomposition is unique.

(2) If Pis a universal tree decomposable program for M, then this program
has a start statement,

(3) If P is a wniversal program for M with a start statement, then
START(P) — DOM(START(M)).

When trying to decide if every closed program for a machine is equivalent to
2 [forward) tree decompaosable program, it suffices to consider only universal
PrOEranms, The next lemma makes this more Pr-:cis::, The pnu.uf % easy and hence
omitted.

3.4 Lenima. Let M be an instruction machine with a start instruction and let
P be a universal program for M, If P has a tree decomposition, vespectively forward
tree decomposition, then every cloted program for M, which has a start statement,
i equivalent to a tree decomposable, respectively forseard tree decomposable,
progrant.

15 Toeomes. If M = (81, 1, ,...0,) & an I wmachine that &5 trace con-

sistent and P s a closed program for M seith a stare statement, then P is equivalent
1o a tree decontposable program.

Froof. We will describe a tree decomposable program, P', that 1s equivalent
o P The construetion of P is illustrated by Example 3.6, As an intermediate
step, we first construct a tree, T, and a directed graph, &, that have each node
labeled either by an instruction of M or by H. Withowt loss of generality,
zzaume J; iz the start instruction. Construct T to be of depth m - 1 as follows.
Label the root node I, . Give the root node s direct descendants labeled
I, 1, I, and H. In general, give each node not labeled by H direct descen-
dantz labeled I,-. A .o I;, and H; where these instruction labels are all labels
zuch that neither the given node nor any ancestor of the given node is labeled
by any of I,-j s I_;! !’,-‘f . The nodes labeled H have no descendants. Clearly,
this process terminates and yields a tree, T, in which the node labels of paths
from root to a leaf consist of all sequences of instructions such that the sequence
starts with I, , ends with /¥ and has no instruction repeated. To get & from T
Change the arcs from parent to offspring nodes to directed arcs terminating at
the offspring, and add directed arcs from each node, not labeled by i, to each
of its ancestor nodes, The resulting directed graph is G. With each node of G,
we aszociate a subset of SUP(P) as follows, With the root node we associate
the start statement of P. With each other node, N, we associate the set of all
states 5 in SUP{P) such that: if we first take the unique trace of computations
from a start state to s and then, starting at the root node, follow the directed
path which passes through nodes labeled by the elements of the trace (in order)

64341 1-2

16 PAWLAE, ROZENBERG, AND SAVITCH

then we end up at . ' consists of all nonempty sets which are associated with
some node.

Clearly, the tree T describes a tree decomposition of P, provided that P
15 a program. That is, provided the sets making up P' are pairwise disjoint.
But this follows easily from the fact that M is trace consistent. This completes
the proof. [

3.6 Exampre. This example illustrates the construction given in the p]’ou'F
of Theorem 3.5 as well as a number of the concepts discussed previously.
Let M = (8, I, , I, , I), where § = {1, 2,..., 11} and the functions [, , [, and I
are deseribed in Fig. 1. In Fig. | the states are given in four columns, one for
the domain of cach instruction and one column for the halting states: an arrow
from one state to another means that M can make this state transition in one
step; for example, (1} = 5. Note that M has a start instruction, namely [, .
It is casy to see that M is trace consistent and hence, |1r_|.' Theorem 3.5, every
closed program with a start statement is equivalent to a tree-decomposable
program,

11 I, T, BALT

= -]

_\ B
-]
2
1

1]

et

5
7
Fr

e 1t
=

'--_,___‘_____.___'_,..r"

1M

G. 1. State transitions.

Let P ={{l,2 3},{4 5, 6},{7),{8,9},{10,11})}. Then P is a universal
closed program with a start statement, but P is not tree decomposable, We
now illustrate the construction from the proof of Theorem 3.5 and thereby
obtain a tree-decomposable program P’ equivalent to P. The tree T and directed
graph G for P are given in Figs. 2 and 3 respectively. Figure 4 shows the set
of states associated with each node of G. (@ denotes the empty set.) From this
we get the equivalent program P° = {{1, 2, 3}, {4, 5, 6, 7}, {8}, {9}, {10}, {11}}
and its tree decomposition, The tree decomposition of P is given in Fig. 5. |

The converse to Theorem 3.5 does not hold as shown by the following example

INSTRUCTION MACHINES 17

3.7 Examrri. Below we define a machine M such that M has a start
astruction, every program for M which has a start instruction is equivalent to
2 tree decomposable program but M is not trace consistent. M = (5, I, , [, , Iy),
where 8 = {1, 2, 3}, (1) = 2, 1(2) = 3, and I{3) = 2. I} is a start instruction.

learly, there is a universal tree decomposable program, {71}, {2} {3/} and,
wence, every program with a start instruction is equivalent to a trec decomposable
crogram, However, the two computations 1, 2, and 1, 2, 3, 2 have different

taces.]

Fiz. 2. Tree T.

Fig. 3. Dirccted graph G

18 PAWLAK, ROZENBERG, AND SAVITCH

7\

] P

Fic. 4. State sets associated with O

[4,5,6,7} 12k

{81 {10} {1}

Fic. 5. Tree decomposition for P,

Theorem 3.5 gives a sufficient but not necessary condition for guaranteeing
that every closed program with a start starement is equivalent to a program
with a tree decomposition. In order to get a necessary and sufficient condition,
we will weaken the notion of trace consistent.

3.8 Derixrrios.

3.8.1. Let M be an I machine with a start instruction and let 55, 5 ..., 5,
be a computation of M. let I;' ,I,-i — f," be the trace of this computation,
The reduced trace of this computation is the subsequence of this trace obtained
as follows. Let j << k be such that [, — I, , j is as small as possible and & is
as large as possible given 7. Delete L;q oA sen Iy to obtain the subsequence
I.-‘ , .f,-j " I".— , I"t+: . LI‘ . Repeat this operation to the subsequence so obtained,
then to the subsequence next obtained and so forth until the subsequence
obtained has no repeated instructions, The subsequence finally produced is the
reduced trace.

INATRUCTION MACHINES 19

382, An T machine, M, is said to be reduced trace consistent provided that
(i) M has a start instruction, and

(i) any two computations that start with a start state and end with the
same state have the same reduced trace.

Note that, if M is trace consistent, then it is reduced trace consistent. However,
the converse is, in general, not true,

39 DerNrrioN. Let M = (8,1, I, ..., I,,) be an I machine with a start
mstruction. An [machine M’ = (5", T;,I;_, ,I0) with a start instruction is
sud to be a refinement machine of M provided tlmt

(i) the P machine associated with 21" iz equal to the P machine associated
smth M (so, in particular, 5" = 5),

(i) for every 1 =i =" n, there is a | =< j = m such that DOM(IL}) is
2 subset of DOM(L), and

(i) DOM(START(M)) = DOM(START(M")).

310 Tueorem. Let M = (S, I, , I ... 1) be an I machine with a start
metruction. Then the following are equivalent.

(1) Every closed program for M with a start statement is equivalent to a
sree decomposable program.

(2) There is a vefinement machine M of M such that M’ is reduced trace
comsistent.

Proof. We first show that (1) implies (2). Suppose (1) holds. First, consider
the special case where M has no halting states, Let P = {B,, B, ..., B} be
2 universal tree decomposable program for M and let (8,) be the P machine
ss=ociated with M. Note that, by Lemma 3.3, P has a start statement. Define
M = (51 ,5,..I,), where I is = restricted to B;, 1 =1 <L n. With the
teld of Lemma 3.3, it is not difficult to see that M is a refinement machine of M.
Thus, is will suffice to show that M’ is reduced trace consistent. To see this,
SIDPOSE 5y, 8y 4o §2 18 @ computation of M such that s, is a start state. For
some unique 7, , § is in B, . From the definitions of tree decomposition and of
reduced trace, it follows that the reduced trace of this computation is the
sequence of labels F' sy _Ih such that DOM(T} s DOM(T; ey DODMUT, 5)
kbel the nodes on the path frr.-m the root node to BE in the tree ducu-mpumtlon

of P. S0 each such subcomputation has a reduced trace determined solely h} 5.
Thus M' is reduced trace consistent. This shows that (1) implics (2} in the
case where M has no halting states. The proof in the case where M has halting
states is basically the same but is notationally harder to express. Since the
&ference in proofs for the two cases is basically one of notational change, we
will omit the proof for the latter case.

20 PAWLAK, ROZENBERG, AND SAVITCH

It remains to show that (2) implies (1). By Lemma 3.4 it suffices to produce
a universal tree decomposable program for M. By the definition of a refnement
machine, it suffices to produce a universal tree decomposable program for A,
However, inspecting the construction given in the proof of Theorem 3.5,
one notices that under the assumption of reduced trace consistency for M,
given the natural universal program for M, it produces an equivalent tree
decomposable program,

The remainder of this section is concerned with producing a necessary and
sufficient condition for guarantecing that every closed program with a start
statement is equivalent to a program with a forward tree decomposition,

3.11 Derrsrrion. An I machine M is said to be trace bounded provided
there is some W such that: for anv computation of M, the trace of this compu-
tation has length at most V.

312 Lemma. Let M be an I machine with a start instruction. If M has a
untversal, forward tree decomposable program, then M is trace consistent and trace

bonrded,

Proof, Let P be a universal, forward tree decomposable program for M,
If the tree in the tree decomposition of P has depth® W, then every trace of
a computation of M will have length at most N, So M is trace bounded.,

It 5 is any state of M, then every computation from a start state to 5 passes
through the same path in the forward tree decomposition of P, namely the path
from the root node to the unique node labeled by a statement containing s.
From this it follows immediately that, any two such computations have the same
trace, So M is also trace consistent. ||

313 Tueorem. Let M be an T machine with a start instruction. The Jollosoing
are equivalent.

(1) Every closed program for M with a start statement has an equivalent
Sorward tree decompasable program.

(2) M is trace consistent and trace bownded,

Froof. By Lemma 3.12, it follows that (1) implics (2). Conversely, suppose
(2) holds. In order to establish (1), it will suffice, by Lemma 3.4, to show that
M has a universal, forward tree decomposable program. To accomplish this,
we use a technique similar to that used in the proof of Theorem 1.5, Let N
be such that the trace of every complete computation of M has length at most
N and let i be the number of instruction of M. We first construct a tree T

' The depth of a tree equals the number of nodes on 4 muximal length path from the
root to a lenf,

INSTRUCTION MACHINES 21

¢ depth W such that every node is labeled either by an instruction of M or by f,
woere, as before, H is a formal object used to denote “halting instruction’,
T he tree 1s constructed from root to leaves down to N levels as follows, The root
wode 15 labeled by the start instruction. The root node has m offspring nodes
aoeled by H and the m — | instructions other than the start instruction. Each
weo-root node, not labeled by M, has i — | offspring nodes labeled by them — 1
abels consisting of H and the s — 2 instructions other than the start instruction
e=d the instruction labeling the parent node. Nodes labeled H have no offspring.
=o the set of paths from root to leaves of T are labeled by all possible sequences

¢ length at most N such that:

(1) the first element of the sequence is the start instruction and no other
“ement of the sequence is the start instruction,

(2) any two consecutive elements of the sequence are different, and

(3) H occurs only at the end of a sequence and all sequences of length
ez than N end with H.

ik each node of T' we associate the set of states s such that the unique trace
“om a start state to s is the sequence of labels encountered on the path from
e root node to the given node. Let P be the set of all non-empty sets associated
with the nodes of T% It is easy to see that P is a universal program for M and
“=at the above construction exhibits a forward tree decomposition of P.]

4. Canonicar Tree DEcOMPOSITIONS

(ziven a program P which is forward tree decomposable, there are, in general,
=any programs P’ which are equivalent to P and forward tree decomposable.
There 15, however, one program P which is in some sense the smallest such
~rogram and which can be, in some intuitive sense, “‘effectively” constructed
cven £ This P will be called the first canonical tree decomposition equivalent

P. There is also a second canonical tree decomposition equivalent to P, As
with the first canonical decomposition, the second canonical decompaosition
s also unique. The difference between the two canonical forms is that the second
canonical form displays more computational structure. If 2 machine hag two
complete computations such that the trace of one is a prefix of the trace of the

ther, then this can easily be detected by studying the structure of the second

canonical form but this is not easily displayed using the first canonical form.
The method of constructing canonical forms applies to tree decompositions
s well as forward tree decompositions. However, if the tree decomposition is
ot forward, then the canonical forms may not be unique.

4.1 DermvrrioN. Let P be a program for an I machine M = (8,1, , L, ... I,,).

22 PAWLAK, ROZENBERG, AND SAVITCH

41.1. A statement B in P is said to be closed if CLOS(B) = B. B is said
to be gpen provided that, for cach state 5 in B, there is a computation starting
with 5 and leading to a state which is not in in B. Note that there may be state-
ments B which are neither open nor closed.

4.1.2. If B is in P, then the instruction of B is denoted INST{B) and is
defined to be the unique I, such that B is included in DOM(Z). If B is a halt
statement, then INST(B) = H, where again H is a new formal object to stand
for “halting instructions.”

4.1.3. Suppose P is tree decomposable and consider a tree decomposition
of P. The decomposition tree is said to be in first canonical form provided that
the following holds: If 4 and B are in P and A4, B are either siblings or one 13
the parent of the other in the tree decomposition, then INST(4) == INST(B).

4.1.4 (Notation as in 4.1.3). The tree decomposition iz said to be in second
canoical form provided that

(1) if A is a statement of P which is not at the root node, then A is either
open or closed,

(i) if 4 and B are statements of P and A iz the parent of B in the tree
decomposition, then INST{.4) ¢ INST(R), and

{iii) if 4 and B are statements of P, A, B are siblings and A, B are either
both open or both closed, then INST(A) == INST(B).

4.2, Tueorem. Let M be an I mache and let P be a tree decomposable program.
Then theve are equivalent free decomposable programs P and P° such that the
tree decomposition of P', respectively P, is in first, respectively second, canonical
Jornt, Furthermore, if P is forward tree decomposable, then the tree decompositions
af P and P will be fortvard tree decompositions.

Froaf. Let us consider the first canonical form. To obtain P and its tree
decomposition from a tree decomposition of F, proceed as follows. If A is the
parent of B in the given tree decomposition of P and INST(A) = INST(E),
then replace 4 by 4 W B in the tree decomposition and hang both the subtrees
that were below 4 and the subtrees that were below B, below 4 W B in the tree
decompaosition. If 4 and B are siblings and INST(A4) = INST(B), then replace
A by AW B in the tree decomposition and hang both the subtrees that were
below 4 and the subtrees that were below B, below A4 'v B in the tree decompo-
sition. Repeat these two operations as often as possible. The resulting tree is a
tree decomposition in first canonical form for a program P’ equivalent to P.
If the original tree decompositions were forward, then the tree decomposition
produced in this way will also be forward.

INSTRUCTION MACHINES 23

The second canonical form P" is obtained from the first canonical form
= “ollows, For each non-root node statement A of the program in first canonical
wr= replace A by A, and add a sibling A, to A, , where 4, and A, are defined
e follows. 4, = {5|sis in A and there is a computation leading from s to a
s not in A} and 4, = A — A, . Note that the subtrees that were below A
we now below A, (as well as being changed themselves) and that A, has no
sspring. If either A, or 4, is empty, then it is omitted. Since what we have done
= w factor each A into a closed statement 4, and an open statement A, | it
wiows that the resulting tree decomposition is in second canonical form, This
woond transformation also preserves the property of being a forward tree
secomposition. ||

L3 Tueores. Let M be an I machine and let P be a forward tree decomposable
seogram for M. Then there are unique programs P' and P, and unigue forward
sue decompositions of P' and P such that: P, P' and P" are equivalent, the forward
voe decomposition of P4 in first canonical form and the forward tree decompo-
wowm of P is in second canonical form.

Proaf. The existence of the forward tree decompositions was proven by
Theorem 4.2, So it remains to show that the first and second canonical forms
w= unique. Consider the first canonical form, Suppose I is any tree decom-
wesable program equivalent to P and such that P has a tree decomposition "
= Zrat canonical form. We proceed in two steps. First we show that a particular
ateled tree T derived from T can be characterized in terms of SUP(P) alone.
Then we show that P’ and T can be characterized in terms of SUP{P) and T
vone. From this it follows that P’ and 1" are uniquely determined by SUP(P).

T is the labeled tree obtained from I by replacing each statement 4, which
anelz a node of 77, by the lable INST(A). We wish to describe T in terms of
=_UP(P). First note that the lable of the root node of T can be derived from
=_P(P), This is because P has a forward tree decomposition and, hence, there
= 1 unique instruction f, namely the instruction of the statement labeling the
=0t node of a forward tree decomposition of P, such that every state in SUP(P)
=n be reached by a computation from some state in DOM(L). Hence the root
=ode of T must be labeled by this instruction I. To see that T is uniguely deter-
=mded by SUR(P), note the following two points. The set of all sequences of
25oels from root node to some node of T must equal the set of traces of compu-
snons in SUP(P) that start with the instruction 1. Also, T has the property
=at no two nodes Ny , Ny such that &) is the parent of N, or ¥y and X, are
«olings, can be labeled by the same instruction. There is only one labeled tree
=1th these two properties. Hence T is determined by SUP(P).

We now describe 7", the forward tree decomposition in first canonical form
= terms of T and SUP{P). If A labels the root node of T, then 4 consists of
ol states 5 in DOM(J) such that there is no computation s, & ,..., 5 with 5 = 5

24 PAWLAK, ROZEMEERG, AND =AVITCH

and 5, in SUP(P) — DOM([). (Recall that I is the instruction that labels the
root node of T.) Let A, denote the statement that labels the root node in T
If statement .4 labels a non-root node of 7, then 4 is the set of all states § such
that the trace of all computations in SUP(P) which start in 4, and end with ¢
is equal to the instructions encountered along the path in T from the root
node to the node corresponding to . Since we have completely described
T in terms of SUP(F) alone, it follows that T and P’ are unique.

The unigqueness of the second canonical form follows from the unigueness
of the first canonical form as follows. Let T be a forward tree decomposition,
Let Iy and £, be the transformations defined in the proof of Theorem 4.2 such
that Fy{T") and Fy{T) are equivalent forward tree decompositions in first, res-
pectively second canonical form. Note that if T is in second canonical form,
then F(F,(T)) = T. Now let T, and T be equivalence forward tree decompo-
sitions in second canonical form, We wish to show that T, = T, . But we have
already shown that Fy(T,) =F(T.). S0 T, =F(F(T)) = F(F(T)) = T,. |

The analog of Theorem 4.3 for tree decompositions, as apposed to forward
tree decompositions, 15 not valid. To see this note that a program P may have
a canonical tree decomposition such that every computation is a evele and hence
any node may be taken as the root node. There are also other situations which
can produce non-unique canonical tree decompositions. This is true for both
the first and the second canonical forms.

Our next result shows that the canonical forms are, in some sense, the smallest
forward tree decompositions equivalent to a given program P. The proof iz easy,
given the techniques already developed, and hence is omitted.

4.4 Tueorem. Let M be an I machine with a start instruction. Let P and P’
be froo equivalent, forsoard tree decomposable programs for M with start statements.

(1) If the forward tree decomposition of P’ &5 in first canonical form, then
every statement of P is equal to the union of some statements of P,

(2} f the forward tree decomposition of P is in second canonical form and
every statement of P is either open or closed, then every statement of P s equal to
the union statements af P,

5, QUuoTIENT NMACHINES

In previous sections we saw that the extent to which we can construct “well
structured” programs for a given machine, M, depends not so much on the actual
computations of M as it does on the traces of computations. In this section we
consider “‘quotient machines” obtained by identifying states which produce
computations having the same trace. In this way we can, in some sense, factor
out properties of the machine M which are irrelevant to our current study, In
addition to considering equivalence relations that identify two states which lead

INSTRUCTION MACHINES 25

the same computation trace, we also consider weaker equivalence relations
wnat simply require that the traces are equal for some initial segment. Also,
v consider equivalence relations that identify two states, provided that they
e both the last state in computations with equal traces.

51 Derrartion. Let M = (5,1, [; ...,) be an I machine.
1.1, Define the equivalence relation ~; on S by s =~ 5, provided that
we traces of the complete computations starting with s, and s, are equal.

51.2. Define equivalence relations ~; (k =1,2,3,..) on S by 5, ~F 5,
provided that either

(1) the traces of the complete computations starting with & and s, both
wove length at least k and agree on their first & entries,

(ii) the traces of the complete computations starting with 5, and s, both
save length less than & and are equal.

1.3 Let 5 and 5% denote the set of equivalence classes of elements of &
mduced by ~; and ~f (k= 1,2,3,...) respectively. Let M, denote the I
machine (S;, Iy, I, ..., I,) where the instructions I, are interpreted as follows.
Let [1] be the equivalence class of 5 with respect to ~, .

(1) Ifsisin DOM(I,) and the trace of the complete computation starting
with 1 is the one element sequence 1, , then I{[s]) = [s].
(i) If 5 is in DOM{TL,), 5 = 5, , 8, % ,... is the complete computation in
M starting with 5 and j is the least j such that 5, 15 not in DOM(I),
then [{[s]) = [5].
(i) IF s is a halting state of M, then [s] is a halting state of M.

51.4. Let k be a positive integer, The machine M is said to be fnitially &
setermined provided that, for any states 5, and s, of M, 5; ~F 5, implies 5, ~; 5, .

We shall see that there are a number of things we can say about the pro-
cramming structure of M in terms of the programming structure of M, .

5.2 THeoreMm. [f M is an I machine, then the followeing statements are equivalent,
(1) & is fimite.
(2) & = 8, for some k.
(3) M is initially k determined, for some f.

Froof. Clearly (2) implies (3) which, in turn, implies (1). S0 it will suffice

w show (1) implies (2). To see this, note that S,4, 52 52,... is a sequence of
fner and finer partitions of § and that S, is the common refinement of all these

26 PAWLAK, ROZENBERG, AND SAVITCH

partitions, Thus, if S, is finite, then there must be a & such that, after 5, the
refinements in the sequence are no longer proper refinements and hence,
S, = S,* for this k. I

5.3 Tueonem. Let M be an I machine with a start instruction. If M, has a
universal free decomposable, respectively universal forward tree decomposable,
proprant, then every closed program for M with a start statement has an equivalent
tree decomposable, vespectively forward tree decomposable, program.

Proof. Suppose M, has a tree decomposable, respectively forward tree
decomposable, universal program. Take the tree decomposable universal
program for M; and replace each statement A of this program by the union
of all equivalence classes in 4. The result is a univerzal tree decomposable,
respectively universal forward tree decomposable, progeam for M. The Theorem
now follows directly from Lemma 3.4,)

The converse to Theorem 5.3 does not hold as shown by the next example,

5.4 ExamrLe. Let M = (S, 1I,,1;) where §=1{1,2 3, 4,5}, L(l) =3,
Fi{2) = 4, I{3) = 5 and 4, 5 are halting states. M has [} as a start instruction,
M has a universal forward tree decomposable prgram and, hence, every closed
program for M has an equivalent forward tree decomposable program. However,
M; does not have a universal tree decomposable program.

If M is an f machine and z is a state of M, then there is a unique complete
computation of M starting with state s and, hence, it trivially follows that there
i5 a unigue trace for complete computations starting with s, If M is trace con-
sistent, then there is also a unique trace for computations that start with a start
state and end with 5. So, if M is trace consistent, then each state has a unique
“forward” trace and a unique *‘backward” trace. We have already considered
the equivalence relation induced by “forward” traces, We now consider the
equivalence relation induced by “backward" traces.

5.5 Derivrrion, Let M = (8,1, I; ..., I;) be an I machine that is trace
consistent.

5.5.1. Let 5 be a state of M. Since M is trace consistent, there is a unique
trace such that every computation from a start state to 5 has this trace. Call
this trace the backward trace of s.

552, Define the equivalence relation ~, on 8 by 5 ~, 5, provided s
and s, have the same backward trace.

5.53. Define equivalence relations ~F (k= 1,2,3,..) on S by 5~} 5
provided that either

INSTRUCTION MACHINES 27

1) the backward traces of ¢, and s, both have length at least & and agree
= ther last & entries, or

i) the backward traces of 5 and 5, both have length less than % and are

234, M s sad to be ,i'gnm'mﬂ.fy b determtined prﬂvidcd 5 .---i £s implies

= Ky o

2235 Define the equivalence relation ~ on 8 by s, ~ 3, provided both
-~ gy and 5~y 5y Let 8% 5 and S_ denote the set of equivalence classes
¢ 5 induced by ~F, ~; and ~ respectively (& = 1, 2,...).

S6 Lemwa, Let M be an T wmachine that is trace consistent. If S, i5 finite,
bem S, I5 finite.

Froof. Suppose S, is infinite. It will suffice to show that &, is infinite.
I7 there is an infinite trace for some complete computation in M, then this
=ace can be extended backwards to obtain an infinite trace of a complete com-
sutation starting with a start state. From this it follows that S, is infinite, So
suppose all complete computations have finite trace and S, is infinite. Then,
snce each trace can be extended backwards to obtain a finite treace starting
from the start Instruction, it follows that there are infinitely many finite traces
=hich start with a start instruction, Hence 8} is infinite.]

3.7 Tueorem. Let M = |:S, L ,f.:,...,..rmj be an I machine that s trace
comsistent. Thefr.-ﬁatcr'ng are equ:'t'dieuf.

(1) 5, & fimite,
(2} 8, = 5" for some k.
(3) Mo fermmally k determined.
(4) 5. s finite,
(5) S_ is the common refinement of S,* and S5, for some k.
Proof. The equivalence of (1), (2) and (3) and the equivalence of {4) and (5)
are proven in the same way as Theorem 5.2, Bince S is the common refinement

i 85, and 8, , the equivalence of (1) and [4) follows directly from Lemma 5.6.
Sa all statements are cclui\'ah:nt, l

5.8 Tueorest. Let M be an I mackine that s trace consistent, The followeing
are equivalent.
(1) MW has a universal forward tree decomposable program,

[2) Ewvery closed program for M with a start statement is equivalent to forward
free decompasalle program,

28 PAWLAK, ROZENBERG, AND SAVITCH

(3} 8, s finite.
(4) S is finte.
Proof. The equivalenee of (1) and (2) and the equivalence of (3) and (4)
follow from Lemma 3.3 and Theorem 5.7 respectively. The equivalence of (1}

and (3) follows from the proof of Theorem 4.3. So all statements are
equivalent. J

5.9 CoroLLary. Let M = (8,1, fa o, £,) be an I machine with a start
instruction. If M has a universal, forward tree decomposable program, then M is
trace consistent and S, is the wigue universal, forward tree decompasable program
For M o first canonical form.

Proaf. The result follows from Lemma 3.4, Theorem 3,13 and the proof
of Theorem 4.3, |

510 Comovrary. Let M = (8.1, L ..., I,) be an I machine with a start
instruction, The following are equivalent,

(1) M has a universal, foraeard tree decomposable program.,

{2y M is trace consistent and 5, is a forward tree decomposable progrew,
(3) M is trace consistent and 5, i finite,

(4) M is trace consistent and S is finile.

Recuiven: Movember 4, 1977 revisen: October 26, 1978

REFERENCE

Pawrak, Z. (1969), Programmed machines [in Polish], Aigorytmy 5, No. 10,

