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We investigate in this paper approximate operations on sets, approximate 
equality of sets, and approximate inclusion of sets. The presented approach may 
be considered as an alternative to fuzzy sets theory and tolerance theory. Some 
applications are outlined. 
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1 Apart from the known and the unknown, what else is there? 
Harold Pinter (The Homecoming) 

1. INTRODUCTION 

The aim of this paper is to describe some properties of rough sets, introduced 
in Ref. 7 and investigated in Refs. 1, 2, 4, 5 ,  6, 8, 9, and 11. 

The rough set concept can be of some importance, primarily in some 
branches of artificial intelligence, such as inductive reasoning, automatic 
classification, pattern recognition, learning algorithms, etc. 

The idea of a rough set could be placed in a more general setting, 
leading to a fruitful further research and applications in classification theory, 
cluster analysis, measurement theory, taxonomy, etc. 

The key to the presented approach is provided by the exact 
mathematical formulation of the concept of approximative (rough) equality 
of sets in a given approximation space; an approximation space is 
understood as a pair (U, R), where U is a certain set called universe, and 
R c U x U is an indiscernibility relation. We  assume throughout this paper 
that R is an equivalence relation. 
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Some ideas underlying the theory outlined here are common to fuzzy set 
theory,'"' tolerance theory,'14' nonstandard a n a l ~ s i s . " ~ '  However, we are 
primarily aiming at laying mathematical foundations for artificial 
intelligence, and not a new set theory or analysis. 1 

Some applications of the presented ideas are given in Refs. 1, 4, 5 ,  6. 
The ideas given in this paper have been inspired by the results of 

Michalskl (see Ref. 3) concerning automatic classification. i 
We use throughout this paper standard mathematical notations, and re I 

assume that the reader is familiar with basic set theoretical and topological $ 
notions. 1 

Thanks are due to Prof. E. Orlowska and Prof. W. Marek for fruitful 
discussions. and to the reviewer for valuable comments and remarks. 

2. APPROXIMATION SPACE; APPROXIMATIONS 

2.1. Basic Notions 

Let U be a certain set called the urziverse, and let R be an equivalence 
relation on U. The pair A = (U, R)  will be called an approximation sp 
We shall call R an indiscernibility relation. If x,  y E U and ( x ,  y)  E R we 
that x and y are indistinguishable in A. 

Subsets of U will be denoted by X, Y,  Z, possibly with indices. T 
empty set will be denoted by 0, and the universe U will also be denoted by 

Equivalence classes of the relation R will be called elementary se 
(atoms) in A or, briefly, elementary sets. The set of all atoms in A will b 
denoted by U/R. 

We assume that the empty set is also elementary in every A.  
Every finite union of elementary sets in A will be called a composed se 

in A, or in short, a composed set. The family of all composed sets in A wil 
be denoted as Com(A). Obviously Com(A) is a Boolean algebra, i.e., th 
family of all composed set is closed under intersection, union, an 
complement of sets. 

Let X be a certain subset of U. The least composed set in A contain 
X will be called the best upper approximation of X in A, in symb - 
Apr,(X); the greatest composed set in A contained in X will be called 
best lower approximation of X in A, in symbols Apr, (x). 

If A is known, instead of G ( x )  (Apr,(X))  we shall write &% 
(Apr(X)). 

The set BndA(X) = =,(X) - Apr,(X) (in short Bnd(X)) will be calle 
the boundary of X in A. 

Fig. 1 

Sets &(X) = X - Apr , (X)  (in short Edg(X)) and EdgA(x) = 
G , ( X ) - X ,  (in short E d g ( ~ ) )  are referred to as an internal and an 

edge of X in A, respectively. 
Of course Bnd,(X) = E d g , ( ~ )  u ~ d g , ( ~ ) .  
Fig. 1 shows the notion of an upper and lower approximation in a two- 

dimensional approximation space consisting of a rectangle partitioned into 
&mentar)' squares. 

Let us define two membership functions cA, 5, (called strong and 
weak membership, respectively), as follows: 

zc E, X iff x E ADr, ( X )  

x 5, x iff x € =,(X) 

If x E ,  X. we say that "X surely belongs to X in A," while x EA X is to mean 
that "X possibly belongs to X in A." Thus we can interprete approximations 
as counterparts of necessity and possibility in modal logic. 

Of course, 

Thus we can develop our theory in terms of strong and weak 
membership functions or in terms of approximations. For the sake of 
simplicity we shall use here the approximational approach. 

2.2. Approximation Space and Topological Space 

It is easy to check that the approximation space A = (U, R )  defines 
uniquely the topological space T(A) (in short T,), where TA = (U, Com(A)), 
and Com(A) are the family of all open sets in TA , and U/R is a base for TA . 

It follows from the definition of (lower and upper) approximations that 
C o m ( ~ )  is both the set of all open and closed sets in TA. Thus, Apr,(X) and 



344 

=,(X) can be interpreted as an interior and closure of the set x in Apr(X) U =(-X) = 1 - 
topological space T, , respectively. 

If &(X) = G , ( x )  for every X c u, then A = (U, R )  will be calle Apr(X) U Apr(-X) = -Bnd(X) 

discrete approximation space. The law X n -X = 0 has the following analogues for appl 
One can easily check that if A is a discrete approximation space, 

all atoms in A are unity sets. 
- 
Apr(X) n Apr(-X) = 0 

Of course a discrete approximation space A generates the disc 
topological space T, . =(x) n &%(-X) = Bnd(X) 

Apr(X) n Apr(-X) = 0 - 

2.3. Properties of Approximations Apr(X) n &%(-X) = 0 

It follows from the topological interpretation of the approxi De Morgan's laws have the following counterparts: 
operations that for every X, Y c  U and every approximation 
A = (U, R )  the following properties hold: -(Apr(X) u &(Y)) = =(-XI n &%(-Y) 

-(&(XI u A p r ( ~ ) )  = Apr(x )  n &(Y) 

-(Apr(x) u &(Y)) = ~ p r ( - x )  n *(-Y) 

-(Apr (x) u =(Y)) = Apr(-X) n Apr (- Y) 

-(Apr(X) n Apr(Y)) = =(-X) U &%(-Y) - 
-(Apr(X) n =(Y)) = =(-X) U Apr(-Y) 

-(=(x) n Apr (Y)) = Apr(-X) U =(- Y) - 
-(=(X) n =(X))= Apr (-X) U Apr (-Y) 

- 
Apr (X) = -Apr(-X) 

Apr(X) = -=(-X) - 

(8) ) Moreover we have 

(9) 1 If X c Y, then =(x) c &%(Y) and Apr(X) c Apr(Y) (30) 

where -X is an abbreviation for U - X. Moreover we have Note that X = =,(x) and X = Apr,(X) iff X is a composed set in A. 

Apr(x n Y) c Apr(x)  n A p r ( ~ )  (14  1 
Apr(X U Y) 2 Apr(X) U Apr(Y) I 2.4. Accuracy of an Approximation 
- - - (11) I 

=(X) u Apr(-X) = 1 - 

Apr (x) U Apr (-X) = 1 

- 
Apr(X - Y) 2 =(X) - G ( Y )  (12) 

Apr(X - Y) c &(X) - &(Y) - (131 

The are of the law X u  -X = for 

In order to express the "quality" of an approximation we introduce 
some accuracy measure. 

Let A = (U,  R )  be an approximation space, and let X c U. 
By p,(X) OT,(X)) we denote the number of atoms in &,(X) 

(GA (x)), and we call p, (X) (p,(X)) the internal (external) measure of X in 
imations: ' A.  

(15) 

If p,(X) =p,(X) we say that X is measurable in A .  
Thus the set X Is measurable in A if and only if X is a composed set in 

A.  
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Let A = (U,  R )  be an approximation space and let X c (l. ~ h ~ s ,  we can interpret the approximation space A = (Rt, S )  as a 
By the accuracy of approximation of X in A we mean the number easurement system, where 

PA p A ( i , i +  l ) = p A ( i , i +  l ) =  I, i = O ,  1 ,... vA (X) = -, where PA (X) # 0 
PA (XI 

e unit of measurement in A, and ~ ( 0 ,  r )  is the accuracy of (0, r) in A. 
Obviously, 0 < qA(X) < 1 for any approximation space A = ( u , ~  more detail see Ref. 6. 

any X c U. 
For any measurable set X in A ,  q,(X) = 1. If X is not measurable . Example 2. Let V be a finite set called a vocabulary and let V* be 

then 0 < qA(X) < 1. In particular r],(X) = 0, iff Apr , (X)  = 0. ite sequences over V. Any subset of V* will be called a 
For any set X in a discrete approximation space A = (U, R) ,  

and this is the greatest possible accuracy. ~ e t  R c V* X V* be an indiscernibility relation, and let A = (V*, R )  be 
pproximation space defined by V* and R. 

2.5. Examples A language L c V* is recognizable in A if Apr,(L) = =,(L). 
The family of all recognizable languages in A ,  denoted as Rec(A), is the 

In this paragraph we illustrate the notions introduced previously by A = (V*, R )  and the base of the topology is V*/R .  
simple examples. That is to say that if the language L is not recognizable in A we are 

only the lower and upper approximations in A .  
Example 1. Let R + be the set of nonnegative real numbers, and This property can be used in speach recognition, pattern recognition, 

be the indiscernibility relation on R + defined by the following partition ult tolerant computers, etc. 

(0, I), (1, 2)3 (3, 3), ... 
Example 3. Let S = (X, i4, I/, p )  be an informatior, system (see where (i, i + 1 i = 0 1, 2 . .  denotes a half-opened interval. 

corresponding approximation space will be denoted as A = (R +, S) .  
Let us consider approximations of an open interval (0, r), where n X is the set of objects 

n + 1 for a certain n 0. A is the set of attributes 
By definition we have 

V =  U Va, VV, is the set of values of attribute a E A 
n - I  

p: X X A -, V is an information function, p,: A -+ V AprIO, r )  = 0 (i, i + 1) = (0, n), - for n > 1, and 0 for n 
i = o  xE X is called an information about x in S ,  where 
n 

=(0 , r )=  U ( i , i +  l ) = ( O , n +  1) 
i = O  

p,(a) = p(x, a )  

For every x E X and a E A. The internal and external measures of (0, r )  in A are 
We define the binary relation 9 over X in the following way: 

p(0, r )  = n 
x -, Y iff P, = P, 

p(0, r )  = n + 1 
Obviously 9 is an equivalence relation and A = (X, g) is the approx- 

and the accuracy of (0, r) in A is imation space induced by the information system S. 
Any subset Y c X is called describable in S  iff Apr,(Y) = =,(Y). The 

n set of all describable sets in S,  denoted as Des(S), is a topology induced by ~ ( 0 ,  r )  = - 
n + l  on X, and the base of the topology is ~ / f .  
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That is to mean that if we classify some objects according If X Y, then -(-X) z Y (39) 
attributes, in a general case we are unable to define an arbitrary 

If X -  Y, then XU-Y-- 1 objects by these attributes; only those subsets which are descri (40) 

can be defined by means of the attributes of the system S .  I f X -  Y, then X n - Y - - 0  (4 1) 
This property must be taken into consideration, in any ,-lassifi 

will be called dense in A if X rz, 1. Set X will be called codense in A if system in which objects are classified by means of attributes. 
0. Set x will be called dispersed in A if X is both dense and codense 

3. ROUGH EQUALITY OF SETS One can easily show the following properties: 

3.1. Basic Definitions ~ f X c  Yand Y=O, t h e n X = O  (42) 

Let A = (U, R )  be an approximation space and let X, Y c U. w 1 f ~ c Y a n d X 5 :  1, then Y - -  1 (43) 

that If X5:  1, then -X=O (44) 

(a) The sets X, Y are roughly bottom-equal in A, in symbols XxA If X N 0, then -X 5: 1 (45) 
&(X) = Apr,(Y). 

~f x is a dispersed set, then so is -X, i.e., X z  -X 
(b) The sets X, Y are roughly top-equal in A, in symbols X;;;, y, 

(46) 
- 
Apr, (X) = G, (Y). and x 2. -X, and hence X N -X. 

(c) The sets X, Y are roughly equal in A, in symbols X z ,  Y, iff x,- 
and X -, Y. ~f X, Y are both dense, then X -- Y 

It is easy to check that 7, 7, are equivalence relations on P( ~f X, Y are both codense then X= Y 

( P ( U )  denotes the powerset of U.) ~f X, Y are both dispersed then X Y 
In what follows we shall omit the subscript A if the approximat 

space A is understood- and write N, 2i, N, instead of N = - X N 0 iff Apr(X) = 0 
A '  A ' X '  

- 

3.2. Properties of Rough Equality 1 
i x ~ l  i f f X = l  

For any approximation space A = (U, R )  and any X, Y c U the X 5 : l  i f f = ( ~ ) = l  
following properties are true: i - 

t Apr,(X) is the union of all sets Y such that X E A  Y (54) 
I f X =  Y, then X ~ Y Z X N Y  

I f X -  Y, then X U Y - X -  Y 
&(X)  is the intersection of all sets Y, such that XN,  Y ( 5 5 )  

If X N Y, then -(-X) N Y 

If X 5: Y, then -(-X) --- Y 

I f X z X '  and YE Y', t h e n X u Y 2 : X 1 u  Y1 (33) 

If X N X I  and Yi3 Y', then X n  Y = X 1 n  Y1 (34) 

(37) / (a) we say that X is roughly boltom-included in Y, in A,  in symbols 

(38) 1 C &, y, if Apr, (X) c & (Y) .  

4. ROUGH INCLUSION OF SETS 

4.1. Basic Definitions If X N  Y,  then X -  Y N O  (35) 1 
Let A = (U, R )  be an approximation space and let X, YC U. We X - Y 5 : O i f f X = Y  

(36) ; introduce the folldwing definitions: 



(b) We say that X is roughly top-included in Y, in A in symbols X y, if i If X s  Y, and Y S X ,  then X =  Y ( 5  7) 
*,(XI c G A Y ) .  I f X F  Y and Y F X ,  then X -  Y 

(c) We say that X is roughly included in Y, in A, in symbols X zA y, if 
( 5 8 )  

X s ,  Y and X Z ,  Y. I f X g  Y a n d X z Y ,  then X z Y  ( 5 9 )  

If A is understood then instead of X ,CA Y, X FA Y, and X gA y, we X F  Y iff X U  Y-- Y 

shall write X & Y, X F Y, X Y, respectively. If X FA Y, X is called a rough X s Y i f f X n y ~ X  
upper-subset of Y in A ;  If X 2 ,  Y, X is called a rough lower-subset of y in A; 
If X EA Y, X is called a rough subset of Y in A. If X c  Y and X N X ' ,  Y =  Y' then X ' S  Y' 

One can easily check that all rough inclusions 5, F ,  and are ordering I f X c Y a n d X = X 1 ,  Y - Y ' , t h e n X 1 F Y '  
relations. 

The family of all rough (lower, upper) subsets of X in A will be denoted I f X c Y ,  a n d X z X 1 ,  Y z  YY', t h e n X ' E Y 1  

by P,(X) (P,(X), P*)) and will be called rough (lower, upper) powerset of 1 f X Y X 1  and Y? Y', then X U Y 7 X ' U Y Y '  
X in A .  Thus, 

I f X z X '  and Y? Y', then X n Y 2 X ' n Y 1  
PA(X) - = { Y :  U S A  X} xn Y S X F X U  Y 
P A X ) =  ( Y :  Y C A X ]  

If X s  Y and X = Z ( Y = Z )  then Z &  Y ( X 5 Z )  
P,(X)= { Y :  Y E A X }  

I f X F  Y and X = Z ( Y - - Z ) ,  then Z F Y ( X 2 Z )  
It is easy to see that I f X Z y  and X z Z ( Y z Z ) ,  then Z g Y ( X g Z )  

P(X> c p, (XI 

p ( x >  c PAX) 5. ROUGH SETS 
P(X) c P A  (XI 

5.1. Basic Notions 
and 

Let A = (U,  R )  be an approximation space, and let =, , =, , z, , be 
If X N Y, then PAX)  = PA - (Y) equivalence relations on P(U). 

Every approximation space A = (U,  R )  defines three following approx- If X r Y, then Pfl)  = P A Y )  
imation spaces: 

If X z  Y, then P,(X) = PA(Y) 

If X s  Y then PA(X)cP , (Y)  
A *  = (P(U),--A) 

- A* = (P(u), --,I 
If X ? Y, then P,-(X) c PAY)  

A * = (P(U), z , )  
If X z  Y, then P A ( X ) c P A ( Y )  

in which objects are subsets of U and the relations z A ,  z A ,  and zA are the 

4.2. Properties of Rough Inclusions indiscernibility relations in the corresponding spaces _A *, A*, A*. 
The approximation space A*@ *,A*) will be called the (lower, upper) 

It is easy to prove by simple computations that the following proper extension of A ,  
are true: Equivalence classes of the relation z A ( 5 ,  will be called rough 

I f X c Y ,  t h e n X ~ Y ,  X C Y , X g Y  (lower, upper) sets. 

82811 1/5-5 



S Thus, a rough (lower, upper) set is a family of subsets of U, which are 6. EXAMPLES 
equivalence with respect to the indiscernibility relation N,). I 

Every approximation space 4 *, A*, A* induces a topology CO 6 . ~  Characteristic Symptoms 
~ o m ( x * ) ,  and Com(A*), respectively, and hence the topological spaces 

Let us consider an information system S = (X, A,  V, p) as in example 3, 

T,, - = (P(U), Com@ *)) sectl~n 2.5, and let us assume that X is a set of patients in a certain hospital, 
~-- is  the set of attributes like temperature, blood preasure etc., V =  U V,, 

T,: = (P(CT), corn@*)) o~ A ,  is the set of values of attributes, and the function p,: A -+ V describes 

T,, = (P(U), Com(A *)) the symptoms of patient x. 
Obviously, patients belonging to the same equivalence class of S have 

and P(U)/=, , P(U)/=, , and P(U)/z, are the bases for the COrrespondi the same symptoms. 
topolog~cal spaces. Thus, each information system S= (X,A, V,p) induces an approx- 

In other words, P(U)/=,, P(U)/=, , P(U)/z,, are families imation space A = (X, S). Suppose we are given the set Y c X of patients 
equivalence classes of the relations = A ?  zA,  respectively, i.e., families ,uffer~ng from a certain disease (the set Y can be indicated by an expert) and 
elementary classes in the corresponding approximation spaces _A *, A*, A we are interested in finding the characteristic symptoms of that disease. 
Thus, sets which are in the same equivalence class of an approximation It follows from the previous considerations that we can give those 
space A *@*,A*) are in sense similar and we are unable to distingui characteristic symptoms only if Y is a composed set in S, otherwise we can 
in the approximation space A *@ *, A*). give only symptoms of lower or upper approximation of Y in the approx- 

lmation space A = (X, f). In other words, if Y is not a composed set in S we 

5.2. Rough Sets and Classifications are not able to give the characteristic symptoms of Y, but we can give only 
the symptoms of patients who surely suffer from the Y (symptoms of patients 

In artificial Intelligence the following problem is of great imp belonging to the lower approximation of Y) or the symptoms of patients who 
given a family F of subsets of a certain universe U, the task is possibly suffer from the Y (symptoms of patients belonging to the upper 
members of F, so that the sets in the same equivalence class approximation of Y). Note that we identify here the disease with the set of 
according to a certain criterion. pat~ents suffering from this disease according to the opinion of a certain 

In our approach we can formulate the problem as follows: expert. Another expert can, of course indicate .a different set of patients 
A = (U, R )  be an approximation space and let F c P ( U )  be a havlng the disease in question. 
(nonempty) family of subsets of the universe U. 

By z, n F 2 ( z A  n F 2 ,  N, n F') we mean the restriction of the relation 
=,) to the family F. Then, F/z, n F~(F/=, n F 2 ,  F / N - A  f7 

mean the family of equivalence classes of -,) restricted to F. That is 
to say that each approximation space A = (U, R )  induces on the family Suppose we are given an information system as in section 6.1, and 

P(U)  three ccnatural,. classifications F/z, F ~ ,  F/EA F2, Fl-, ~ F Z ,  
( Suppose that an expert, on the basis of his knowledge, chooses the set Y c X 

denoted by C,(F), CA(F), and C,-(F), respectively. of patients suffering from a certain disease. The question arises whether a 

Thus in each equivalence class of the classification C,(F) all sets have student can obtain the knowledge of that expert on the basis of symptoms of 

the same lower approximations; in CAF), the same upp& approximation; 
the d~sease Y? In other words, whether the student can define the set Y by 

and in C,(F), the same lower and upper approximations. means of symptoms of the patients belonging to the set Y. 

We can consider the suggested approach to clustering as an alternative, In the general case the answer is, of course, in the negative; the student 

to cluster analysis based on distance, or similarity functions-in which the 
can describe the set Y pointed out by an expert in terms of symptoms only if 

indiscernibility relation plays the role of the distance (or similarity) function Y 1s a compoyd set in S. Otherwise, the student can only give an approx- 
!mate description of the disease Y, i.e., symptoms of lower and upper approx- 

We can also introduce approx~mat~on spaces of h~gher orders but we shall not conslder t lmatlons of Y in S. 
problem here We understand that if Y contains patients suffering from a certain 



disease, then the set -Y, does not contain patients suffering s that possibly occur in the patients in all sets in each 
disease. This is to say that the expert classifies all patients into two classes, 
Y and - Y,  such that Y contains all patients suffering from a certain disease Eeach equivalence class in the third classification CA(F) contains those 
and - Y, those not suffering from that disease. sets which have the same certain and possible symptoms. 

Sometimes an expert may be unable to classify patients in two We can thus cluster opinions (or experts) into natural similarity classes. 
as before, since in some cases he may be unable to include a patient in y 
- Y. That is to say that sometimes an expert does not know how to class 
some objects. In fact in this case he may classify patients into three class 
Y', Y - ,  YO, such that Y' contains patients who are ill, Y -  are those Let us again consider an information system as before and a family F = 
are not ill and in Yo there are patients about which an expert is unable {x,, X,, ..., X,} of subsets of X. Suppose that F has been given by an expert 
decide whether they are ill or not. and each Xi represents, according to his knowledge, a different disease, so 

The question arises how this incomplete classification influences that all the patients suffering from the disease i, belong to the subset Xi.  
process of learning? The question is whether we are able to distinguish all subsets of the 

It follows from the previous consideration that if Yo =A 0, the pr family F by symptoms, or, in other words, whether we are able to classify all 
learning is not affected be the incomplete knowledge of an exper subsets of F into similarity classes so that in each similarity class we have 
student can obtain exactly the same results as when the expert classi which are undistinguishable in the approximation space 
is complete. Otherwise, i.e., if Y" is not bottom equal to zero, a su 
unable to properly learn (even approximately) the classification. problem we can use the three natural classifications 

That is to say that if the incompleteness of the knowledge of an c,(F), C,-(F), and CA(F) as in the previous section. 
is small enough it does not affect learning, otherwise the learning pro 

- 
The meaning of the classification CA(F) is that in each equivalence class 

affected. of C,(F) we have all subsets of F (0; diseases) which we are unable to 
distinguish by means of symptoms available in our information system, and 
which certainly occur in each disease in the same equivalence class. 

6.3. The Case of Many Experts The meaning of the classification CAF)  and CA(F) is obvious. 
Thus, we can cluster diseases (subsets of the family F )  into classes such 

Let us consider an information system as in the previous sections, that each equivalence class induces diseases-which we are not able to 
let us suppose that we employ k experts to pick up all the patients suffe distinguish by means of symptoms available in the information system S .  
from a certain disease. Thus we obtain a family F=  { X , ,  X ,,..., X ,  
subsets of X such that Xi contains all the patients suffering from the dis 
in question according to the opinion of the expert i. 

The question arises what is the difference between opinions of ex Suppose again that we are given an information system as previously 
or, in other words, how to classify opinions of experts so that si and the family F = {X,,  X,, ..., X,} of subsets of X, determined by an expert, 
opinions are in the same class and widely different opinions are in differ such that each Xi contains all the patients suffering from a certain .disease. 
classes. The problem is the following: given a symptom p, (a) what diseases 

T o  do that we use the three natural classifications, C,(F), - CAF), certainly have the symptom p, (b) what diseases possibly have the 
CA(F), which in this case have the following meening: 

Each equivalence class of the classification C,(F), contains a1 Let E, denote an equivalence class of the relation S, defined by the 
of F having the same lower approximations, i.e., sets which are si 
respect to symptoms that certainly occur in the patients in all s iseases Xi, E F such that AprA(&)=, E, certainly have 
equivalence class. all diseases Y,, E F such tha t  Apr,(Yi,) 3 E, possibly 

Each equivalence class of the classification CAF)  contains 
of F having the same upper approximations, i.e., sets which are similar w If we classify diseases F according to the classifications C,(F) - and 



C A F ) ,  instead of checking whether the lower (upper) approximation of each 
subset Xi of F contains E,, we can simply check whether the Corresponding 
classes contain E, or not, which considerably simplifies the algorithm. 
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