ON THE NOTION OF A COMPUTER

Z. PAWLAK

Institute of Mathemarics, Polish Academy of Sciences, Warsaw, Poland

In the theory of mathematical machines various machines are considered,
such as Turing machines, push-down machines, finite automata, etc. but
little attention is given to formal definition of digital computers, programs
and the study of their properties.

- The author’s belief as well as that of many other people working in com-
puter field is that a further development of this field requires more close
relations with the existing computers.

The paper contains formal definitions of a computer, a universal computer
and a program. In the proposed language one can define and study machines
which seem to be fairly good models of real computers. Some elementary

_theorems concerning computers are stated. One can find more details con-
cerning the outlined topics in PAwLAK [1967].

1. Computers

L1, Memory

Let 4, X, ¥, be sets. Elements of 4 are called addresses, ¥ is refered to as
an alphabet and elements of ¥ are called symbols. Elements of 1 are called
“markers. We allow the sets A, ¥ to be finite or infinite and the set V is as-
sumed to be always finite. By A we denote the distinguished symbol of X
called the empty symbol.

- LetCand Lbethe setsof functions with domainand codomain as given below

Cc3* Lea”,

Every ce Cis called content of the memory and every /e L is called location
of the memory. We assume that for every ce C, ¢(x)+ A for almost all xe 4.

- DerviTION 1. The memory is a system P={M, 'I, 0, where M=Cx 1L

256 Z.PAWLAK

is referred to as a set of memory states, and I, O are input and output functions
of a memory with domain and codomain as follows:

LEZXA"XM->M, O0:A"xM->Mx53,

where n=0, 1, 2, ... is fixed for given memory. }
The function O may be considered as a pair of functions

04" xM->M and 0,:4"x M3,

We can extend functions 7 and O for finite sequences of symbols and
obtain new input and output functions I*, O*:

I Z*xA"xM->M and 0*: 4" xM-—M x2*,
where k=0, 1, 2, ... is some fixed number for given memory.

Thus with every memory P we can associate the memory function

HOp:Zx A" x M - 3*
defined as follows

Ve = Mp (%, 4,, m) = 03 (4, I* (%, d,, m)),
where Ve=P1r-0s Vo X=Xy, ..., X y=dy,..., a, and y,, x:€X, a;e A, meM.
Two memories P and P’ are said to be equivalent if and only if
HP = HP' .

If the memory function does not depend on some arguments we shall
omit those arguments and write simple for example ITp(%,).

Example 1. One address memory. Let N denote the set of natural numbers
0,1,2,.... We assume for this memory A=N,Z=NuA and the set of
markers V consists of only one element ». Input function for one address
memory is as follows

I(x,a, m) =m; ={c;, 1,>, where

) x if z=1I(v),

Z) =
“ c(z) if z+1,(0),
li(v)=a,

and a, zed, xeX, meM, m=_c, I).
The output function for this memory is

0(a, m) =<my, c(a)y, where my; ={cy, 1> and ¢, =c, i
' L{)=a.

One can easily verify that IT, (X)=X""for all Xe3* where ¥ -
Xigs eony Xg.

R={ry, rq,..., ro}. Instruction reR is a fu

ON THE NOTION OF A COMPUTER 257

The extended input and output functions for one address memory are

"%, a,m)=m, = ey, 1>, where
¢(@=x, if z=a+i—1 and ¢1(z) =c(z) otherwise,

LL(v)=a, I1<igk,
0*(a, m) = (m,, X, where m,=<{c,,1,> and ¢, =c,
L{w)=a,

x;=cla+i-1).
One can easily show that for one address memory IT,(X)=X for all Xe ¥,

Example 2. Stack memory. The sets 4, X, V are the same as in the Ex-
ample 1. Input function for stack memory is the following

I(x, m) = m; = e, I1>, where

e if z=1(v),
i)—{c(z) it z#+1,(v),
Li(w)=1()+1.

Output function for this memory is

> and ¢, =c¢,
I(v) >0 and undefined for l(v)=0.

0(m) = {my, c(I(v))y, where my = {c,,
L(®=1)-1 for

The extended input and output functions for stack memory are as follows

I*(%, m)=m, =<c,, 1,>, where
X, if z=I()+i
“1(2)= {c (z) otherwise,
Li{)=1(v)+i.
0*(m) = {m,, %>, where my={e3 1, and ¢, =c,
L) =1@)~(k-1),
xp=c(l(v)—i+1).

(1<i<k)

L is to mean

1.2, Instructions

With every computer there is associated the finite set of instructions,

nction riA"x M— M, where n>0
s some fixed number for a given computer,

Two instructions r and ' are said to be equivalent if and only if for all

258 Z.PAWLAK

d,eA" and for all me M
(G, m) =71 (d,, m).
If for all d,e 4™ and for all me M
r(d, m)=m

then r is called identity instruction and will be denoted by r,.
Composition of instructions ry and r, is the instruction r such that
r=ry(byrs(d, m), d,b,eA"
written short as r=r,r,.
The instruction
F=r..r

-~
P

is called an iteration of the instruction r and is written p’=rP.
With every computer there is associated a finite set of operations, F=
{forSfis o0 o} Operation feF is a function
JiEM o 3 Ry, 0y >0.

Instruction r is called admissible for the memory P and the set of operations
Fif r can be represented in the form

(&, m) = I*{{[0,(4,, m)], 4, 0% (a, m)},

where f is some operation from F and J *, O* are the extended input and
output functions of the memory P.

Example 1. Transfer instruction. Let P be the memory for which 4A=N,
2=Nud, V={v;, v,}. Let us assume the following input and output func-
tions for the memory P:

I*(x,a, b, m)=m; ={c;, 1,>, where xeZX, a,beA, m, myeM
and
x if z=1I(v,)=0b,
() = ¢(z) if z+1(oy),
b if y = 1)2 s
L(y)= .
I(y) if y=+o,.
0*(a, b, m) = (m,, x>, where my;=<{c,, ,> and ¢,=c,
a if y=v,,

’z(y)={z(y) it y#o,,
x = c(l3(vy)) = c(a).

ON THE NOTION OF A COMPUTER 259

Let us denote the transfer instruction by T(a, b, m) and assume that the set

of computer operations F contains the identity operation 7 (¥)=x. We define
transfer instruction as

T(a, b, m)=m = {c, 1>, where
C’(Z) — {C (a) lf zZ= l(vl)!
c(z) if 7= I(vy),

a if y=yp,,
I'(y)=
©) {b it y=o,.

One can easily see that so defined transfer instruction is admissible for the
assumed set of operations and assumed memory because

T(a, b, m) = I*{i[0¥(a, b, m)], a, b, 0¥(a, b, m)},
for any a, b, m.

Example 2. Two address addition instruction, Let us consider memory

with 4, 2, ¥ and 1* the same as in the Example 1 but the output function
defined as follows

0*(a, b, m) = {my, %,>, where my=<{c3, > and ¢, =c¢,
S
Xy =c(ly(v)) = c(a),
X2 =c(ly(vy)) = ¢(b).
Let A(a, b, m) denote a two address addition instruction, defined as
A(a, b, m)=m'={¢, "> where

c(z)={c(a)+c(b) if z=1(,)=p,

c(z) if z+1(v,),
: a if y=uv,,
I(y) =
) {b if y=n,.

One can easily verify that if the computer operations set contains addition,
~ then the instruction A(a, b,'m) is admissible

A(a, b, m) =,I’{+ [02(a, b, m)] a, b, Oy (a, b, m)}.

~In the sequel it will be assumed that all the instructions are admissible, thus
“instruction” will always mean “admissible instruction”,

260 Z.PAWLAK

DEerFINITION 2. Instruction which changes the content of at most one ad-
dress in the memory or changes the location of at most one marker in the
memory is called simple.

THEOREM 1. Every instruction can be represented as a composition of
simple instructions.

1.3. Conditions

With every computer we associate a finite set W= {Wi, Wayooou W, W M.
The elements of W are called conditions. We say that the memory state me M
satisfies the condition W, if and only if meW,. '

We say that a condition W, is admissible for the memory P if and only if

Wi={m:meM and 03(d, m)=x}

for some 4,, where 0% is the output function of the memory P and x is some
fixed symbol of the alphabet X. We shall consider only admissible conditions
in this paper. For example for one address memory the condition may be
the set '

Wi={m:meM and c(a)=0}, Oez,

for some ac A.

1.4. Control

Let @ be a finite set of numbers {1, 2,..., s}. A graph will be defined as the

system G=<Q, Q', hy, h,)>, where Q'<Qand hy: Q-0'-0,h:0-0'-Q.

Q is referred to as the set of points of G and Q' is referred to as the set of
end points of G. geQ—Q’ is called initial point of G, if for every ¢'eQ,

q+h(q), i=0,1.

The sequence ¢, ..., q,, ¢;€Q is called the path from g, to g, in G, if for

all i, 1<i<r, gi41=hi(g), j=0,1.

By the flow graph we shall mean the graph G which satisfies the following

conditions:

1°. G contains exactly one initial point, written 9o-

2°. The set of end points is not empty.

3°. For every point ge 0 — g, there is a path from g, to ¢ in G.

4°. For every point ge Q— Q' there is a path from g to ¢’, where qg'eQ’.

DEFINITION 3. The control § of the computer is a system S=<{G, g, ¥, v)
where G is the flow graph and @, ¥, v are functions with domains and co-

ON THE NOTION OF A COMPUTER 261
domains as given below
@: Q- R, ViQ— W, ViIM x Q- M xQ,

and R, W are some fixed sets of instructions and conditions respectively, M
is the fixed set of memory states and Q is the set of points of the graph G.
We assume that for every end point of 0 we associate the identity instruction
Fo-

Elements of Q are also called control states. Elements of the set T =MxQ
are called computer states. The function v is called transition function. If ¢,
is the initial state of the control then (m, ¢, is called the initial state of the
computer; if q is the end state of the control, then (m, q) is called the end
State of the computer, where €M is some state of the memory. Let t={m, ¢)
and t'={m’, ¢'>. ,

Transition function will be defined as follows

v(t)=t, where

m’ = [(q)] (d,, m)

, e {ho(q) it m'ey(y),
hy(q) if m' ¢y (q).

L5. Computers

DeriNITION 4. Computer is a system .4 = (P, R, W, S, where PR W, S

are the memory, the set of instructions, the set of the conditions and the
control of the computer respectively.

The sequence ¢,, Lis..., & is called the computation of the computer .# if

and only if for each ;€T (where T is the set of states of &), and for every
Ll<i<k, t;;=v(1) and Lo, 1, are the initial state and the end state of the

a pair of functions Com, and Com, such that Com, (t))=mand Com, (t0)=g,
-and Com(to)=1,=<{m, ¢>.

Thus with every computer .# there is associated the function

(I)Jt ()Eka a',,, m) = 0; {dm COlnl [I*(xk: dn’ m)a qO]} s

where 7* and O* are input and output functions of the memory of the
computer .#.

DerINITION 5. We say that the function S(xX15e0, x) s computable by the

computer .4 if and only if f= ¢« for some 4, and m. ‘

262 Z.PAWLAK ON THE NOTION OF A COMPUTER 263

set of addresses and the same alphabet as the computers from the class % ,

1e. 4=0,1,2,... and > =0, 1,2.... The input and output functions for the
~computer I we assume as follows

" DEFINITION 6. The set X' < X* is decidable on the computer .# if and only
if for all xeX* there exist such g, and m that

) 0 if xeX
Pulef M) =11 e ey,

where 0, 1 are some distinguished elements of Z.

I x3*xM->M and O":M->M x x*,

*,'where M denotes the set of memory states of the computer IN.
DEerINITION 7. The set X' cX* is generable on .# if and only if for all’ j ‘

' - DEFINITION 9. The computer I is a universal computer for the class of
xeZX’ there is a sequence %, =Xy, ..., X, x;€Z such that ;

~ computers " if and only if for all X, eX*, .# e there exist meM such that

O;k {Coml [I*(-ﬁ, X m), qo]} =fu (Xn)’

where qq is the initial control state of .

= *
&4 (%, Gy, m)=x forsome 4, and m.

Computers .# and .#' are equivalent if and only if £, =/ e where [
denotes the function computable by the computer .#, and similar f,..

Note. If the function fis given and we search for the computer .# suc‘h
that f=¢ , one may speak of synthesis of computer .#. If computer .# 1s
given and we search for the function ¢ , one can speak about the analysis
of the computer .#.

2.3. Synthesis of universal computer

Let £ =(P, R, W, 8> be any computer which belongs to .#". We shall
1now define computer I =(P, R, W, S) in terms of computers of the class
A and then we show that I is universal computer for the class of computers
#". In order to define MM we have to give P, R, W, S. Let us start with the

2, Universal computers construction of P.

2.1. Classes of computers

DEFINITION 8, Two computers .# and .#’ are of the same class if and
only if the memories, the instructions and the conditions of both computer’sy
are identical. Lo

In other words the computers belonging to the same class may differ at

i ntrol.
m(f;tlrlﬁ;}i{cfﬂl, M,,...} be the class of computers. Then by fyy=1{/f4:
Sy ---}» Where f, is the function computable by the computer .#; — w
denote the class of functions computable by the computers qf the class %
Two classes of computers 47, A are equivalent if and only if £, =f,. |

One can easily define the class of one address computers,‘. the class of tw
address computers etc. and show that these classes are equivalent.

2,3.1. Memory of the computer It

- We recall that as the set of addresses for P we assumed the set of natural
numbers N=0, 1, 2,.... Let C be the set of content functions of P, and let 0
be the set of control states of .. By C,=C|(N-Q) we denote the set of
partial content functions with domain restricted to the set N— Q. We shall
call functions from C, the reduced content Junctions. The set of markers U in
P consists of one element w. In order to define the input and output functions
for P we have to introduce some additional notions.

.. Let M be the set of memory states of .#, and let §=(G, Q, ¥, v> be
- the control of .#, where G =<0, @', hy, hy>. We introduce 1-1 mappings
:M—-C,, p: R—>R, where R={ro, 1y, ..., 1y is the set of instructions of the

Qmputer,/// and R=(ro, ry,..., 1>, 1,1 4" x C,—C, ~ such that for all me M,
7,64" and reR

2.2. Universal computer

Let " be the class of computers with alphabet X. Compute?rs from o a
denoted by .#. Let I be the following computer not belonging to the cla:
A, For the sake of simplicity we assume that the computer It has the sam

& (+d m)) = Lo (1] (d, ¢ (m)

- By 9, is to mean the function ?,:@—R such that ¢,(g)=p(e (9)), for all
0.

* Definitions 5, 6 and 7 are modified versions of definitions given in ScorT [1967], Let us denote by W={W,,..., W,} the set of conditions of .. By o is to

264 Z.PAWLAK ON THE NOTION OF A COMPUTER 265

mean 1-1 mapping w: W—W, where where Q" is the set of end states of M and ro is the identity instruction of

. The condition %" will be written STOP.
W={W,W,...W), WcC

such that for all me M

r

-2.3.4. Control of the computer I

‘ The control of M we shall simply give in the form of a table
k(m)ew (W) ifand onlyif meW,. ' !

¥, denotes the function y,: Q0—W such that Yo(@)=w((q)), for all geQ _KH ¢ J v ’ ho ! M o
The set of functions P ps Yoy hos hy> we shall denote by ©. Let & be 1- - QO‘A“' Zo ~_sTOP . Kt
mapping q Ao STOP qz B

0:0 -, , 4 “ 4 | sToP - - END
where 2’ < ¥ and 2’ is finite. § will be called the encoding function. Thus we - 4 % ‘ STop u Lt

are able now to represent O ={@,, Yy, hy, hy) in the alphabet of .

The input function I* of P we define as follows n the table the control states are q,, q;, q, q, and q; being the end state.

@, W, ho, h, are the corresponding functions of the computer 9.

(A, 5 m)=m' = (¢, I'), where Thus we completed the definition of the computer M. Now we are able

, 4(0(2)) if 0<zx|Q|, to prove the following theorem
€)= k(I*(%,, 6, m)) if z>|Q], : , :
()= g - TueoreMm 2. The computer 9t is universal computer for the class of com-
— 40> -

puter 7",
- Proor. In order to prove this theorem we have to show that for every

; ﬁnction J.« and for all %, there is a computation in 9% such that
1) O;k {Coml [I* ('/”9 xm m)s qO]} =fa¢t (Xn)

for some meM. Because f.u is computable by .# therefore there is in .# the
computation such that

and 7* is the input function of .#, |Q] denotes the number of elements of Q.
The output function O*: M—-M x I* of I satisfy the condition:
for all me M there exists such leL that 05 (m)=0%(x(m),1).
Thus we defined the memory of 9. ‘

2.3.2. Instructions of the computer
Now we have to define the instructions of 9. The set of instructions of - " %o . -
) L . e 2 0, {Com, [I*(%,, 4,, m), =f,(x
will consist of two instructions %#,, #. %, is the identity instruction and #) 2 1LF o @ m). 4o]} =/ 0 :
is defined in the following way: ' for some d, and m. From the definition of I* it follows that to the initial state

. 4oykf the computer .# corresponds exactly one initial computer state of M,

Z(m)=m'={c,I'>, where m= {e,, 1> and which is

& = [0, (1(w)] (¢,
oy = [Bo@) i €ew, (1(w)
= {hl (@) if ¢, 0).

2.3.3. Conditions of the computer I

t0 = <I*(‘l3 iky m)a q0>"

From the definition of the control of Mt results that to each step of the com-
putation in .# corresponds exactly one step in the computation in M — such
hat t;,, =¥(t,) if and only if #,, ; =v(z,), where 7 is the transition function
~ of M. Further from the definition of the control of 9t it follows that 90t is in
~ final state if and only if . is in its final state. By the definition of p we have

<K {Coml [1*(jk’ dm m)’ %]}s l> = Coml [I* (“ﬂa xks l'I’I), qO] .

In the computer 9% we shall consider only one condition %~

"# ={m:meM and I(w)eQ' and |//o,l(ﬁ)=r0},‘

266 Z.PAWLAK

By the definition of the output function O* and by 2) we obtain 1) which com-

pletes the proof,

In this manner one can define various universal computers, for example -
one address universal computer, two addresses universal computer etc. and

prove some properties of this computers.

3. Programs

Let Z=C|Q be the set of the partial content functions of the universal

computer IR with domain restricted to the set Q, such that for all geQ, ' ?~{

MeH,
#(a)=6(0(q), pe?.

DEFINITION 10. Each function 4e is called a program in M; O(q) is

called a program instruction (which is to be distinguished from machine in-

structions considered in the first section of this paper); q is called /abel or an. s b
- Ergor, C.C. and A. RoBINSON, Random-access sto,

address of the program instruction ©(q); 4(O(g)) is called a code of O(g).
With every program e in M we can associate a function f,, computable

by the program 4 on the machine 9. Two programs 4 and 4’ are said to be ; -

equivalent if and only if £ =S
It seems very important to study in detail the question of equivalence of

programs but this is not the aim of this paper. We are going now to state |

without proof theorem concerning the form of program instructions in | S€orT, D., Some de

universal computers.

THEOREM 3. For every universal computer I there exists an equivalent uni-
versal computer MM’ such that for each program instruction

0(q) =<9,(9), ¥ (), 1o (q), h(()

of W', any of below given properties may hold

a) hy(q)=q+1 for all ge Q, -

a’) hy(g)=q-+1 for all geQ, -

b) if @,(g) %, then hy(g)=h,(g)=g+1 for all qeQ,
c) if ¢,(g)=r, then hy(g)=g+1 for all geqQ,

¢') if ¢,(q)=x, then ,(g)=q for all ge Q.

Much attention has been recently paid to the semantics of programming '

languages. It seems that the presented formalization of computers and pr'o—>
grams contribute to this problem. The meaning of the program 4 can be

- method for solving the following problem : Jet Y

- This seems to be of some interest not only for the

ON THE NOTION OF A COMPUTER 267

defined as the computation
“cording to the program 4,
~ the computer states in suc

carried out on the universal computer IN ac-
Thus we can define the valuation of programs in
A . h a manner that the computation associated with
€ program yields the valye of the computed functions. Thus we have the

be program of a universal

Ccomputer 9N, and let / be 4 computable function. We ask whether /= S
theory of progra i
but also for practical computation. ¥ ol programming

Acknowledgement

The author gratefully acknow]edges man

A y helpful suggesti
Mazurkiewicz and Dr. A. Wakulicz. P secstions of Dr. A.

References
Davis, M., Computability and unsolvability (New York, McGraw Hill 1958)

. red-progra; i
to programming languages, 1. ACM 11 (1964) 365—395. S machines, an approach

Pawrag, Z., Organization of digital co

mputy i i i
Warsaw University in 196667 puters (in polish). Manuscript of lectures held at

finitional suggestions for automata theory (Stanford University, 1967).

