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1. Introduction

Similarity and indiscernibility have attracted the attention of philosophers
and logicians for many years (cf. e.g. [11]). In recent years this topic has also
become of great importance to AI researchers in the context of imprecise data
analysis, computational linguistics, approximate reasoning and others – being
closely connected with vagueness and uncertainty.

In this paper we would like to give some comments on this subjects from
the rough sets perspective. The rough set theory [4], [6] is a new approach to
vagueness and uncertainty. Although the proposed approach is somehow related
to that offered by the fuzzy set theory [7] and the evidence theory [9], it can be
viewed in its own rights.

The starting point of the rough set theory is the assumption that the universe
we are dealing with is not accessible directly but through some information
(knowledge) about its elements. Evidently, to some elements of the universe
the same information can be associated and consequently the elements can be
indiscernible in view of the available information. For example patients suffering
from a certain disease, displaying the same symptoms are indiscernible in view
of these symptoms.

Indiscernibility is usually meant to be an equivalence relation (reflexive, sym-
metric and transitive). However sometimes the transitivity condition is dropped
and indiscernibility is thus understood as a tolerance relation. An interesting
study of these problems can be found in two recent papers of Marcus [2], [3].

2. Rough sets and indiscernibility

In order to define a set we have to specify its membership function µX(x)
saying whether the element x belongs to the set X or not. In the classical set
theory the co-domain of the membership function is the set {0, 1}, which means
that if µX(x) = 1, then x belongs to X and if µX(x) = 0, x does not belong
to X. For fuzzy sets the codomain of the membership function is the closed
interval [0,1], which means that the element x can belong to the set X with a
certain degree between zero and one.

Let us give now the definition of the membership function for rough sets
(the rough membership function). The definition is based on an indiscernibility
relation, hence beforehand we need some auxiliary notions.



Suppose we are given a finite not empty set U called the universe, and let I

be a binary relation on U , called an indiscernibility relation. The pair S = (U, I)
will be referred to as an indiscernibility space.

If I is reflexive and symmetric, i.e. xIx, for any x ∈ U and xIy, implies yIx

for any x, y ∈ U , then I is a tolerance relation. If I is also transitive, i.e. xIy

and yIz imply xIz, for any x, y, z ∈ U then I is an equivalence relation.
By I(x) we mean the set of all y ∈ U such that yIx. In the case of the

equivalence relation we have I(x) = [x]I , i.e. I(x) is an equivalence class of the
relation I containing element x. If xIy, then x, y are called indiscernible with
respect to I (I-indiscernible). In what follows we assume that indiscernibility
can be either a tolerance or an equivalence relation.

The rough membership function can be easily defined employing the relation
I in the following way:

µI

X(x) =
|X ∩ I(x)|

|I(x)|
.

Obviously
µI

X(x) ∈ [0, 1] for any x ∈ U.

The rough membership function, can be used to define two basic operations on
sets in the rough set theory, namely the I-lower and the I-upper approximation
of sets, denoted by I∗(X), I∗(X), respectively, and defined as follows:

I∗(X) = {x ∈ U : µ(x) = 1},

I∗(X) = {x ∈ U : µ(x) > 0}.

Obviously the approximations have the following properties

I∗(X) = {x ∈ U : I(x) ⊆ X},

I∗(X) = {x ∈ U : I(x) ∩ X 6= ∅}.

The difference between the upper and the lower approximation of X will be
called the I-boundary region of the set X and is defined below

BNI(X) = I∗(X) − I∗(X) = {x ∈ U : 0 < µI

X(x) < 1}.

Thus the boundary region is the set of all objects which cannot be properly
classified to the set or its complement, due to the indiscernibility of some objects
of the universe.

If the boundary region of X is the empty set, i.e. BNI(X) = ∅, then the set
X will be called crisp (exact) with respect to I; otherwise, i.e. if BNI(X) 6= ∅,
the set X will be referred to as rough (inexact) with respect to I. Hence the
indiscernibility of objects of the universe gives rise to the concept of the rough
set, i.e. the set with not clearly defined boundaries. For example the concept
of an odd (even) number is precise, because every number is either odd or even
– whereas the concept of beautiful women is rough, because for some women we
cannot decide whether they are beautiful or not (there are boundary-line cases).
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3. Indiscernibility of higher order

In this section we will extend the idea of indiscernibility to subsets of the
universe (cf. [4]).

Suppose we are given an indiscernibility space S = (U, I) and let X,Y be
two subsets of the universe U , i.e. X,Y ⊆ U. We will say that the sets X,Y

are I-indiscernible, in symbols X ≡I Y , if I∗(X) = I∗(Y ) and I∗(X) = I∗(Y ).
The relation ≡I is reflexive, symmetric and transitive, i.e. ≡I is an equivalence
relation, for both I being a tolerance and equivalence relation. Hence any
indicernibility space S = (U, I) induces uniquely the indiscernibilty space S′ =
(P (U),≡I), where P (U) denotes the powerset of U and ≡I⊆ P (X) × P (X) is
the indiscernibility relation generated by I.

The above introduced definition can be extended inductively in the following
way.

Let

i) PO(U) = U,

ii) Pn+1(U) = P (Pn(U)),

and

iii) IO = I,

iv) In+1 = ≡In .

Consequently we can define an indiscernibility space Sn = (Pn(U), In) called
an indiscernibility space of order n.

Of course for the indiscernibility space Sn = (Pn(U), In) we can define the
membership function

µn

X(x) =
|X ∩ In(x)|

|In(x)|
,

where X ⊆ Pn(U) and x ∈ Pn(U), as well as the approximations

In

∗
(X) = {x ∈ Pn(U) : µn

X(x) = 1},

In∗(X) = {x ∈ Pn(U) : µn

X(x) > 0}.

The indiscernibility relation I can be defined by the equality relation and an
appropriate information function Infn.

Proposition (Skowron). Let us assume

i) Inf1(x) = {(a, a(x)) : a ∈ A} for every x ∈ U (the indiscernibility relation
I is defined by the set of attributes as follows: xIy iff a(x) = a(y) for any
a ∈ A, (for notation see [6]),

ii) Inf1(x) = 〈
⋃
{{InfO(x)} : x ∈ A(X)},

⋃
{{InfO(x)} : x ∈ A(X)}〉

iii) Infn+1(x) = {Infn(x) : x ∈ X} for any n ≥ 1 and X ∈ Pn+1(U).
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Then we have

xIny iff Infn(x) = Infn(y) for any x, y ∈ Pn(U) and n ≥ 0.

4. Conclusion

The above considerations have shown that the indiscernibility concept is a
hereditary one, i.e. indiscernibility on elements of a set induces indiscernibility
on elements of its power set, and so one. This property seems to be of some
philosophical as well as practical significance and can be treated as a kind of
theory of types for indiscernibility.

Acknowledgements. Thanks are due to Professor Andrzej Skowron for
critical remarks.
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