BULLETIN OF THE POLISH ACADEMY OF SCIENCES MATHEMATICS Vol. 36, No. 7-8, 1988

THEORETICAL COMPUTER SCIENCE

Partial Dependency of Attributes by Miroslav NOVOTNÝ and Zdzisław PAWLAK

Presented by Z. PAWLAK on December 8, 1987

Summary. Any set Z of attributes in an information system defines an equivalence \widetilde{Z} on the set X of all objects; the blocks of \widetilde{Z} are sets of objects that are indiscernible by means of attributes in Z. If Z, T are sets of attributes and if any block of \widetilde{Z} is a subset of a block of \widetilde{T} , the set T is said to be totally dependent on Z. In the general case, only some blocks of \widetilde{Z} are subsets of blocks of \widetilde{T} . Union of blocks of \widetilde{Z} such that any of them is a subset of a block of \widetilde{T} is a subset of X; the ratio of the cardinality of this set to the cardinality of X expresses the dependency degree of T on Z. The present paper includes some results concerning this dependency degree. A distance function is defined on the basis of dependency degree.

1. Introduction. Let (X, A, V, f) be an information system (see [1-3]), i.e. X, A, V are finite nonempty sets and f is a mapping of $X \times A$ into V. Elements in X are interpreted to be objects, elements in A-attributes, and elements in V are considered to be values of attributes; f(x, a) = v means that the attribute a has the value v for the object x. For any $Z \subseteq A$, we put $\widetilde{Z} = \{(x, y) \in X \times X; f(x, a) = f(y, a) \text{ for any } a \in Z\}.$

If $(x, y) \in \widetilde{Z}$ then the objects x, y are indiscernible by means of attributes in Z. If $Z \subseteq A$, $T \subseteq A$ and $\widetilde{Z} \subseteq \widetilde{T}$, then any objects indiscernible by means of attributes in Z are indiscernible by means of attributes in T, i.e. the ability of Z to discern objects is greater or as great as the same ability of T. The set T is said to be dependent on Z. We can express it by saying that any indiscernibility block of \widetilde{Z} is a subset of an indiscernibility block of \widetilde{T} .

Such a situation occurs only exceptionally. In a general case, only some indiscernibility blocks of \tilde{Z} are subsets of indiscernibility blocks of \tilde{T} . Union of indiscernibility blocks of \tilde{Z} such that any of them is included in an indiscernibility block of \tilde{T} is a subset of X; the ratio of the cardinality of this set to the cardinality of X expresses the dependency degree of X on X.

The present paper includes analysis of this partial dependency of attributes. This analysis is based on some operations and relations on the set of all systems of nonempty subsets of a fixed set U. Some theorems concerning

dependency degree can be considered to be the main results of the paper. An example completes the investigation. A distance function is defined on the basis of dependency degree.

2. Operations with set systems. Let U be a set. We denote by \mathfrak{M} —the set whose elements are all systems of nonempty subsets of the set U;

D-the set whose elements are all disjoint systems of nonempty subsets of the set U;

 \Re -the set whose elements are all decompositions of the set U.

Clearly, $\Re \subseteq \mathfrak{D} \subseteq \mathfrak{M}$.

We define an operation * on the set \mathfrak{M} as follows: for any $P \in \mathfrak{M}$ and any $Q \in \mathfrak{M}$, we put $P * Q = \{p \in P; \text{ there exists } q \in Q \text{ with } p \subseteq q\}$. Clearly, $P * Q \in \mathfrak{M}$.

- **2.1.** EXAMPLE. Put $U=\{p,\,q,\,r\}$ where $p\neq q\neq r\neq p,\,\,P=\{\{p\}\},\,\,Q=\{\{p,\,q\}\},\,\,R=\{\{p,\,r\}\}.$ Then $P*Q=P,\,\,P*R=P$ and, therefore, (P*Q)*R=P. On the other hand, $Q*R=\emptyset,\,\,P*\emptyset=\emptyset$ and, hence, $P*(Q*R)=\emptyset$. It follows that the operation * is not associative. \square
- **2.2.** Example. It is easy to see that $P*Q \subseteq P$ for any $P \in \mathfrak{M}$ and any $Q \in \mathfrak{M}$.

For any $P \in \mathfrak{M}$ and any $Q \in \mathfrak{M}$, we put $P \leq Q$ if and only if P * Q = P. By 2.2 we obtain

- **2.3.** Lemma. For any $P \in \mathfrak{M}$ and any $Q \in \mathfrak{M}$ the conditions $P \leqslant Q$ and $P \subseteq P * Q$ are equivalent.
- **2.4.** LEMMA. If P, Q, R are in \mathfrak{M} and $Q \leq R$ holds, then $P*Q \subseteq P*R$. Proof. If $t \in P*Q$, then $t \in P$ and there exists $q \in Q$ such that $t \subseteq q$. Since Q = Q*R, there exists $r \in R$ such that $q \subseteq r$ and, hence, $t \subseteq r$. Thus, $t \in P*R$. For any $P \in \mathfrak{M}$ and any $Q \in \mathfrak{M}$, we set $P \wedge Q = \{p \cap q; p \in P, q \in Q, p \cap q \neq \emptyset\}$. Clearly, $P \wedge Q \in \mathfrak{M}$.
- **2.5.** THEOREM. Relation \leq is an ordering on \mathfrak{D} and $\inf\{P, Q\} = P \wedge Q$ holds for any $P \in \mathfrak{D}$ and any $Q \in \mathfrak{D}$.

Proof. Reflexivity of \leq on \mathfrak{D} is obvious. If P, Q, R are in \mathfrak{D} and $P \leq Q$, $Q \leq R$ hold, then $P = P \circ Q \subseteq P \circ R$ by 2.4 which implies $P \leq R$ by 2.3. Thus, \leq is transitive.

If $P \leq Q$, $Q \leq P$ hold, then $P \subseteq P * Q$, $Q \subseteq Q * P$ by 2.3. Thus, to any $p \in P$ there exists $q \in Q$ such that $p \subseteq q$ and to $q \in Q$ there exists $p' \in P$ such that $q \subseteq p'$. Thus, $p \subseteq q \subseteq p'$. Since p, q, p' are nonempty and $P \in \mathfrak{D}$, we obtain p = p' which implies p = q. We have proved $P \subseteq Q$. Similarly, we prove $Q \subseteq P$ which implies that P = Q. Therefore, \leq is an antisymmetric relation.

For any $P \in \mathfrak{D}$ and any $Q \in \mathfrak{D}$, we have $P \wedge Q \subseteq (P \wedge Q) * P$ because $p \cap q \subseteq p$ holds for any $p \in P$ and any $q \in Q$. Thus, $P \wedge Q \leq P$ by 2.3. Similarly $P \wedge Q \leq Q$ holds and, hence, $P \wedge Q$ is a lower bound of the set $\{P, Q\}$. If $R \leq P$ and $R \leq Q$

hold, then $R \subseteq R * P$, $R \subseteq R * Q$ hold by Lemma 2.3. Thus, for any $r \in R$, there are $p \in P$ and $q \in Q$ such that $r \subseteq p$, $r \subseteq q$ which implies that $r \subseteq p \cap q \in P \wedge Q$. Thus, $R \subseteq R * (P \wedge Q)$ which implies that $R \leq P \wedge Q$ by Lemma 2.3. It follows that $P \wedge Q$ is the greatest lower bound of the set $\{P, Q\}$.

2.6. COROLLARY. If P, Q, R are in D, then the following assertions hold:

(i)
$$P*(Q \wedge R) \subseteq P*Q$$
,

(ii)
$$Q \wedge (R * P) \subseteq (Q \wedge R) * P$$
.

Proof. By 2.5 we have $Q \wedge R \leq Q$ and (i) follows by 2.4.

If $t \in Q \land (R * P)$, there exist $q \in Q$ and $r \in R * P$ such that $t = q \cap r$. Furthermore, $r \in R$ and there exists $p \in P$ such that $r \subseteq p$. It follows that $t \in Q \land R$ and $t \subseteq r \subseteq p$ which means $t \in (Q \land R) * P$ and (ii) holds.

If α , β are equivalences on U, then $\alpha \cap \beta$ is an equivalence on U as well. It follows that U/α , U/β , $U/\alpha \cap \beta$ are in \Re . Then following Lemma is obvious:

- **2.7.** Lemma. If α , β are equivalences on U, then $U/\alpha \cap \beta = (U/\alpha) \wedge (U/\beta)$.
- 3. Attributes and their properties. Let (X, A, V, f) be an information system. In the Introduction we have defined the equivalence relation \tilde{Z} on the set X to any set $Z \subseteq A$. Thus, \sim is a mapping assigning an equivalence relation on the set of all objects to any set of attributes. We now present some properties of this mapping.

The following property is well-known:

- **3.1.** Lemma. For any $P \subseteq A$ and any $Q \subseteq A$, we have $P \cup Q = \tilde{P} \cap \tilde{Q}$. \Box
- 3.2. THEOREM. If P, Q, R are subsets of A, then the following assertions hold:

(i)
$$X/\widetilde{P} * X/\widetilde{Q} \cup \widetilde{R} \subseteq X/\widetilde{P} * X/\widetilde{Q}$$
,

(ii)
$$X/\widetilde{Q} \wedge (X/\widetilde{R} * X/\widetilde{P}) \subseteq X/\widetilde{Q} \cup \widetilde{R} * X/\widetilde{P}$$
.

Proof. We have $X/\widetilde{P}*X/\widetilde{Q} \cup R = X/\widetilde{P}*X/\widetilde{Q} \cap \widetilde{R} = X/\widetilde{P}*(X/\widetilde{Q} \wedge X/\widetilde{R})$ $\subseteq X/\widetilde{P}*X/\widetilde{Q}$ by Lemmas 3.1, 2.7, and 2.6(i) which is (i). Furthermore, $X/\widetilde{Q} \wedge (X/\widetilde{R}*X/\widetilde{P}) \subseteq (X/\widetilde{Q} \wedge X/\widetilde{R})*X/\widetilde{P} = X/(\widetilde{Q} \cap \widetilde{R})*X/\widetilde{P} = X/(\widetilde{Q} \cup R)*X/\widetilde{P}$ by Lemmas 2.6(ii), 2.7, and 3.1 which is (ii).

4. Partial dependency of attributes. If P is a system of sets, we denote by $\bigcup P$ the union of P, i.e. $\bigcup P = \bigcup \{p; p \in P\}$.

4.1. LEMMA. If $Q \in \Re$ and $P \in \mathfrak{D}$, then $\bigcup (Q \wedge P) = \bigcup P$.

Proof. For any $x \in U$, the condition $x \in \bigcup (Q \land P)$ is equivalent with the existence of $p \in P$ such that $x \in p$ because an $q \in Q$ with $x \in q$ always exists. Thus, $x \in \bigcup (Q \land P)$ is equivalent with $x \in \bigcup P$ which is our assertion.

4.2. LEMMA. If $P \in \mathfrak{M}$, $Q \in \mathfrak{D}$, $R \in \mathfrak{M}$, then $\bigcup (P*Q) \cap \bigcup (Q*R) \subseteq \bigcup (P*R)$. Proof. If $x \in \bigcup (P*Q) \cap \bigcup (Q*R)$, there are $p \in P$, $q \in Q$, $q' \in Q$, $r \in R$ such that $x \in p \subseteq q$, $x \in q' \subseteq r$. Since $Q \in \mathfrak{D}$, we have q = q' and, thus, $x \in p \subseteq q \subseteq r$ which implies that $x \in \bigcup (P*R)$.

For any set Y, we denote by card Y the cardinality of Y. Let (X, A, V, f) be an information system and $P \subseteq A$, $Q \subseteq A$. If

$$k = \frac{\operatorname{card}(\bigcup (X/P * X/Q))}{\operatorname{card} X},$$

then we put $P \rightarrow {}^{k}Q$ and the set Q is said to depend in the degree k on the set P.

- **4.3.** EXAMPLE. $P \to^1 Q$ holds if and only if $\tilde{P} \subseteq \tilde{Q}$. Indeed, $P \to^1 Q$ holds if and only if $X = \bigcup (X/\tilde{P} * X/\tilde{Q})$ which means that for any $p \in X/\tilde{P}$, there exists $q \in X/\tilde{Q}$ with $p \subseteq q$ which is equivalent with $\tilde{P} \subseteq \tilde{Q}$.
- **4.4.** EXAMPLE. $P \to {}^0 Q$ holds if and only if $X/P \cup Q \cap X/\tilde{P} = \emptyset$. Indeed, $p \to {}^0 Q$ holds if and only if $\bigcup (X/\tilde{P} * X/\tilde{Q}) = \emptyset$ which means that for any $p \in X/\tilde{P}$ there exists $q \in X/\tilde{Q}$ with $p \subseteq q$, i.e. for any $p \in X/\tilde{P}$ and any $q \in X/\tilde{Q}$ the condition $p \cap q \neq p$ holds. This means that $(X/\tilde{P} \wedge X/\tilde{Q}) \cap X/\tilde{P} = \emptyset$; the last condition can be expressed in the form $(X/\tilde{P} \cap \tilde{Q}) \cap X/\tilde{P} = \emptyset$ by 2.7 and in the form $(X/\tilde{P} \cup Q) \cap X/\tilde{P} = \emptyset$ by 3.1.

For any $P \subseteq A$ and any $Q \subseteq A$ there exists exactly one k with $0 \le k \le 1$ such that $P \to {}^kQ$. If $P \to {}^1Q$, the set Q is said to be totally dependent on the set P; if $P \to {}^0Q$, the set Q is called totally independent on P.

5. Properties of dependency degrees

5.1. THEOREM. If (X, A, V, f) is an information system and P, Q, R are subsets of A such that $P \to {}^k Q$, $P \to {}^l R$, $P \to {}^m Q \cup R$, then $m \leq \min\{k, l\}$.

Proof. By 3.2(i), we have $\operatorname{card}(\bigcup (X/\tilde{P}*X/Q \cup R)) \leq \operatorname{card}(\bigcup (X/\tilde{P}*X/\tilde{Q}))$ which implies that $m \leq k$. Similarly, we obtain $m \leq l$ which implies the assertion.

5.2. THEOREM. If (X, A, V, f) is an information system and P, Q, R are subsets of A such that $Q \rightarrow^k P$, $R \rightarrow^l P$, $Q \cup R \rightarrow^m P$, then $m \ge \max\{k, l\}$.

Proof. By lemmas 4.1 and 3.2(ii), we have $\operatorname{card}(\bigcup (X/\tilde{R}*X/\tilde{P}))$ = $\operatorname{card}(\bigcup (X/\tilde{Q}(X/\tilde{R}*X/\tilde{P}))) \leq \operatorname{card}(\bigcup (X/\tilde{Q} \cup R*X/\tilde{P}))$ which implies that $l \leq m$. Similarly, we obtain $k \leq m$ which implies the assertion.

5.3. THEOREM. If (X, A, V, f) is an information system and P, Q, R are subsets of A such that $P \rightarrow {}^k Q, Q \rightarrow {}^l R, P \rightarrow {}^m R$, then $m \ge k+l-1$.

Proof. If B, C are arbitrary sets, then $\operatorname{card} B + \operatorname{card} C = \operatorname{card} (B \cup C) + \operatorname{card} (B \cap C)$. We put $B = \bigcup (X/\widetilde{P} * X/\widetilde{Q})$, $C = \bigcup (X/\widetilde{Q} * X/\widetilde{R})$. It follows by 4.2 that $B \cap C \subseteq \bigcup (X/\widetilde{P} * X/\widetilde{R})$. Thus, we obtain that $k+l \le 1+m$ because $B \cup C \subseteq X$.

6. Example. Let us have $X = \{Burke, Clark, Jameson, Kellog, Newman\}, <math>A = \{sex, age, hair\}, V = \{male, female, young, middle, old, black, blond\}.$ Suppose that f is given by Table 1:

TABLE 1

	Sex	Age	Hair
Burke	male	middle	blond
Clark	male	young	black
Jameson	female	young	blond
Kellog	male	old	black
Newman	female	middle	blond

We put $P = \{age, hair\}$, $Q = \{age, sex\}$, $R = \{hair, sex\}$. We denote any person in X by its initial letter; then

$$X/\tilde{P} = \{\{B, N\}, \{C\}, \{J\}, \{K\}\},\$$

$$X/\tilde{Q} = \{\{B\}, \{C\}, \{J\}, \{K\}, \{N\}\},\$$

$$X/\tilde{R} = \{\{B\}, \{C, K\}, \{J, N\}\}.$$

Clearly, $X/\tilde{Q}*X/\tilde{P}$, $X/\tilde{Q}*X/\tilde{Q}, X/\tilde{Q}*X/\tilde{R}$ are equal to X/\tilde{Q} which implies that $\bigcup (X/\tilde{Q}*X/\tilde{P}), \ \bigcup (X/\tilde{Q}*X/\tilde{Q}), \ \bigcup (X/\tilde{Q}*X/\tilde{R})$ equal X. Thus, $Q \to^1 P$, $Q \to^1 Q$, $Q \to^1 R$. Furthermore, $X/\tilde{P}*X/\tilde{Q} = \{\{C\}, \{J\}, \{K\}\} = X/\tilde{P}*X/\tilde{R}$. It follows that $\bigcup (X/\tilde{P}*X/\tilde{Q}) = \{C, J, K\} = \bigcup (X/\tilde{P}*X/\tilde{R})$. Thus, $P \to^{0.6} Q$, $P \to^{0.6} R$, $P \to^1 P$. Finally, $X/\tilde{R}*X/\tilde{Q} = \{\{B\}\} = X/\tilde{R}*X/\tilde{P}$. Thus, $\bigcup (X/\tilde{R}*X/\tilde{Q}) = \{B\} = \bigcup (X/\tilde{R}*X/\tilde{P})$ and, therefore, $R \to^{0.2} Q$, $R \to^{0.2} P$, $R \to^1 R$. We obtain Table 2:

TABLE 2					
k	P	Q	R		
P	1.0	0.6	0.6		
Q	1.0	1.0	1.0		
R	0.2	0.2	1.0		

Clearly, $X/Q \cup R = \{\{B\}, \{C\}, \{J\}, \{K\}, \{N\}\}\} = X/\tilde{Q}$. It follows that $P \rightarrow {}^{0.6}Q \cup R$. Since $P \rightarrow {}^{0.6}Q$, $P \rightarrow {}^{0.6}R$, the inequality of Theorem 5.1 is satisfied. Similarly, $Q \cup R \rightarrow {}^{1}P$. Since $Q \rightarrow {}^{1}P$, $R \rightarrow {}^{0.2}P$, the inequality of Theorem 5.2 is satisfied. Finally, $P \rightarrow {}^{0.6}Q$, $Q \rightarrow {}^{1}R$, $P \rightarrow {}^{0.6}R$ and the inequality of Theorem 5.3 is satisfied.

7. Distance function. Let (X, A, V, f) be an information system and suppose that $Z \subseteq A$, $T \subseteq A$. If $Z \to^k T$ holds, we set $\sigma(Z, T) = 1 - k$. Furthermore, we set $\varrho(Z, T) = 1/2(\sigma(Z, T) + \sigma(T, Z))$.

- **7.1.** THEOREM. If (X, A, V, f) is an information system and P, P_1, Q, Q_1, R are arbitrary subsets of A, then the following assertions hold.
 - (i) 0 ≤ ρ(P, Q) ≤ 1,
 - (ii) $\varrho(P, P) = 0$,
 - (iii) $\varrho(P, Q) = 0$ if and only if $\tilde{P} = \tilde{Q}$,
 - (iv) $\varrho(P, Q) = \varrho(Q, P)$,
 - (v) $\varrho(P, R) \leq \varrho(P, Q) + \varrho(Q, R)$,
 - (vi) If $\tilde{P} = \tilde{P}_1$, $\tilde{Q} = \tilde{Q}_1$, then $\varrho(P, Q) = \varrho(P_1, Q_1)$.

Proof. Since $P \to^k Q$ implies $0 \le k \le 1$, we have $0 \le \sigma(P, Q) \le 1$; similarly, we obtain $0 \le \sigma(Q, P) \le 1$ which implies (i). Furthermore, (ii) follows from the fact that $P \to^1 P$ holds. If $\varrho(P, Q) = 0$ then $\sigma(P, Q) = 0$, $\sigma(Q, P) = 0$ which implies that $P \to^1 Q$, $Q \to^1 P$ which means $\tilde{P} = \tilde{Q}$ by 4.3. On the other hand, $\tilde{P} = \tilde{Q}$ is equivalent with $P \to^1 Q$, $Q \to^1 P$ by 4.3 which implies that $\varrho(P, Q) = 0$. Thus, (iii) holds. Property (iv) follows from the definition of ϱ . Furthermore, if $\sigma(P, Q) = 1 - k$, $\sigma(Q, R) = 1 - l$, $\sigma(P, R) = 1 - m$, then $m \ge k + l - 1$ by 5.3. It follows that $1 - m \le 2 - k - l$ which implies that $\sigma(P, R) \le \sigma(P, Q) + \sigma(Q, R)$. Similarly, $\sigma(R, P) \le \sigma(R, Q) + \sigma(Q, P)$; these inequalities imply (v). Finally, if $\tilde{P} = \tilde{P}_1$, $\tilde{Q} = \tilde{Q}_1$, then $\varrho(P_1, P) = 0$, $\varrho(Q, Q_1) = 0$ by (iii) and $\varrho(P_1, Q_1) \le \varrho(P_1, P) + \varrho(P, Q_1) \le \varrho(P_1, P) + \varrho(P, Q) + \varrho(Q, Q_1) = \varrho(P, Q)$ by (v). Similarly, we obtain $\varrho(P, Q) \le \varrho(P_1, Q_1)$ and we have (vi).

Put $B(A) = \{Z; Z \subseteq A\}$. For any $Z \in B(A)$ and any $T \in B(A)$ we put $Z \equiv T$ if and only if $\widetilde{Z} = \widetilde{T}$. Then \equiv is an equivalence on B(A). For any $Z \in B(A)/\equiv$ and any $T \in B(A)/\equiv$, we set $\delta(Z, T) = \varrho(Z, T)$ where $Z \in Z$ and $T \in T$ are arbitrary. By Theorem 7.1(vi) this definition is correct and by Theorem 7.1, δ is a distance function on $B(A)/\equiv$.

7.2. EXAMPLE. If the information system (X, A, V, f) and the sets P, Q, R are the same as in Example 6, we have $\varrho(P, Q) = 0.2$, $\varrho(P, R) = 0.6$, $\varrho(Q, R) = 0.4$.

MATHEMATICS INSTITUTE, ČSAV, MENDLOVO NAM. 1, 60300 BRNO (CZECHOSLOVAKIA)
DEPARTMENT OF COMPLEX CONTROL SYSTEMS, POLISH ACADEMY OF SCIENCES, BAŁTYCKA 10, 44–100

(ZAKŁAD SYSTEMÓW AUTOMATYKI KOMPLEKSOWEJ PAN)

REFERENCES

- [1] W. Marek, Z. Pawlak, Information storage and retrieval systems mathematical foundations, Theor. Comp. Sci., 1 (1976), 331-354.
- [2] M. Novotný, Z. Pawlak, On a representation of rough sets by means of information systems, Fundam. Inform., 6 (1983), 286-296.
- [3] Z. Pawlak, Information systems theoretical foundations, Inform. Syst., 6 (1981), 205-218.
- [4] Z. Pawlak, On rough dependency of attributes in information systems, Bull. Pol. Ac.: Tech., 33 (1985), 551-559.

М. Новотны, З. Павляк, Частичная зависимость признаков

Для каждой пары Z, T множеств признаков информационной системы определяется степень зависимости T от Z. Изучаются основные свойства степеней зависимости.