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| Introduction

Ihe concept of the rough set - a mathematical basis for reasoning about vague-
iess and uncertainty proved to be a natural instrument to inquire into many
hearetical and practical problems related to data analysis. Although many seri-
us real-life problems have been formulated and solved in the framework of rough
et theory it seems that the extension of this theory to rough relations and rough
tions is badly needed, for numerous applications can not be covered by the
goncepts of a rough set only.
" The objective of this paper is to give some ideas concerning rough functions
long the lines proposed by the author in [Pal, Pa2, Pad, Pab, Pa6] and this
aper is a modified version of [Pa6), where basic concepts of rough calculus have
seen proposed. Some similar concepts have been considered by Nakamura and
fosenfeld in [NR1].
" It is interesting that ideas presented in this paper are not entirely new and
heir origin can be traced back to calculus of finite differences by George Boole
ef.[Bol]).

Physical phenomena are usually described by differential equations. Solutions
f these equations are real valued-functions, i.e., functions which are defined
od valued on continuum of points. However, due to limited accuracy of mea-
grements and computations, we are unable to observe (measure) or compute
jmulate) exactly the abstract solutions. Consequently, we deal with approxi-
e rather than exact solutions, i.e., we are using discrete and not continuous
ariables and functions.
. Thus abstract mathematical models of physical systems are expressed in
ems of real functions, whereas observed or computational models are described
data sets obtained as a result of measurements or computations - which use
ot real but rational numbers from a finite subset of ratinal numbers.
‘Hence an important question arises - what is the relationship between these
o approaches, i.e., based on continuous or discrete mathematics philosophy?
Similar problems have been faced in image processing as perceived by Rosen-
gld in [Ro3] and pursued by Nakamura and others in [NA1, NA2, NA3].
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Another tool developed for discrete system analysis is the so called "cell
to-cell mapping theory” [Hsl], in which real numbers are replaced by intervals
Due to the lack of sound mathematical foundations, this method seems to b
better suited to computer simulation than to prove theorems about discreté
systems. It is worthwhile to mention that the idea of cell-to-cell mapping ha
found interesting application in the design and analysis of fuzzy controllers [P
Pat, SC1).

Some aspects of the considered problems are also related to interval analysi
first anticipated by Warmus in [Wal, Wa2] and developed extensively by manj
authors recently.

Independently of practical problems caused by the "continuous versus dis
crete” antinomy, the philosophical question, of how to avoid the concept of in-
finity in mathematical analysis, has been tackled for a long time by logicians.
Nonstandard analysis [Rol], finistic analysis [Myl] and infinitesimal analysis

[CS1] provide various views on this topics.

In this paper we are going to investigate on the relationship between real
and discrete functions based on the rough set philosophy. In particular we defing
rough (discrete) lower and upper representation of real functions and define and
investigate some properties of these representations, such as rough continui
rough derivatives, rough integral and rough differential equations - which can b
viewed as discrete counterparts of real functions.

In particular we are interested how discretization of the real line effects basic
properties of real functions, such as continuity, differentiability, etc. It turns out
that some properties of real functions have counterparts in the case of discrete
functions, but this is not always the case. The proposed approach is based on
the rough set philosophy, in which the indiscernibility relation, defined in our
case on the set of reals, is the starting point of our considerations.

The proposed approach differs essentially from numerical and approximation
methods, even though we use, in some cases, similar terminology (e.g., approxi-
mation of function by another function) - for our attempt is based on functions
defined and valued in the set of integers - however it has some overlaps with
nonstandard, finistic and infinitesimal analysis, mentioned above.

Last but not least the proposed philosophy can be seen as a generalization
of qualitative reasoning [Kul, Wel], where three-valued (+,0, —, i.e., increas-
ing, not changing, decreasing) qualitative derivatives are replaced by more gen-
eral concept of multi-valued qualitative derivatives, so that expressions such as
“slowly increasing”, "fast increasing”, "very fast increasing” etc. can be used
instead of only "increasing”.

Ideas shown in this paper have been presented at the International Con-
ference on Intelligent Systems, Augustow, June 5-10, 1995, Poland and Joint
Conference on Information Sciences (JCIS'95), Wrightsville Beach, Sept 28 -
Oct 1, 1995, North Carolina, USA.
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. Discretization and Indiscernibility

ection fatroduces the basic concept of our approach = the indisceruibility
. As mentioned in the introduction, real-valued parameters of a physical
m tan be exactly measured or computed with some approximation only.
dore, we will introduce the concept of a scale, whichi is a finite set of integers
+..,n} and i intended to be used as a set of measurement units, like kg, km,
. -mdamppin;nfthemhinluthn cot of real numbers. Elements of the
, e, measuTEMEnl units, are understood as approximations of peal pumbers,
Je dite to our lack of infinite precision of messurement oF pommpuiation.
v & concept of the scale is similar 1o that of the landmark, used in
« peasoning methods, but both concepts are used different]y.
ctermines nnkquely a partition of the real line, or, in other words,
on on reals, called in what follows an iniscesnibility
e, Elements of the same equivalence class of the indiscernibility relation
aid to be indizcernible with respect o the scale, and can be pxpriessed ap-
matsly only by units of the scale. Thus, due to the use of the assumed scale
yalued eters are replaced by approximate, imteger-valued parameters.
4 more formal presentation of the above ideas is given below [Obl].
et 0] = {0, 1,...,n} be a set of natural numbers. A strictly monotonic
win o : [n] =+ R, L., mmthuthraﬂi,jE{ﬂ],i{jimpﬂE! dli) < dlj)

| be called a scale.

ny scale d : [n] =R is a finite increasing sequence of reals Fa, Li..-Far
hat x; = dii), for very i € [n] - thus it can bis seen as a discretizabion of

elosed interval R = {d{0),d(n]) = {0, Tn)-

mion a scale d ; [n] —+R then one cil define two functions

d.(x) = maz{i € [n): =i < 2)
d*(z) = min{i & In): = = =)

pvery T € Ha.
(i the interval R, = (o, Tn) We define an equivalence relation Jg, called the
o hiy relation, and defined thus

Ly iff delz) =d, (y) and d*(x) = d*{z).

family of all equivalence classes of the relation Iy, or the partition of the

al R, is given below
{#‘ﬂ]:lzﬂliﬂi{:il'l{IhI!J.L{:?}v-ﬂ{:ﬂ—llrn}i {za}

bere each equivalence classe [#lq is an interval such that [£la = (=i Tisa)
fhenever £y < T < Titls and [r;]e = (2.} for all i € [n].

i s, < x < %y, then Lalz) = d{d.(=]}}) == and Lg(z) = did*(x)} = Firtts
g, Ijiz) and I3(x) are the ends of the interval {2y, Taa )i if ¢ = r;, then
L) = I5(x) = =4:

i TLm‘d:i of the interval {x,, 21} are called the lower and the upper d-appro-
emation of z, respectively.
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Fig. 1. The lower and apper approximation of a real function

The above discassed ideas are illustrated in Fig. 1.

Suppose we are given two scales d : [n] = R and e : [m] <+ R, and
f: Ry =+ Ry be a function, where Ry, Ry denote the both side closed in
(2. 2a), (o, Vo) respectively, We define its lower rough representation y
respect to d and e and its upper rough representation f* with respect to d
e defined on [n] and valued in [m], as

fi) = el flx))

P =e"(f(=))
where d.(x) = x;, for all i € [n] (see Fig. 1).
Thus with every real function one can associate two discrete functions; i
lower and upper approximation. These approximations are uniquely de
by indiscernibility relations superimposed on the domain and range of the
function,
Let us observe that the just-defined approximations of real functions
different from those considered in approscimation thenry.
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In what follows we are going to give some properties of discrete functions,
defined and valued in the set of integers - mimicking some properties of real
fumctions. It turns oot that for this class of functions one can define concepts
‘similar to that of real function, like continuity, derivatives, integrals, ete. These
------ display similar properties to those of real functions, and eonsequently
-iil:l'ﬂt functions obtained as a result of measurements can be treated similarly
o real functions,
We will start our considerstion by defining rough (approximate) continuity
for discrete functions.

'3 Roughly Continuous Discrete Functions

'np concept of continuity is strictly connected with real functions. Intuitively &
function is continuous if a small change of its argument causes a small change
ol its value, or in other words - it cannot "vary too fast™ [C11]. A similar idea
ran be emploved also in the case of discrete functions, and we will say that a
discrete function is roughly (approximately) continuous if a small change of its
argument causes a small change of its value. In fact the concept of continuity of
discrete functions has been used for a long time in qualitative reasoning [Kul,
Wel] and others (cf. [Chl, Pal, Ro2]). Below the formal definition of roughly
pomtinuous function is given and some elementary properties of thess functions
A diﬂ:n!l‘.h function § : [n] — [m] s roughly contimuous iff for all +,j €
i =l =1 implies | (i) - f(5)| < L.

"I'h.! intermediate value property is valid for ronghly continnous discrete fune-
tions as shown by the following proposition.

Proposition 1. A diserete function [ : [n] <+ [m] 15 roughly continuous iff for
i,,jE[n]i;ﬁj and for every q between [(i) and fij) there exist p € [n]
between i and j for which f(p) =q.

Thus the basic property of contimious real functions, the intermediate value
thearem, after slight modifications is also valid for discrete functions. Hence
it seems that the idea of continuity pevd not be necessarily attributed to real
netions only, amd can be extended to discrete functions.

4 Rough Derivatives and Rough Integrals of Discrete
Functions

we are going to define two basic concepts in our approach to discrete fune-
namely the rough derivative and the rough integral. It turns out that they
display similar properties to " cassical” derivatives and intograls. Let us observe
that they are defined not on reals but on integers (representing finite set of data).
For a discrete function f : [n] = [m] we define the rough derivative [ as

F1i) = Af(i) = fli+ 1) = f(i), for all § € [n —1].



W say that f : [n] — [m] has Darboux property if for every i € [n-1]
have that f'(i) € {-1,0,1). Thus for [ : [n] -+ [m| having rough Darbe
property and @ € [m — 1] the value f'{i) is that o, € {=1.0.1} which mal
Fli4+ 1) = Ji) + m,.

Proposition 2. A diserete function f : [n] = [m] is roughly continnons Wff f
Darbous praperty. '

Directly from the definition of the rough derivative for discrete functions, weol
tain the following counterpart of the well known theorem of differential calo
(ef. [Pafb]).

Proposition3. Let f and g be discrete function with domain [n] and mnge |
respectively. Than for f + g, fg and /g we have '

i) (f + 9)' (i) = f{i) + g'(i),
" o) (i) = F'()eti) + J608'(6) + £ ()5 ),
y iy = £'00a00) - fli)g'ti)

] U0 = =Sy ratr®

i.From the definition of the rough derivative of discrete function and Prope
3 we get the following proposition.

Propositiond. [} The rough derioative of a constant diserete function is e
fo zero.

2L Af ) =0+ k, where k is an integer constant, then f'{i] = 1.

&) IF J{i) = ki, then '(i) = k.

A fl) =k, then f'3) = (k= 1)k ; for k=2 we have /(i) = ¥,
8) I fla) =3, then f'(i) = F5_o(5)i~1 - ik,

In particular, 1f k =2 we get f*{i) = 2i41; fork =3 we have f'(i) = 3i*+3i+l
efe.

Higher order derivatives can be also defined in the same manner. In senersl
kth rough derivative iV uladinmttﬁm:ﬂnnfiidﬂﬁnedhy the following
well known formuls in the difference ealeulus
i
FU) = 301V S+ k = ).

J=it
The following egxample illustrates application of the above formula.

i 012345
Ji) 113421
S o
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Kotice that [ is a discrete function f @ [n] = [m] defined on n + 1 points, i,
on the sot {0,1,....n}, and f% 1 [n — k] = [m] is defined on n - & + 1 points.
s each discrete function f ¢ [n] — |m] has at most derivatives up to the n-th
Consequently each discrete function f : [r] —+ [m] is uniquely defined by the set
o tﬁhﬂ?ri;; initial conditions £/(0), F*=Yq0),. .., FI90), F0), where
= = D

Snn:: important properties of real functions are not valid for discrete fune-
tions, as shown by the following two propositions.

roposition 5. Assume that a discrefe fun:-hnn,,l" [r1) =+ [mi] has a marimum
jmum)] af i € (n), where (n) = {1.2.....n = 1}. Then nol necessarily

theorem does not lald for discrete fanctions, as shown by the proposition

Proposition@. Let [ : [n] = [m| be a discrete, function, such that f{0) =
I[n) = 0. Then not necessarily there exists § € (n) such that f'(i) = 0.

We say that a discrete function f is roughly smooth if its first rough derivative
':- continnous, It can be easily seen that for ronghly smooth functions
b above two propositions are valid, provided that they are slightly modified.
jetabled discussion of this problem is lelt to the reader.

Wt we define integration of discrete functions.

Let f : [n] =+ [m] be a discrete function. By a rough integral of f we mean
[ 11a6) = ¥ ) ati)
a=ih =t

ere AG) = G+ 1) —j=1

The following important property holds.
roposition 7. '

[ a0 = 1)+ 4

ere k as an mieger constant,

=1
fla)=£0)+ % F'la)
J=0

fli+1)=fli)+ (i)

. Fl0) =k.

[his proposition can be used for solving rough differential equations, and will

8 eliscused in the next section.

“The moader s advised to compare the concept of the rough derivative and
ugh integral with corresponding concepts considered in [Bol].

th the initinl condition
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5 Rough Differential Equations

Starting from the notion of a rough derivative for discrete functions one
define a concept of differential equation for discrete functions, called in
follows a rough differential equation [Ob2] (see also [Bol]). Rough diff
equation, together with initial condition can be solved inductively by
ing Proposition 7, which gives the relationship between initial condition,
derivative and the solution.

Ordinary 1-st order differential equation is shown below

f'(z) = Pz, fl2)) r
where @ is a real valued function on the Cartesian product of reals.
Similarly one can defing o rough differential equation, for discrete functioes

Fie)
(+) F'i) = #(i, fli)) :
where # is an integer valued function defined on the Cartesian product [n] m

Because f'(i) = f{i+ 1) = f{i), the rough differential equation can be
sented as
fli + 1) = #{i, f{i)) + f(3) I
which together with an initial condition
F(0) = jo, jo € [m]
defines uniquely the solution of the rough differential equation (s).

Ezample 1. Consider a very simple rough differential equation given by the for-
mila
(o) Pli)=4+1
with the initial condition fi0) = 2.
By employing Proposition 3 one can easily show that the solution of this
equation has the form
F1i) = J(0) + 2 — i

We can also solve this equation by using Proposition 7. Suppose we are given
the rough differential equation (ss) in tabular form, and we do not know its
analytical presentation. In this case, by Proposition 7 we have

Fli+1) = i) + £(i)
with £(0) = 2, which yields

fil)=2
J(1) = f0) + f'0) = 3
f(2)=f)+ (1) =8
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f@) =72+ f'(2) =17

f(4) =£(3) + f'(3) =30

f(5) = f(4) + f'(4) =47
etc.

Thus we have two ways of solving rough differential equations. The first one is
similar to that used in analysis, and it boils down to symbolic manipulation on
formulas, whereas the second is suitable to functions presented in tabular form.

Ideas presented in this section can be easily extended for two-dimensional
case (cf. [Grl, Wal]).

6 Conclusion

In this paper we have defined and investigated notions of rough (approximate)
continuity, rough derivatives, rough integrals and rough differential equations
for discrete functions, i.e., functions defined and valued on the set of integers.
We have shown that the introduced concepts mirror some basic properties of
calculus, and that discrete functions display properties similar to those of real
functions, however this is not always the case.

However, it should be noted that the porposed approach essentialy differs
from numerical methods because: firstly, our domains are finite hence we do
not consider method convergence typical to numerical methods; secondly, rough
differential equations should be derived from finite date sets in contrast to nu-
merical methods obtained from given differential equations.

Many problems connected with the proposed approach still remain open. We
did not cover much of material needed a serious consideration in connection
with "rough (approximate) calculus”. Nevertheless we hope that some funda-
mental notions have been clarified and sound foundations for further research
and applications have been laid down.
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