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Summary. Il § = (U, 4, V, f) is an information system, then any set of attributes X' < 4 defines an
equivalence EQg(X) = {(u,, uzle U x L5 flu,, a) = fu,, a) for any ae X} on the set L of objects.
A superreduct of a set X' = A isa maximal subset ¥ of X such that the system of equivalences defined by
all subsets of ¥ coincides with the system of equivalences defined by all subsets of X, Superreducts are
studied in a more abstract setting and an algorithm for finding superreducts is presented.

1. Introduction. Any set of attributes of an information system defines an
equivalence on the set of its objects, i.e. a classification of objects. Sometimes the
same classification may be obtained on the basis of a smaller set of attributes
which is more advantageous and more economical. These economical aspects
lead to the notion of reduct of a set of attributes. However, there exists another
aspect of this problem: the given set of attributes should be replaced by its—as
small as possible — subset in such a way that any classification defined by
a subset of the first set can be defined by a subset of the second one. This problem
was investigated in the seminar text [3]. Later on, we succeeded in findin ﬁ’gmum
abstract basis for some investigations of information systems (cf. [7]). The aim of
this paper is to incorporate also the matter of [3] in the abstract theory.
Semilattice theory appears as a suitable general framework for our investigations.

2. Finite semilattices (see [8], Sect. 13, 14, 19). Let (S, /) be a finite semilattice
with an identity element (i.e. with an element o€ S such that oyx = x = xyo for
any xe5). We set x < yif an only if xyy = y where x, ye S are arbitrary. It is well
known that the relation < is an ordering on § such that xyy = sup{x, y}.
Furthermore, any subset B of S has a supremum sup B in § with respect to the
ordering <. It will be denoted also by \/{b; beB} or by b,y...wb, in case
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B=1b,,.... b} (Sometimes, the operation of the semilattice will be denoted by
w; then we shall write | | for /). The identity element o in S is its least element
and, therefore, o = sup @. It follows that the ordered set (S, /) is a (complete)
lattice. For any xS, we put A(x) = {reS;r<x} where r < xmeans r<x,  # x.

An element ae N is said to be (totally) irreducible in (S, J)IfBS S, a=sup B
imply as B. We denote by Irr(S, ) the set of all irreducible elements in (S, ).
Since o = sup @, we have o ¢ Lrr(S, )

A set T'= §is said to generate (S, ) if for any ae § there exists B(a) = T such
that a = sup Bla).

Irreducible elements will play an important role in the sequel. The following
results will be useful.

Tueorem L. If (S, ) is a finite semilattice with an identity element, then
Irr(S,) is the feast subset of S generating (S,.).

Proof. For any x5, we denote by F(x) the following property: x is
a supremum of a subset of Irt(S, /). Then Flo) holds.

Let xeS8, x # o be arbitrary and suppose that F(7) holds for any te A(x). If
xelrr(S, ), then x = sup {x} and V(x) holds. If x¢Irr(S, /), there exists B(x) = S
such that sup B(x) = x, x¢ B(x). By hypothesis, for any reB(x), there exists
(= Trr(S, ) such that 1 = sup I{r). If putting I{x) = | J{{(1); reB(x)}, then
I(x) = Irr(S, ) and, clearly,

sup I{x) = sup {sup It} te B(x)} = sup {r; teB(x)} = x
which is F(x). Since 5 is finite, V(x) holds for any xS which implies that Irr(S, )
generates (5,.).

If T= § generates (5, ) and aelrr(S, /), then a = sup Bla)or some Bla)= T
The irreducibility of 2 implies that ae B(a) and, thus, ae T. We have proved that
Irr(S, ) T. O

We may recognize irreducible elements using the following.

Tueorem 2. If(S,.) is a finite semilattice with an identity element, B= A is
a set generating (S, ), and xe S is an arbitrary element, then the following
assertions are equivalent;

(D xelrr(S, v)

(i x #\/{t; te Bn A(x)}.

Proof. If x =" /{1 te Bn A(x)}, then x¢Irr(S, ) because x¢ A(x). Hence, (i)
implies (i) If x¢Irr(S, ), there exists B(x)= S such that x¢B(x) and that
x=\/{r. teB(x)}. Furthermore, for any teB(x) there exists B(f)= B such
that # = \/{s; se B(1)}. It follows that x =\/{5; se| J{B(s); te B(x)}}. Clearly,
| J{B(1); teB(x)} = BnA(x) and, therefore, x = \/{#; te B~ A(x)}. Hence, (i)
implies (i). O

We prove that sets generating semilattices are preserved under surjective
homomorphisms.
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Tueorem 3. Let h be a surjective homomorphism of a semilattice (S,U) onto
a semilattice (5, ). If B= S generates (S, ), then h[ B] generaies (5", ) where
h[B]; = {his); seB}.

Indeed, if x'eS" is arbitrary, there exists xeS with h(x) = ¥. There
exists B(x) = B such that x = | ||, re B(x)}. It follows that

x' = hix) = \/{h(1y te B(x)} = {¢; (' eh[ B(x)]}
where h[B(x)] = h[B]. 0
Clearly, this is a special case of an analogous theorem holding for universal
algebras. As a consequence of Theorems 1 and 3, we obtain

Cororrary 1. Let (8. u) (8", ) be finite semilattices with identity elements
and h be a surjective homomorphism of (S.u) onto (8, ). Then
fre(S'. ) S hlIre(S, )]

3. Quotient semilattices. Let A be a finite nonempty set, B(A) the system of
all its subsets,  the operation of union. Then (B(A), u)is a finite semilattice with
the identity clement @. If Xe B(A) is arbitrary, then (B(X), ) is a subsemilattice of
(B(A), ) having the identity element .

Lemma 1. If A is a finite nonempty set and XeB(A) is arbitrary, then
Irr(B(X),v) = {{x}; xeX}.

Our abstract model for the study of information systems is formed of a finite
semilattice (B(A), w) and a congruence on (B(A4), u) (see [7]). We now present
some results about this structure that will be needed in studying superreducts.

Suppose that a congruence K on (B(A), u) is given. We are interested in the
restriction of K to a subset X of 4. More exactly:

LemMA 2. Lei A be a finite nonempty set, K be a congruence on the semilattice
(B(A), L), X be an arbitrary element in B(A). Put Ky = K(B(X) x B(X)). Then K,
is a congruence on the semilattice (B(X), u).

Thus, we may define a quotient structure (B(X), w)/K,. Clearly, it is a finite
semilattice whose carrier is B(X)/Ky, and whose operation is defined "by means
of representatives”; it will be denoted by . The block of K, containing @ is the
identity element in (B(X), u)/K,. For any YeB(X), we denote by nat Ky(Y) the
block of Ky containing the set ¥. Then nat K, is a surjective homomorphism of
(B(X),u) onto (B(X), U)Ky = (B(X)/Ky, ).

In what follows, the hypotheses of Lemma 2 will frequently appear. For the
sake of brevity, we introduce the following condition:

(H) A is a finite nonempty set, K a congruence on the semilattice
(BiA), ), X is an arbitrary element in B(A).

Regarding the luct the nat Ky is a surjective homomorphism, the equality

¥ = | J{{¥}; ye ¥}, Corollary 1 and Lemma 1, we obtain:
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Lemma 3. If (H) holds, then
(i) nat Ky (Y) ="\/{nat K;({y}) ye¥} or any Y2 X,
(i) Irr (B(X)/Ky, )  {nat K {{x}) xeX}.

If (H) holds, we are interested in recognizing irreducible elements among all
elements of the form nat K,({x}) where xeX. To this aim, we put
C(Y) = [ J{Z; Zenat K,(Y)} for any YeB(X).
Clearly, C(Y) is the greatest element Z with (¥, Z)eK,. Some properties of the
operator C are needed.

Lemma 4. If (H) holds, and Ye B(X), Ze B(X) are arbitrary, then
(£) the conditions C[Y) = C{Z) and nat Ky(Y) = nat K,(Z) are equivalent,
(i) the conditions C(Y) v Cl.2) = C(Z) and nat Ky(Y) v nat Ky (Z) = nat Ky(Z)

are equivalent,

Proof. By definition of C, the equality C(Y) = C(Z) is equivalent with
(Y, Z)e Ky which means nat Ky(Y) = nat K,(Z) and (i) holds.

Since C(Y)enat Ky(Y), C(Z)enat Ky(Z) hold, the equality C(Y)u C(Z) =
= C(Z) implies nat Ky(Y)ynat K,(Z) = nat K (Z). On the other hand, the last
equation entails that C(Y)u ClZ)enat Ky(Z) and, hence, C{¥)u C(Z) = C(£) by
definition of C which implies that C(Y)u C(Z) = C(Z). Thus (i) holds. O

Lemma 5. Let (H) hold. Then for any xeX the following assertions are
egquivalent:

(i) nat Ky({x})elrr(B{X)/Ky, ).

() U{C{p}y yeX. C{yh = C({x}), C{p}) # C({x})} énar Ky({x}).

Proof. In Theorem 2, we take (B(X)/K,, ) for (S,,) and {nat Ky({x}); xeX}
for B which is possible by Lemma 3 and Theorem 1. We obtain that (i) equivalent
with

(i) \/{nat Ky({y}) yeX, nat Ky({y}) <nat Ky({x}), nat Ky({y}) #
# nat Ky({x})} # nat Ky({x}).

By Lemma 4, (iii) may be written as
(iv) \/{nat K({y}) yeX, C({y}) = Clix}), C({y}) # C{x})} # nat Ky({x}).
Since C({y})enat K;({y}), we have
(v H{Cly}x yeX, C{yD = Aix}), iy} # Qix}}e

€\/{nat Ky(3}) yeX, Q)= Qx), Ay # A=),
which implies that (iv) is equivalent with (ii). O
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4. Reducts and superreducts. Let (H) hold. A set YeB(A) is said to be
a K-reduct of X it has the following properties:

A Y= X.

(B) (X, Y)ekK,.

(€)Y is minimal with respect to inclusion among all elements meeting
conditions (4) and (B),

A set YeB(A) is said to be a K-superreduct of X if it has the following
properties:

(A) Y= X.

(B') For any X' < X there exists ¥" = ¥ such that (¥, X")eK,.

(C) Y is minimal with respect to inclusion among all elements meeting
conditions (4) and (B').

Tueorem 4. If (H) holds, then X has at least one K-superreduct.

Proof. Let P be the system of sets Ye B(A) meeting conditions (A), (B').
Then, clearly, Xe P and, therefore, P # @. The finiteness of 4 implies that P has at
least one element that is minimal with respect to inclusion, i.e. a K-superreduct of
X exists, O

Remark 1. Similarly the existence of a K-reduct may be proved. O

The following examples may clear up the relationship between reducts and
superreducts. In the first two examples we suppose A = {b.c, d}, B = (b},
C={ch,D={d},E={(b c}, F=1{b d},G={c, d}), 0=,

Example 1. Let K have the following blocks: {0}, {B}, {C}. (D}, |E. F, G, A}.
Clearly, K is a congruence on the semilattice (B(A), ). Furthermore, E, F. (; are
K-reducts of 4 and K, = K.

Let YeB(A) be a K-superreduct of A. Since B < A, there exists B' < ¥ such
that(B', Bje K. It followsthat {b} = B = B’ < Y and, therefore, be Y. Similarly we
prove that ce¥, de¥, ie. Y ={b, ¢, d} = A. Consequently A is the only
K-superreduct of A. O

Observation 1. There exists a finite nonempty set 4, a congruence K on (B(A),
u), and a set XeB(A) such that the set of its K-reducts and the set of its
K-superreducts are mutually disjoint. O

Observation 2. If (H) is satisfied, then any K-superreduct of X includes
a K-reduct of X Indeed, if ¥'is a K-superreduct of X and Zis a K-reduct of ¥, then
Z is a K-reduct of X. O

Example 2. Let K have the following blocks: {0}, {8}, {D}, {C,E, F, G, A).
Clearly, K is a congruence on (B(A),u) and K, = K. We prove that F is
a K-superreduct of A by indicating, for any T < A, the set S < F with (T, S)ek.
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Let ¥ be one of the sets C, E. If ¥ were a K-superreduct of 4, then there would
be S= Y such that (5, D)eKk. This would imply deD = S< Y which is
a contradiction. Thus, C, E are not K-superreducts of 4. Similarly, G is not
K-superreduct of 4. It follows that Fis the only K-superreduct of 4. On the other
hand, C is a K-reduct of 4. O

Observation 3. There exists a finile nonempty set 4, a congruence K on (B(A),
v), a set XeB(A), and a K-reduct of X that is included in no K-superreduct of
X O

Hence, any K-superreduct includes a K-reduct but a K-reduct need not be
included in a K-superreduct.

Example 3. Put 4= {b, c}, B={b}, C={c}, 0=@. Let K have the
following blocks: {0}, {C}, {B, A}. Clearly, K is a congruence on (B(A), u) and
K, = K We prove that 4 is the only K-superreduct of 4. Indeed, B is not
a K-superreduct of 4 because C= A4 and Sc B, (8§, O)eKk would imply
ceC = § < Bwhich is a contradiction. On the other hand, B is the only K-reduct
of A, O

Observation 4. There exists a finite nonempty set 4, a congruence K on
(B(A), u), aset XeB(A), and a K-superreduct ¥ of X that does not coincide with
the union of K-reducts of X included in Y. O

5. Algorithm for superreducts. We have the following natural

ProeLem 1. If (H) holds, find all K-superreducts of X.

In order to enable the formulation of results, we present the following
definition:

Let (H) be satisfied. A set YeBi(A) is said to be K-switable for X if it has the
following properties:

(A) Y X

(b)Irr((B(X), U)/Ky) = {nat K, ({y}); ye Y}.

(e)nat K,({x}) # nat Ky({y}) for any xe ¥, ye ¥ with x # ).

Lemma 6. If (H) holds and YeB(X), then the following conditions are
equivalent;

(8) For any X' = X there exists Y' S Y such that (Y', X')eK,.

(b°) Irr((B(X), U}/ Ky) = {nat Ky({y}) ye¥}.

Proof. If (B') holds, then
nat K (X’) = nat K, (¥") = "/{nat K,({1]) te ¥'}
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by Lemma 3. Hence, {nat K,({v}) ye ¥} generates (B(X), v)/Ky which implies
(') by Theorem 1.

If (b holds, then for any X=X there exists Y =Y such that
nat Ky(X') ="‘/{nat Ky({t}); 1Y’} by Theorem 1. By Lemma J}, we obtain
Y'enat Ky(X') which is (B'). O

THeoreM 5. [f(H) holds, then the system of all K-suitable sets for X coincides
with the system of afl K-superreducts of X.

Proof. By Lemma 6, it is sufficient to prove that a set ¥ is minimal with
respect to inclusion in the system of all sets meeting (A), (#") if and only if it meets
(A), (B), (c). Indeed, if a set is minimal in the system of sets meeting (A), (b'), then,
clearly, it meets (b) and (c). On the other hand, if ¥ meets (A), (b}, (c)and V'= ¥
meets (A), (£, then

{nat Ky({y})s ye ¥} = Irr((B(X), v)/Ky) < {nat Ky({t}); te ¥'}.

Hence, for any ye ¥, there exists te ¥ such that nat K, ({y}) = nat K ({¢]). Since

Y' = ¥, we obtain ¢ = y by (¢). Thus, ¥ = ¥ and we have ¥ = ¥ and, hence, Y is

minimal in the system of sets meeting (A), (¥'). O
By Lemma 4, we obtain:

Lemma 7. Ler ( H) be satisfied and let Y = X be a set meeting condition (c). Put
x < yifandonly if C({x}) € C({y}) for any xe Y and ye Y. Then the relation < isan
ordering on Y.

Using Lemma 5 and the definition of =, we obtain:

Theorem 6. If (H) holds and Y = X is an arbitrary set, then the following

conditions are equivalent;

(VY is a K-suitable ser for X.
(i) ¥ meets conditions (A), (c) and (B"), where (B") is the following condition;

| {CUt}) teX, r<y, t #ylénat Ky({y}) for any ye¥.
Using Theorems 5 and 6, we obtain:

Avcoritam 1. (for finding K-superreducts):
(1) A is a finite nonempty set given by the list of its elements;
K is a congruence on the semilattice (B(A), ) given by the list of elements of its
blocks;
XeB(A) is a set given by the list of its elements.
(2) If X = @, then @ is the only K-superreduct of X. Otherwise go to (3).
(3) For any block of K form its intersection with X. The set of nonempty
intersections coincides with the set of blocks of K.
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(4) For any xeX construct the block nat Ky({x}) of Ky containing {x};
furthermore, construct the set C({x}) to be the union of all elements in
nat K ({x}).

(5) Construct R = {(x, y) X x X; nat K ({x}) = nat K;({y})}. Let Z be a set
having exactly one element in common with any block of R. (There can be several
possibilities for the choice of Z).

(6) For any x, yeZ put x <y if and only if C({x}) = C({y}).

(7) For any xeZ test whether { J{C({y}) » < x, y # x}enat Ky({x}) or not.
Form the set ¥ of all elements in Z that do not meet this condition.

Then Y is a K-superreduct of X corresponding to the set Z chosen in (3).

All K-superreducts of X correspond to the sets Z obtained in (5) by all possible
choices. O

6. Applications to information systems. Let [/, 4. ¥ be finite nonempty
sets and fa mapping of the set 7 x 4 into V. Then the ordered quadruple § = (U,
A, V, f)1s said to be an information system (cf. [1, 2, 4-6]). Elements in U are
interpreted to be ohjecis, elements in A are called attributes, elements in V¥ are said
to be values of attributes. The condition f{w, a) = v means that the attribute a has
the value v for the object w.

For any set X = A, we put

EQ(X) = {(u,u)eUx U; flu,a) = fiu', @) for any acX}.
Clearly, EQ¢(X) is an equivalence on the set U, i.e. a classification of objects of 5.

It will be called the elassification of objects defined by means of the set X of
attributes. The following is easy to see:

Lemma 8. If S = (U, A, V, f) is an information system and X = A, Y < A hold,

then EQg(XwY) = EQ(X)n EQ(Y).
Furthermore, we define for an information system 5§ = (U, 4, V, /)

K = {(X, Y)eB(4) x B(d); EQ(X) = EQ4()}.
As a consequence of Lemma 8, we obtain
Theorem 7. If S=(U, A, V, f) is an information system, then K° is

d congruence on the semilattice (B(A), ).
Indeed, if (X, Y)eK® and ZeB(A), we have

EQ (XU Z) = EQy(X)n EQ,(Z) = EQ5(Y)NEQ(Z) = EQs( YU Z)

which means (XU Z, YuZ)eK®. O
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Theorem 7 enables to apply our general results to the semilattice (B(A4), )
provided with the congruence K*. Hence the meaning of K% and nat K5 is defined
in accordance with Section 3; furthermore, C and < are defined in accordance
with Sections 3 and 5 starting with K3.

An information system § = (U], 4, V, /) may be expressed by a table. We put
U={u,...u,}, A={a,,...,a,}, wherem=1,n2>1and u, # u,, a, # a, for any
i, j, h k, with |<i<j<m, 1sh<k<n Then we define b= flu,.a,) for
any i, jwith 1 <i<m, 1 <j=<n. Then the matrix of type (m,n) formed of all
clements b;; expresses the information system. If we add the entries formed of
elementsin U and elements in A in their corresponding orders, we obtain the table
of the information system S.

Let §=(U A.V.f) be an information system and XeB(A) is a set of
attributes. By definition, a set Ye B(A) is a K-superreduct of X if and only if the
system of classifications of objects defined by all subsets of ¥ coincides with the
system of classifications defined by all subsets of X and if ¥ is a minimal subset of
X with this property. Thus, the following problem is reasonable:

ProsLem 2. If 8§ = (U, A, V., f) is an information system and X e B(A) is a set of
aitributes, find all K®-superreducis of X.
Before formulating solution of this problem, we give some useful results.

LEMMA 9. Let 8 = (U, A, V. f) be an information system Xe B(A) an arbitrary
set, Z < X a set having exactly one element in common with any block of K%. Then
SJor any ac Z and any a'eZ the following conditions are equivalent:

(f) For any welU, wel, u#u, the condition flu,a’)=flu', a’) implies
flu, a) = fiv, a).

(i) Cl{a}))= Cl{a'}) (where C(Y) is the greatest element Y' such that
(Y, Y')e K% for any YeB(X)).

Proof. Regarding Lemma 8, we see that any two consecutive conditions in
the following sequence are equivalent.

(1)  EQs({a'}) < EQs({a}).
2) EQ4(C({a})) = EQ5(C({a})).
(3)  EQs(C({a})w C({a'})) = EQ5(C({a'})).
@ (C({ahuC{a)}.Cla'})eKE.
(5) CapuC(ia}) s Aia'}).
Clearly, () is equivalent with (1), and (if) is equivalent with (5). O
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Lemma 10, Let S= (U A, V.f) be an information system, XeB(A) an
arbitrary set, Z < X a set having exactly one element in common with any block of
K%. Then, for any xcZ, the following conditions are equivalent:

(i) \L{CU¥}s yeZ, y < x, p# x}énat Kx({x}).

(if) There exist u, u'e U such that u # o', flu,x) # flu',x) while flu, y) = flu’, ¥)
for any veZ with y < x, y £ 2.

Proof. By Lemmas 7 and 9 the condition x,yeZ, y<x means
EQ.({x})= EQq({y}). Hence (i) may be expressed in the form
EQs({x} # (1 1EQs({y}) yeZ, y<x, y# x}. The last set equals

(EQs(C({y}): yeZ, y < x, y #x} = EQ5({C(y}) yeZ, p < x, y # X})

by Lemma & which means that |_J({C({y}k yeZ, y < x, y # x}, {x})¢K¥. The last
condition may be expressed as (i). O
If we adapt Algorithm 1 using Lemmas 9 and 10, we obtain:

Avcoritim 2 (for finding K*-superreducts):

(1) An information system § = (U, A, V,f) is given by its table;
XNeBiA) is a set given by the list of its elements.

(2) If ¥ = @, then @ is its only K%-superreduct, Otherwise go to (3).

{(3) In the column labelled by acX, replace all occurrences of the sym-
bol appearing in the first row by the integer 1. Suppose that we have repla-
ced some symbols of this column by the integers 1,...,i where { = 1. Then pas-
sing through this column from the top to the bottom, find the first symbol not
replaced by an integer and replace its all occurrences by the integer i + 1. In this
way, replace all elements of this column by integers. The resulting column will be
called the column corresponding to a.

Construct columns corresponding to all elements in .

(4) For any acX, @ €X put (a,a)eR if and only if their corresponding
columns are equal.

(5) Chooseexactly one element in any block of R and denote by Z the set of all
chosen elements. (There can be several possibilities for the choice of Z).

(6) Put T= (U, 2, V,g) where g is the restriction of f to the set Ux Z,
U={up,... .}, Z=1{a,,....a,}; suppose w;#u; a,+a for any i, j, h, k
with | <i<j<m, 1 <h<k<n Let Tbe given by a table with the elements b;;.
For a,, a; with 1 <k<n, 1 <I/<n put g, <aq, il and only if for any i, j with
1 <i<j<m the condition b; = b, implies by, = by,

(7) For any ke{l,...,n} construct 4, = {I: a,<a,, a,#a,}.

(8) Put ¥ = {a,eZ, there exist i, j such that 1 <i<j<m, b, #by, by = by
for any le4,}.

Then ¥ is a K*- superreduct of X corresponding to the set Z chosen in (5).
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All K’-superreducts of X correspond to the sets Z obtained in (5) by all
possible choices. 0

Example 4. Let § be an information system given by the following table:

| @ d, &y N iy i, s
by ¥y ¥ Fz Y3 V3 ¥y ¥y
o ] ¥y LT Ly | Ly 1 ¥y ¥y ¥
iy it ¥y ¥ ¥y ¥a Vs Vs
Hy ¥ ¥y ¥ ¥ ¥y vy v
iy Py L ¥y ¥y ¥y ¥y Vi

where § = (U, A, V.[), U= {u,.....us}, A = {a,.....a;}, V= {v,,v;.v;}. Su-
pose that X = {a,,a,,a,,a,,as}. By (3) of Algorithm 2, we obtain:

| iy Iy iy i1y iy
R T T
w |11 1 1
Ha 1 2 2 1 2
w, | 1 2 2 2 3
lig 1 2 2 2 3

By (4), (5) of Algorithm 2, we obtain, e.g., Z = {a,,a,,a,,as}. Put aj = a,,
a3 = dy, @y = dy, ay = a¢ By (6) of Algorithm 2, the ordering < on Z is given by
the following table:

= | T a; ay @y
3 s
a0 1 0 1
ay | 0 0 1 1
ik el et B i i

It follows that 4, = B, 4, = {1} = 45, Ay = {1, 2, 3} by (7) of Algorithm 2. By
(8), we obtain ¥ = {a5,a}} = {a,, a,} which is a K®-superreduct of X correspon-
ding to the set Z. Another possibility for the K*-superreduct of X is {a,,a,}.
This may be interpreted as follows. Elements u, ,... . us are persons, a, ..., y
are body attributes, e.g. a, = body force, a, = body weight, a, = sprint speed,
ay = run speed, as = reaction speed, a, = gymnastic abilities, a, = adaptability.
Furthermore, v, v, v; may be interpreted as great, middle, little, respectively.
Then the attribute set X and its subsets define various classifications of persons
with respect to their body abilities. The set ¥ and its subsets define the same
classifications, though its cardinality is smaller than the cardinality of X.
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For example, we may understand the set U as a set of young members of an
athletic club. Subsets of X represent tests of body abilities that should enable the
specialization of any new member. It follows that only test represented by @, {a, |,
{a,}, {a,.a,} are needed; since EQy )= UxU and EQ¢({a,, a;})=
= EQg({a;})n EQg({a,}), only tests represented by {a,} and by {a,}, are
relevant. If the set U is representative enough, then the experience obtained with
testing this set may be used for any set U’ of persons in the future, i.e. only tests
represented by {a, | and {a, } are sufficient for classifying U". This situation would
be more convincing if the set U had a larger number of elements; only such a set
can be considered to be representative. We preferred presenting a transparent
information system with a small number of objects and attributes, Algorithm
2 enables to process large information systems by the same methods,
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