Annales Societatis Mathematicae Polonae Series IV: Fundamenta Informaticae VII.3 (1984)

ON SOME SUBSET OF THE PARTITION SET

Jerzy W. Grzymała-Busse

The University of Kansas

2dzisław Pawlak

Polish Academy of Sciences

Received September 9, 1983

AMS categories: 68C05

A b s t r a c t. This paper contains a simple algorithm for minimal partition of a set, which is the departure point to study attribute dependencies in information system (see [3], [6], [7], [9]). Theoretical properties of such partitions have been studied by Łoś (see [5]) and the proposed algorithm has been implemented by Stevens (see [8]). The implementation shows many practical advantages of the proposed method.

Key words: partition, block, minimal nontrivial partition, minimal number of partitions. 1. Let n be some positive integer.

The set $\{1,2,\ldots,n\}$ will be denoted by N.

A partition π on N is a set of mutually disjoint subsets of N whose union is N. These disjoint subsets of N will be called blocks of N. For $i,j\in N$ we will write $i=j(\pi)$ if and only if both i and j are members of the same block of π . The parition on N such that all blocks of it contain one element will be denoted by 0.

If π_1 and π_2 are partitions on N, then the product $\pi_1 \cdot \pi_2$ is the partition on N such that $i = j(\pi_1 \cdot \pi_2)$ if and only if $i = j(\pi_1)$ and $i = j(\pi_2)$, where $i, j \in \mathbb{N}$. The sum $\pi_1 + \pi_2$ is the partition N such that $i = j(\pi_1 + \pi_2)$ if and only if there exists a sequence in N

$$i = i_0, i_1, i_2, \dots, i_r = j$$

for which either $i_s = i_{s+1}(\pi_1)$ or $i_s = i_{s+1}(\pi_2)$, where s = 0,1,...,r-1.

For the rest of the paper we assume that T is a set $\left\{\pi_1, \pi_2, \dots, \pi_m\right\}$ of partition on N.

Let i and j be different members of N. Let π_{ij} be the partition on N such that $\{i,j\}$ is a block of π_{ij} and all blocks of π_{ij} except $\{i,j\}$ have one element of N.

In other words, the partition π_{ij} can be represented in the following form:

Any partition on N of the above type, i.e. the partition on N with one block containing two elements of N and all remaining blocks containing one element of N, will be called minimal nontrivial partition on N.

Obviously, "ij " "ji.

Any partition $\pi_1 \in \Pi$ can be represented by a set P_1 of minimal nontrivial partitions on N in the following way: j < j and $i = j(\pi_1)$ if and only if $\pi_{ij} \in P_1$.

Property 1.
$$\sum_{\substack{\pi_{ij} \in P_1 \\ 1}} \pi_{ij} = \pi_1$$

Proof. Let us denote

We have to show that $\pi = \pi_1$. Obviously, if $i^*j(\pi_1)$, then $\pi_{ij}^{ep}l$, whence $i=j(\pi)$.

Suppose now that $i=j(\pi)$. Then there exists a sequence in N $i=i_0,i_1,\ldots,i_r=j$

with the property that for every $s=0,1,\ldots,r-1$ there exists a $\pi_{ij}\in P_1$ such that

Considering the definition of P_1 and π_{ij} , we have

for $s=0,1,\ldots,r-1$. Since * is obviously transitive, this implies that $i = j(\pi_1)$, QED.

Property 2. Let π_1 and π_2 be partitions on N. Then

$$\pi_1 + \pi_2 = \begin{cases} \pi_{ij} \in P_1 \cap P_2 & \text{if } P_1 \cap P_2 \neq \emptyset. \\ \\ 0 & \text{if } P_1 \cap P_2 = \emptyset. \end{cases}$$

<u>Proof.</u> If $P_1 \cap P_2 = \emptyset$, then obviously $\pi_1 \cdot \pi_2 = 0$, for $i \neq j (\pi_1 \cdot \pi_2)$ would imply that $\pi_{ij} \in P_1 \cap P_2$. Assume now that $P_1 \cap P_2 \neq \emptyset$ and denote

We have to show that " = "1" 2.

Suppose first that $i=j(\pi_1^*\pi_2)$. Then $i=j(\pi_1)$ and $i=j(\pi_2)$, whence $\pi_{i,j} \in P_1 \cap P_2$. Obviously, this implies that $i=j(\pi)$.

Conversely, suppose that $i = j(\pi)$. Then there exists a sequence in N

with the property that for every $s^{\xi}\{0,1,\ldots,r-1\}$ there exists a $\pi_{1,1} \in \mathbb{P}_1 \cap \mathbb{P}_2$ such that

Since $\pi_{ij} \in P_1 \cap P_2$, then by the definitions of P_1 and P_2 we have

$$i_s = i_{s+1}(\pi_1)$$
 and $i_s = i_{s+1}(\pi_2)$

for s=0,1,...,r-1, whence $i=j(\pi_1)$ and $i=j(\pi_2)$. This yields $i=j(\pi_1 \cdot \pi_2)$, QED.

Proposition. Let P be the set $\bigcap_{i \in \Pi} P_i$ and let S_i be the set $P_i \setminus P_i$, where $i \in \{1,2,\ldots,m\}$. Then the number k is the minimal number such that there exist $S_{i_1}, S_{i_2}, \ldots, S_{i_k}$ with $S_{i_1} \cap S_{i_2} \cap \ldots \cap S_{i_k} = \emptyset$. The set Π_k is the set of all sets $S_{i_1}, S_{i_2}, \ldots, S_{i_k}$ with $S_{i_1} \cap S_{i_2} \cap \ldots \cap S_{i_k} = \emptyset$.

<u>Proof.</u> If F=Ø the proof is obvious. Otherwise, thanks to Property 2 and the definition of P,

Let $\pi_{\underline{1}_1}, \pi_{\underline{1}_2}, \dots, \pi_{\underline{1}_1}^{\in} \Pi$. Then

But

$$P_{i_1} \cap P_{i_2} \cap ... \cap P_{i_1} = (P_{i_1} \setminus P) \cap (P_{i_2} \setminus P) \cap ... \cap (P_{i_1} \setminus P) \cup P$$

= $S_{i_1} \cap S_{i_2} \cap ... \cap S_{i_1} \cup P$,

and hence

$$^{\pi_{i_1}\cdot\pi_{i_2}}\cdots^{\pi_{i_1}}={}^{\pi_{ij}\in S_{i_1}\cap S_{i_2}\cap\ldots\cap S_{i_1}}^{\Sigma}\cap\ldots^{\pi_{ij}} * {}^{\pi_{ij}\in P}$$

Thus

$$\pi_{i_1} \cdot \pi_{i_2} \cdot \cdots \pi_{i_1} = \pi_1 \cdot \pi_2 \cdot \cdots \pi_m$$
if and only if

3. From the above result it follows an algorithm for determining the number $\,k\,$ and the set $\,N_k\,.\,$

Algorithm.

Step 1. Compute sets P_i , i = 1, 2, ..., m.

Step 2. Compute the set P.

Step 3. Compute sets S; 1 = 1,2,...,m.

Step 4. Initiate k=1.

Step 5. Compute all possible sets $s_{i_1} n s_{i_2} n \dots n s_{i_k}$.

Step 6. Check if any of sets computed in Step 5 is equal to the empty set. If so, print the number k and all partitions ${^{\pi}i_{1}}, {^{\pi}i_{2}}, \dots, {^{\pi}i_{k}} \text{ which correspond to } S_{i_{1}}, S_{i_{2}}, \dots, S_{i_{k}} \text{ such that } S_{i_{1}} \cap S_{i_{2}} \cap \dots \cap S_{i_{k}} = \emptyset \text{ and stop. Otherwise, do Step 7.}$

Step 7. Increment k by 1 and do Step 5.

Acknowledgment. Thanks are due to dr B. Konikowska for critical remarks.

References

- [1] W.W. Armstrong, Dependency Structures of Data Base Relationships, Proc. IFIP Congress, Stockholm, Aug. 5-10, 1974.
- [2] R. Fagin, Relational Data Base Decomposition and Propositional Logic, IBM Research Report, San Jose, July - August 1976.
- [3] T. Imieliński, A note on minimization the set of attributes. Fundamenta Informaticae, Vol. No 1 (1983) pp. 45-51.
- [4] M. Jeagermann, W. Marek, Dependencies of attributes in information Systems. ICS PAS Reports, No 428 (1981).
- [5] J. Łoś, Characteristic Sets of a System of Equivalence Relations, Colloquium Mathematicum XLII, 291-293 (1979).
- [6] E. Orłowska, On dependency of attributes in information Systems, ICS PAS Reports, No 425 (1981).
- [7] Z. Pawlak, Information Systems; Theoretical Foundations, Information Systems. Vol. 6, No 3 (1981), pp. 205-218.
- [8] M.E. Stevens, A program for sets partitions, Kansas University (unpublished manuscript) (1983).