Annales Societatis Mathematicae Polonae Series IV: Fundamenta Informaticae VI.3-4(1983) # ON A REPRESENTATION OF ROUGH SETS BY MEANS OF INFORMATION SYSTEMS Miroslav Novotný Czechoslovak Academy of Sciences, Branch Brno Zdzisław Pawlak Polish Academy of Sciences Received October 7, 1982 AMS Categories: 68H05 A b s t a c t: Rought sets are investigated as a tool for expressing uncertainty of the relation "to be an element of". We give some representation theorems for rough sets expressed in terms of information systems. Keywords: approximation space, upper approximation, lower approximation, rough top equality, rough bottom equality, rough equality, upper rough set, lower rough set, information system. #### 1. ROUGH SETS Let U be a finite set, R an equivalence on U. Then the ordered pair A=(U,R) is said to be an approximation space. For any $X\subseteq U$, we put $\overline{X}^A=\bigcup \{C\in U/R;\ C\cap X\neq \emptyset\}$, $\underline{X}_A=\bigcup \{C\in U/R;\ C\subseteq X\}$. The set \overline{X}^A is said to be the upper approximation and the set \underline{X}_A is called the lower approximation of the set X in A. For any $X\subseteq U$, $Y\subseteq U$, we put $X\stackrel{\sim}{\cap} Y$ if and only if $\overline{X}^A=\overline{Y}^A$; the sets X, Y are then said to be roughly top equal. Similarly, we put $X\stackrel{\sim}{\cap} Y$ for $X\subseteq U$, $Y\subseteq U$ if and only if $X_A=Y_A$; the sets X, Y are then said to be roughly bottom equal. Finally, we put $X\stackrel{\sim}{\cap} Y$ for $X\subseteq U$, $Y\subseteq U$, $Y\subseteq U$ if and only if $X_A=Y_A$; the sets X, Y are then said to be then said to be roughly bottom equal. Finally, we put $X\stackrel{\sim}{\cap} Y$ for $X\subseteq U$, For any set X, we denote by B(X) the set of all subsets of X. It is a semilattice (B(X), U) with respect to the operation U of union and also a semilattice $(B(X), \cap)$ with respect to the operation \cap of intersection. Similarly, E(X) denotes the set of all equivalences on X; it is a complete lattice with respect to the relation of inclusion. By A3 and A4 of 2.2 in [3], we obtain 1. Lemma. If A = (U,R) is an approximation space, then \cong is a congruence on the semilattice $(B(U), \cup)$ and \widehat{A} is a congruence on the semilattice $(B(U), \wedge)$. No congruence on a semilattice (B(U), U) can be expressed in the form $\frac{\sim}{\Lambda}$. This is demonstrated by the following 2. Example. Let $U = \{a,b\}$, let Ξ be a congruence on $(B(U), \cup)$ whose blocks are $\{\emptyset, \{a\}\}, \{\{b\}, U\}$. We have $E(U) = \{id_U, UxU\}$. If $R = id_U$, then $\{b\}^A = \{b\} \neq U = \overline{U}^A$ and hence $\widetilde{\Lambda} \neq \widetilde{\Xi}$. If R = UxU, then $(\widetilde{a} \zeta^{\Lambda} = U = \overline{U}^{\Lambda}$, which implies $\widetilde{\Delta} \neq \widetilde{\Xi}$ as well. \square Elements of $B(U)/\frac{\sim}{A}$ are called upper rough sets, elements of $B(U)/\frac{\sim}{A}$ lower rough sets, and elements of $B(U)/\frac{\sim}{A}$ are said to be rough sets. # 2. INFORMATION SYSTEMS Let $S = \langle X, T, V, g \rangle$ be an information system, i.e., X, T, V are finite sets and g is a mapping of $X \times T$ into V. For any $t \in T$, we put $t^S = \{(x,y) \in X \times X : g(x,t) = g(y,t)^T\}$. Clearly, $t^S \notin E(X)$. For any $Z \subseteq T$, we put $t^S = \inf_{E(X)} t^S \in E(X)$ for any $t \in T$, $t \in T$. Clearly, $t^S \notin E(X)$ for any $t \in T$, $t \in T$. The for $t \in T$ and $t \in T$. Information systems are able to represent congruences on semilattices of the form (B(T), U). More exactly 1. Theorem. Let T be a finite nonempty set and Ξ a congruence on the semilattice (B(T), U). Then there exists an information system $S = \langle X, T, V, \beta \rangle$ such that $\Xi = \ker^S$. This theorem is proved as 2.4 in [1]. The proof consists in constructing $S = \langle X, T, V, g \rangle$ with the above mentioned property. We repeat the construction of S and sketch the proof that it has the above-mentioned property. Construction of S. Let \equiv be a congruence on (B(T), V). For any $M \in B(T)$, we put $\bigcap M = \cong M \vee \{ \equiv M \}$ where $\cong M$ is the block of \equiv containing M. Further, we put $X = \bigcup \bigcap M$. Clearly, $\{\bigcap M; M \in B(T)\}$ is a decomposition of X whose blocks have at least two elements. For any tet, we define an equivalence t on X such that $X/t = \{ \bigcup_{t \in M \in B(T)} f M \} \cup \{ \{x\}; x \in X - \{ \bigcup_{t \in M \in B(T)} f M \} \}$. Furthermore, we set $V = \bigcup_{t \in T} X/t$; for any $x \in X$ and $t \in T$, we define g(x,t) to be the block of t containing x. Then $S = \{X,T,V,g\}$ is an information system such that $t^S = t$ for any $t \in T$. Sketch of proof. The constructed objects have the following properties. - (A) If $M \in B(T)$, $N \in B(T)$, then $\bigcap M = \bigcap N$ implies that $\exists M = \exists N$. - (B) For any $M_0 \in B(T)$ we have $X/\widetilde{M}_0^S = \left\{ \bigcup_{M_0 \in M \in B(T)} f M \right\} \cup \left\{ \left\{ x \right\} \right\};$ $x \in X \left\{ \bigcup_{M_0 \in M \in B(T)} f M \right\}.$ - (c) If $M_0 \in B(T)$, $N_0 \in B(T)$, and $M_0 = N_0$, then $\widetilde{M}_0^S = \widetilde{N}_0^S$. - (D) If $M_0 \in B(T)$, $N_0 \in B(T)$, and $M_0^S = N_0^S$, then $M_0 \equiv N_0$. - (E) If $M_0 \in B(T)$, $N_0 \in B(T)$, then $M_0 \equiv N_0$ is equivalent with $\widetilde{M}_0^S = \widetilde{N}_0^S$, i.e., with $(M_0, N_0) \in \ker^S$. ## 3. DUAL INFORMATION SYSTEMS Let $S = \langle X, T, V, S \rangle$ be an information system. We put $D(S) = \langle T, X, V, G \rangle$ where V(t, x) = g(x, t) for any $(t, x) \in TxX$. Then D(S) is an information system that is said to be dual to S. For any $x \in X$, we put $x_S = x^{D(S)}$ and for any $Z \subseteq X$, we set $Z_S = Z^{D(S)}$. Hence, for $Z \subseteq X$, $Y \subseteq X$, we have $Z_S = Y_S$ if and only if $Z^{D(S)} = Y_S^{D(S)}$. Thus, $X_S = X_S X_S$ We now formulate our representation theorem for upper rough sets. 1. Theorem. Let A=(U,R) be an approximation space. Then there exists an information system $S=\langle U,T,V,g\rangle$ such that $\frac{\alpha}{\Lambda}=\ker_{\alpha}s$. Proof. By 1.1, $\frac{\sim}{\Lambda}$ is a congruence on the semilattice (B(U), V). By 2.1, there exists an information system $P = \langle X, U, V, 3 \rangle$ such that $\frac{\sim}{\Lambda} = \ker^{\sim P}$. If we put S = D(P), we obtain P = D(S) and hence $\frac{\sim}{\Lambda} = \ker^{\sim D(S)} = \ker_{\sim S}$. ### 4. EXAMPLE We describe the construction of an information system representing upper rough sets of a given approximation space. Let $U = \{a,b,c\}$, $U/R = \{a\},\{b,c\}\}$, A = (U,R). Then $\overline{\emptyset}^A = \emptyset$, $\overline{\{a\}}^A = \{a\}$, $\overline{\{b\}}^A = \overline{\{c\}}^A = \overline{\{b,c\}}^A = \{b,c\}$, $\overline{\{a,b\}}^A = \overline{\{a,c\}}^A = \overline{U}^A = U$. Hence, blocks of \overline{A} are: $\{\emptyset\} = 0$, $\{\{a\}\} = 1$, $\{\{b\},\{c\},\{b\},\{a\}\} = 2$, $\{\{a,b\},\{a,c\},U\} = 3$. Thus, blocks of \overline{I}^A are: $\{\emptyset,0\},\{\{a\}\}$, $\{\{a\}\},\{a\}\}$, $\{\{a\}\},\{\{a\}\}$, $\{\{a\}\},\{\{a\}\}\}$, $\{\{a\}\},\{\{a\}\}\}$, $\{\{a\}\},\{\{a\}\}\}$, $\{\{a\}\},\{\{a\}\}\}$, $\{\{a\}\},\{\{a\}\}\}$, $\{\{a\}\},\{\{a\}\}\}$, $\{\{a\}\}$, $\{\{a\}\}$, $\{\{a\}\}$, $\{\{a\}\}\}$, $\{\{a\}\}$, $\{\{a\}\}$, $\{\{a\}\}$, $\{\{a\}\}\}$, $\{\{a\}\}$ Let $S = \langle U, T, V, g \rangle$ be the required information system. Then nontrivial blocks of a_S , b_S , c_S are, respectively, P, Q, Q wgere $P = \langle \langle a_1^2, \langle a_1, b_1^4, \langle a_2, c_1^2, U, 1, 3 \rangle, Q = = \langle \langle b_1^2, \langle a_1^2, \langle a_2, b_1^2, \langle a_2, c_1^2, c_1^2$ | | ø | Yay | 107 | 104 | a, b | (la, c | 40,04 | U | 0 | 1 | 2 | 3 | |---|------|-------|-------|------|------|--------|----------|----------------|----------|------------------|------|-------| | | | | | | | | (Kb,047 | | | | | | | b | 107 | day) | Q | Q | Q | Q | Q | Q | 207 | 1 | Q | Q | | c | 104 | Ldayy | Q | Q | Q | Q | Q | Q | 204 | 1 | Q | Q | | | This | impli | es th | at g | s = | TxT | , /a/s = | a _s | , Lbys : | b _S , | (cts | = çs. | Nontrivial blocks of $\{a,b\}_S$, $\{a,c\}_S$, $\{b,c\}_S$, U_S are respectively, PAQ, PAQ, Q, PAQ. Thus, blocks of \ker_{AS} are: $\{\emptyset\}$, $\{\{a\}\}$, $\{\{b\}\}$, $\{c\}$, $\{b\}$, $\{a,b\}$, $\{a,b\}$, $\{a,c\}$, U. We see that $\widetilde{A} = \ker_{AS}$. REPRESENTATION THEOREMS FOR LOWER ROUGH SETS AND ROUGH SETS Let U be a finite set. For any $X \subseteq U$, we put Co X = U - X. Since Co X UCo Y = Co(X \cap Y) and Co X \cap Co Y = Co(X \cup Y), we see that Co is an isomorphism of the semilattice (B(U), \cap) onto (B(U), \cup) and also an isomorphism of the semilattice (B(U), \cup) onto (B(U), \cap). This implies that for any congruence \subseteq on (B(U), \cup) and/or (B(U), \cap) respectively, the relation $\Theta = \{(X,Y) \in B(U) \times B(U) : (Co X, Co Y) \in \subseteq Y \text{ is a congruence on } (B(U), <math>\cap$), (B(U), \cup), respectively. Thus, 2.1 entails 1. Theorem. Let T be a finite nonempty set and Ξ a congruence on the semilattice $(B(T), \cap)$. Then there exists an information system $S = \langle X, T, V, 3 \rangle$ such that $\Xi = \ker(S \circ Co)$. Indeed, if $X \in B(T)$, $Y \in B(T)$, then $(X,Y) \in \Xi$ is equivalent with $(Co X, Co Y) \in \Theta$ where $\Theta = ((X,Y) \in B(T) \times B(T)$; $(Co X, Co Y) \in \Xi$. We have seen that O is a congruence on (B(T), U). By 2.1, there exists an information system $S = \langle X, T, V, g \rangle$ such that $\ker^{-S} = \textcircled{O}$. Clearly, $(X,Y) \not \in \ker^{-S} \circ Co)$ means that $(Co X, Co Y) \not \in \ker^{-S} = \textcircled{O}$, which is equivalent to $(X,Y) \not \in T$. This implies the assertion. Particularly, if $\equiv = \frac{1}{\Lambda}$ for an approximation space $\Lambda = (U,R)$, then $\Theta = \{(X,Y) \in B(U) \times B(U) ; (Co X,Co Y) \in \frac{1}{\Lambda}\} = \{(X,Y) \in B(U) \times B(U) ; Co X_{\Lambda} = \frac{Co Y_{\Lambda}}{\Lambda}\} = \{(X,Y) \in B(U) \times B(U) ; X^{\Lambda} = \overline{Y}^{\Lambda}\} = \frac{1}{\Lambda}$ by A9 of 1.3 in [3]. Thus, 3.1 implies 2. Theorem. Let A = (U,R) be an approximation space. Then there exists an information system $S = \angle U, T, V, 3 >$ such that $= \ker(\sim_S \circ Co)$. Indeed, if $X \in B(U)$, $Y \in B(U)$, then $(X,Y) \in \mathbb{R}$ is equivalent to $(Co,X,Co,X) \in \mathbb{R}$ and, thus, $(X,Y) \in \mathbb{R}$ is equivalent to $Co,X_S = Co,Y_S$ by 3.1 and hence $\mathbb{R} = \ker(\mathcal{N}_S \circ Co)$. Combining 2 with 3.1, we obtain 3. Theorem. Let A = (U,R) be an approximation space. Then there exist two information systems $S_1 = \angle U, T_1, V_1, S_1 > S_2 = \langle U, T_2, V_2, S_2 \rangle$ such that $\underset{A}{\overset{\sim}{\sim}} = \ker_{A} S_1 \cap \ker_{A} S_2 \circ co)$. This is a consequence of the fact that $\underset{A}{\overset{\sim}{\sim}} = \underset{A}{\overset{\sim}{\sim}} \cap \underset{A}{\overset{\sim}{\sim}} .$ ## 6. CONCLUDING REMARKS - (A) By 1.1, the relation $\stackrel{\sim}{=}$ is a congruence on the semi-lattice (B(U), U) for any approximation space A = (U,R). By 1.2, no congruence on (B(U), U) can be expressed in the form $\stackrel{\sim}{=}$ for a suitable approximation space A = (U,R). Thus, we have $\stackrel{\Lambda}{=}$ the following - 1. Problem. Characterize all upper rough equalities among - all congruences on the semilattice (B(U), \cap). Similarly - 2. Problem. Characterize all lower rough equalities among all congruences on the semilattice $(B(U), \cap)$. - (B) There are two kinds of relationship between approximation spaces and information systems. By 3.1, to any approximation space A = (U,R) there exists an information system $S = \langle U,T,V,g \rangle$ such that $C = \ker_{A} S$. On the other hand, for any information system $S = \langle U,T,V,g \rangle$, T^{S} is an equivalence on U and therefore (U,T^{S}) is an approximation space. ## REFERENCES - [1] M. Novotný: Remarks on sequents defined by means of information systems. To appear in Fundamenta Informaticae. - [2] Z. Pawlak: Rough sets. ICS PAS Reports, No 431, Jarsaw 1981 - [3] Z.Pawlak: Rough sets. Algebraic and topological approach. Internal Journal of Computer and Information Sciences, Vol 11, No. , 1982, pp. 341-3;5.