INFORMATION PROCESSING SOCIETY

¢IEEE, [ENAFIPS &|EEE

2004 ANNUAL MEETING OF THE
NORTH AMERICAN FUZZY INFORMATION
PROCESSING SOCIETY

BANFE, ALBERTA, CANADA

FUZZY SETS IN THE HEART OF THE CANADIAN ROCKIES

J U N E 2 7 - 3 0, 2 0 0 4
TABLE OF CONTENTS MESSAGE FROM CHAIRS
AUTHOR INDEX CONFERENCE COMMITTEES
SEARCH SPONSORS
NAFIPS 2005 COPYRIGHT

3N 0-7803-8377-X

- Kurgan, Pet arek Reformat

technical support: nafipsO4/@ece.ualberta.ca




Approximating Functions Using Rough Sets

Zdzistaw Pawlak
Institute for Theoretical and Applied Informatics
Polish Academy of Sciences
Baltycka 5, 44-100 Gliwice, Poland

Warsaw School of Information Technology*
Newelska 6, 01-447 Warsaw, Poland
zpw@ii.pw.edu.pl

James Peters
Department of Electrical and Computer Engineering
University of Manitoba
Winnipeg, Manitoba R3T 5V6, Canada
jfpeters@ee.umanitoba.ca

Andrzej Skowron
Institute of Mathematics, Warsaw University
Banacha 2, 02-097 Warsaw, Poland
skowron@mimuw.edu.pl

Abstract

Approximating of functions that are specified using im-
perfect knowledge is one of the central issues of many areas
such as machine learning, pattern recognition, data mining,
or qualitative reasoning. However, we do not have yet sat-
isfactory methods for approximation of functions and devel-
oped calculi on function approximations. In the paper we
discuss a function approximation using the rough set ap-
proach. The main difference with the existing approaches
in rough set theory is based on modification of the inclusion
measure. This makes it possible to overcome some draw-
backs of the previously used definitions. For applications
it is important to develop rough measures on approximated
objects, in particular on function approximations. The mod-
ified inclusion measure is also used to define an exemplary
measure, i.e., the rough integral.

Keywords: Approximation, function, rough sets, rough in-
clusion, rough measures, rough integral
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1 Introduction

Approximating of functions specified by imperfect
knowledge is one of the central issues in many areas such
as machine learning, pattern recognition, data mining, or
qualitative reasoning (see, e.g., [1, 2, 3, 23]). Moreover,
methods for function approximation are important for real-
life applications, e.g., in control or image processing (see,
e.g., [7,24, 6)).

The approximation of objects is one of the central is-
sues in rough set theory and rough mereology (see, e.g.,
[9, 28, 21]) as well as in granular computing. There have
been already reported results on function approximation in
the literature on rough sets (see, e.g., [8, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20]). A function is approximated
by means of knowledge granules defined by indiscernibil-
ity neighborhoods and a rough inclusion function making
it possible to measure degrees to which neighborhoods are
matching the function. However, using the existing ap-
proaches based on the standard inclusion measure of sets
in Cartesian products the lower approximation of functions
is, in almost all cases, equal to the empty set. We define an
inclusion measure more relevant for a function approxima-
tion. In particular, this inclusion measure does not lead to
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the above mentioned drawback.

To measure the quality of approximation and to reason
about approximated objects some new special measures are
constructed. We introduce an example of such a measure
defined by rough integrals of samples of real functions. In
the definition the introduced inclusion measure is used.

2 Approximation spaces

Let us recall the definition of an approximation space
from [26, 9]. For simplicity of reasoning we omit parame-
ters that label components of approximation spaces.

An approximation space is a system AS = (U, I,v),
where

¢ U is a non-empty finite set of objects,

e [ :U — P(U) is a partial function, called the uncer-
tainty function, such that z € I(z) for any x from the
domain of I,

e v: P(U)x P(U) — [0,1] is a rough inclusion func-
tion.

A set X C U is definable in AS if and only if it is a
union of some values of the uncertainty function.

The standard rough inclusion function vgg; defines the
degree of inclusion between two subsets of U by

card(XnY) if X 0
usm(X,Y)={ wrd” £ ET W

The lower and the upper approximations of subsets of U
are defined as follows.

For any approximation space AS = (U,I,v),0< p <
g < 1, and any subset X C U the g-lower and the p-upper
approximation of X in AS are defined by

LOW,(AS,X)={zcU:v(I(z),X)2q}, @

UPF,(AS,X)={z €U :v(I(z),X)>p}, )

respectively.
Then the boundary region of X in AS is defined by

BN, 4(AS,X) =UPP, (AS,X) — LOW, (AS, X).
C))
Approximation spaces can be constructed directly from
information systems or from information systems enriched
by some similarity relations on attribute value vectors. The
above definition generalizes several approaches existing in
literature like those based on an equivalence or tolerance
indiscernibility relation as well as those based on exact
inclusion of indiscernibility classes into concepts [9, 29].
Such inclusion measures have been widely used for years

by data mining and rough set communities. However, Jan
Eukasiewicz [5] was the first who used this idea to estimate
the probability of implications.

One can observe that it is possible to generalize the dis-
cussed approximation spaces by considering a family of
neighborhoods covering the object space U instead of the
uncertainty function I [28].

3 Relation and function approximation

One can directly apply the definition of set approxima-
tion to relations. For simplicity, but without loss of general-
ity, we consider binary relations only. Let R C U x U be a
binary relation. We can consider approximation of R by an
approximation space AS = (U x U, I,v) in an analogous
way as in Section 2:

LOW, (AS,R) = {(z,y) e U xU : v (I (z,y),R) > ¢}

®
UPP,(AS,R) ={(z,y) e U xU :v (I (z,y),R) > p}

(6)
for 0 < p < ¢ < 1. The main problem is how to con-
struct relevant approximation spaces, i.¢., how to define un-
certainty and inclusion functions. One of the solutions is
the following uncertainty function

I(z,y) = I(z) x I(y), 0

(assuming that the one dimensional uncertainty function is
given) and the standard inclusion, i.e., v = vgpy.

Now, let us consider an approximation space AS =
(U,I,v) and a function f : Dom — U, where Dom C U.
By Graph(f) we denote the set {(z, f(x)) : £ € Dom}.
We can easily see that if we apply the above definition of
relation approximation to f (it is a special case of rela-
tion) then the lower approximation is almost always empty.
Thus, we have to construct the relevant approximation space
AS* = (U x U, I'*,v*) in different way, e.g., by extending
the uncertainty function as well as the inclusion function
on subsets of U x [J. We assume that the value I*(z,y)
of the uncertainly function, called the neighborhood (or the
window) of (z,y) is defined by

I"(z,y) = I(z) x I(y), ®)

for (z,y) e U x U.

Next, we should decide how to define values of the in-
clusion function on pairs (I*(z,y), Graph(f)), i.e., how
to define the degree = to which the intersection I'*(z,y) N
Graph(f) is included into the Graph(f).

One can consider a ratio

_ card({z € I{z) N Dom : f(z) € I(y)})

card(I(z)) O




ff

I*(x,,Y,)

I*(x,y)

X

(I *(xy,Y,) N Graph (f) =z,(I*(xy,Y,))

Figure 1. Function approximation

i.e., the ratio of the number of all objects from I(z) N Dom
on which f takes a value from I(y) to the number of all
objects in I(z).

If » = 1 then (x,y) defining the window I*(z,y) is in
the lower approximation of Graph(f).

If 0 < r < 1then (,y) defining the window I*(z,y) is
in the upper approximation of Graph(f).

Using the above intuition, we assume that the inclusion
holds to degree one if the domain of Graph( f) restricted to
I(z) is equal to I(x). This can be formally defined by the
following condition:

m(I"(z,y) N Graph(f)) = m(I*(z,y)) ~ (10)

where 7; denotes the projection on the first coordinate.
Condition (10) is equivalent to:

I(z) C Domand f(I(z)) C I(y). (1

Thus, the inclusion function (called rough inclusion) v*
for subsets X,Y C U x U is defined by

card(m (XNY)) .
u‘(X,Y)={ _cardZ?ZXBS it mX)#£0

if 71'1(X) = 0

Hence, the relevant inclusion function in approximation
spaces for function approximations is such a function that
does not measure the degree of inclusion of its arguments
but their perceptions, represented in the above example by
projections of corresponding sets. Certainly, one can chose
another definition based, e.g., on the density of pixels (in
case of images) in the window that are matched by the func-
tion graph.

We have the following proposition:

Proposition 1. Let AS* = (U x U, I'*,v*) be an approxi-
mation space with I*, v* defined by (8), (12), respectively,
and let f : Dom — U where Dom C U. Then we have

1. (z,y) € LOW;(AS*,Graph(f)) if and onmly if
fI(z)) € I(y) and I(z) C Dom,

2. (z,y) € UPP,(AS*,Graph(f)) if and only if
fI(@) N 1(y) # 0.

In case of arbitrary parameters p, g satisfying 0 < p <
¢ <1 we have
Proposition 2. Let AS* = (U x U, I'*,v*) be an approxi-
mation space with I*, v* defined by (8), (12), respectively,
and let f : Dom — U where Dom C U. Then we have

1. (z,y) € LOW, (AS*,Graph(f)) if and only if
card ({z' € I(z) N Dom : f(z') € I(y)})
> q - card(I(z)),

2. (z,y) € UPP, (AS*,Graph(f)) if and only if
card ({z' € I(x) N Dom : f(z') € I(y)})
> p - card(I(z)).

From the propositions it follows, e.g., that for any z; €
Dom if the pair (z1, f(z1)) belongs to the lower approxi-
mation of Graph(f) then the graph of f restricted to /{z1)
in completely included into the window I*(z1, f(z1)).

In our example, we have defined the inclusion degree be-
tween two subsets of Cartesian product using the inclusion
degree between their projections.

4 An Example: Rough Integral

In this section we present an example showing how to
use the rough inclusion (12) to define a rough measure,
called rough integral.

For simplicity of reasoning we consider a function f :
Dom — U where Dom C U and U is a finite subset
(called a sample) of the set R of non-negative reals. Such
functions can be treated as samples of functions from R
into R,. We also restrict our discussion to the approxima-
tion of such samples, i.e., the approximation problems of
extensions of such samples will be discussed elswhere using
the rough set approach to concept approximation presented
in [28].




Let O be a given family of neighborhoods I C R? that
are intervals in R2. For any I € O by I;, I, we denote
projections 71 (I), m2(I) of I on the axes.

For a given (finite) sample U C R, we will also con-
sider neighborhoods obtained from O by their restrictions
to U, i.e., neighborhoods of the form I N (U x U) (see
Figure 2) for I € O. Such neighborhoods will be used to
approximate real valued functions restricted to a given (fi-
nite) sample U (called samples of real valued functions, for
short). Assuming that f : Dom — U is a sample of a real
valued function one can distinguish a family consisting of
subfamiles of O “matching” Graph(f), i.e.,

Famg = {F C O : (F matches Graph(f)) (13)
AVLI'e FI#I'=>1INI =0)}.

From the definition it follows that for any 7 € Famy
and (z,y) € U x U there exists at most one I € F such
that (z,y) € I. Hence, one can define a (partial) uncer-
tainty function [y assigning for any (z,y) € U x U the
neighborhood

Iy(z,y) =1n U x U), (14)

where (z,y) € I, if such neighborhood I € F exists.

One can also observe that the phrase
“F matches Graph(f)” can be easily defined by the
boundary region (i.e., the difference between the upper
approximation and the lower approximation) of Graph(f)
in the approximation space defined by neighborhoods
defined from F by Iy (see (14)) and the rough inclusion
(12). The matching can be exact (to degree one), if the
boundary region is empty or Graph(f) can be matched to
a degree that can be expressed by the (relative) boundary
region size. Certainly, we use the rough inclusion (12)
in definitions of the lower approximation (2), the upper
approximation (3), and the boundary region (4). For
example, “F matches exactly Graph(f)” if and only if

LOW(ASr,Graph(f)) = Graph(f), ~ (15)

where

ASy=(U x U, Iy,v). (16)
In (16) Iy is the uncertainty function defined by (14), and v
is the rough inclusion (12).

From the above discussion it follows that an additional
parameter of F'am s should be chosen that expresses the de-
gree to which the lower approximation of f defined by any
family from Fam should approximate Graph(f).

For any 7 € Fam; we define the F-lower sum and F-
upper sums of f by

Low(F,f) =Y length(Iy) - min(ly),  (17)
IeF

Upp(F, f) = Z length(I1) - maz(1z),
IeF

respectively, where length(l;) = maz{y —z : z,y € I }.
Assume that

Quality(F, f) = Upp(F, f) — Low(F,f).  (18)

We can now define the rough integral (optimization) prob-
lem.
ROUGH INTEGRAL PROBLEM (RI)
INPUT: f: Dom — U,Qand¢ € (0,1);
OUTPUT:

o (a,b) if there exists Fop: € Famy such that the
following conditions are satisfied:

L. |Fopt| < €|O|,
2. Quality(]:opty f) = min}'GFam; Quality(f, f)v
3. (aa b) = (Upp(}.opta f)’ Low(j:oph f))’

e NONE, otherwise.

The first condition in the RI problem is expressing the
requirement that the considered families of neighborhoods
used to match the graph of the function should be “small”
relative to O. In the second condition a subfamily of neigh-
borhoods minimizing the difference between the upper sum
and the lower sum (among all considered subfamilies) is
chosen.

In general, the solution of the RI problem is not unique
(one can obtain different intervals with the same length).
However, the set of solutions (if it is nonempty) can be
treated in some cases as unique to a degree. To explain this
let us consider first a simple definition.

We call two intervals (a, b), (¢, d) of reals §-close, where
& > 0 is a given threshold if and only if

|(a,) + (c,d)|

@b U <° (19)

where =+ is the set theoretical symmetric difference of sets.

Now, assuming that § is a given threshold we say that
the rough integral of f relative to O and ¢ is defined with
precision ¢ if and only if the set of solutions of the RI prob-
lem (with input f, O and ¢) is nonempty and any two its
solutions are d-close. If the rough integral of f (relative to
O and ¢) is defined to a degree 4 then any solution of the
RI problem is called the rough integral of f (relatively to O
and ¢) with precision 4.

Observe that the rough integral has been defined here us-
ing a bounded discernibility between reals contrary to the
classical definition of integral of real functions (see, e.g.,
(25].

Investigating such measures is important, e.g., for ap-
proximate or qualitative reasoning in control systems based
on the rough set approach. For example, some rough inte-
grals were used for localization of objects and for selection
of relevant sensors (see, e.g., [20, 22]).
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Figure 2. Neighborhood I(zg, yo) N (U x U)

5 Conclusions

We have discussed approximation of functions specified
by imperfect knowledge. We also presented rough integrals
for samples of real functions as an example of rough mea-
sures. We plan to extend the approach to approximation of
real functions specified by their samples [23]. Our approach
will be based on the rough set approach to concept approx-
imation [28] and combination of rough set theory with the
case-based reasoning approach [4].

The main goal of our project is also to develop calculi for
approximations of functions defined on information gran-
ules with values that are information granules too [18, 27].
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