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Summary. In the paper we discuss some aspects of imperfectness of measurement. We present
= relationship between the basic notions of the theory of measurement and the theory of
rough sets. '

1. Introduction. Our object in this paper is to present one general approach
to the interpretation of the concepts of measurement theory, an approach
based on the theory of rough sets (Pawlak [4]). We draw attention to the
indiscernibility determined by a measurement function and we discuss some
important aspects of imperfectness of measurement. Such an approach gives
indication of how one is able to reconstruct or interpret empirical data and
their properties on the base of results of measurement. The resulting theory
provides the grounds for data analysis.

2. Approximation space. In the present section we bring the basic notions
introduced in Konrad, Orlowska and Pawlak [2], Orlowska [3], Pawlak [4].
By an approximation space we mean a system

S=(U,T

wnere U is a non-empty set called universe of discourse,

I is an equivalence relation on set U called indiscernibility relation.

An indiscernibility relation is considered to be a formal counterpart of
a perception or observation ability. According to the set-theoretical view we
shall identify properties of elements of universe U with its subsets. Given a
subset X of U, we say that ]

X is definable (finitely definable) in space S iff X is the empty set or X
can be represented as a union of some (finite number) of the equivalence
classes of relation I.
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Usually it is a case that not all the subsets of U are definable in . Given
a non-definable subset X of U, we are not able to pick up a sharp boundary
between X and its complement U— X, we perceive X with some tolerance
The limits of this tolerance are determined by a pair IX and IX of definable
sets called upper and lower approximation of X , Tespectively. The formal
definition of these sets is as follows:

IX = [xeU:for all yeU if (x, ylel then ye X}

IX = {xeU: there is a ye U such that (x,y)el and yex)

Clearly, if x is definable in S then IX = JX = X

In the following we list some properties of approximations.

Faet 2.1,
(@) - I(XNY)=IXNIY,
(b) IXcX, '
{CJ ﬂX:._IX,
d IU=U.
Fact 2.2,
(a) ‘T{XUY):TXUTY,.
by XcIXx, :
(. IIX=TIX,
(d) To=0. :

It follows that the algebra P (U) of all the subsets of U with the
additional operators I and Iis a topological field of sets, where I is the
interior operation and T is the closure operation.

. Fact 2.3. ,
fa) IX=-I(-X),
(b) IX=-I(-X),
() if X= Ythen IX = /Y and IX = [y
An approximation space (U, I) is said to be selective iff [ is an identity
on set U,

Fact 24. The following conditions are equivalent:
(@) A space §=(U,]I) is selective.
(b) Forany XcU IX =X =]X.
(c) For any X < U X is definable in space .
Treating a subset X of U as a property of elements of U we define sets
of positive, negative and borderline instances of this property as follows:
an element xeU is a positive instance of a property represented by X
iff xelX, :
an element xe U is a negative instance of a property represented by X
iff xeU-TX, ]
an element xe U is a borderline instance of a property represented by X
iff xeIX-1IX.
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Hence set IX consists of the elements of the universe U which definitely,
up to the equivalence I, obey a property corresponding to X. Set U —TI'X consists
of the elements which definitely, up to the equivalence I, do not obey this
property. The borderline region I'X —IX is a doubtful area. It consists of the
objects for which perception ability determined by I is not sufficient to decide
whether they obey the given property.

The indiscernibility relation I induces the equivalence relations in the set
P (U) which are considered to be approximate equalities of sets:

XeqY iff IX =1V,
XeqY iff IX =TV,
XeqY ifT XeqY and XeqY.

Given a subset X of U which is non-definable in space S, our perception
restricted by I causes X to be perceived as a family of those sets which
cannot be distinguished from X by means of relation eq. Hence a vague
property determines not a single set of elements falling under the property but
a family of sets which can be identified with this property up to indiscernibility I.

In a natural way we can extend the given notions to n-ary relations
which can be treated as properties of n-tuples of elements of a universe
(Pawlak [5.6]).

3. Measurement. In the measurement theory (Scott and Suppes [8]) empirical
data which are to be measured are identified with a relational system

DS = (U, Rel (U), Fun (U))
where U is a non-empty set called a universe of data items,

Rel (U).is a family of relations on set U
_Fun (U) is a family of functions on set U.

Measurement is considered to be a homomorphism [ from DS into a
numerical structure RS similar to DS:

f:U-Q
RS = (QD Rel {QL Fun (QJ]

for any n-ary relation reRel (U), n = 1, there is an n-ary relation r'e Rel (Q)
such that for all x,,..,x,eU

(s X)ET T (fxy), oo f (1) €7

for any n-argument function ocFun(U),n >0, there is an n-argument
function o’eFun (Q) such that for all x,, .., x,eU

Q [xl; S x,.:l =0 (f(xll'! -nur(xn]}-
Our approach differs from that developed by Scott and Suppes. First, we
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do not assume that measurement is a homomorphism from the empirical
structure into a result structure, and second we do not assume that the
results structure is a numerical one. Observe, that if f was a homomorphism then
the fact that measurement could not distinguish all the objects from U would
not influence the relationships between objects expressed by means of relations.
Consider the following example. ,

Let U = {x,,x;,x3,x4} and let Rel (U) contain the one-place relation
ry = {x;, X2, X3} and the binary relation r; = {(x;, x,), (x2, x4)}. Let f:U -
=0 =141,q2,95} be defined as follows: f(x;)=/f(x;)=q,. f(x3)=4q,.
f(x4) = q3. Then for any one-place relation p; = Q and any binary relation
p: = QxQ the conditions xer; iff f(x)ep, and (x, y)er, iff (f(x),f(y))ep,
are not satisfied.

For the sake of simplicity we confine ourselves to structures with one-place
relations. To extend the presented approach to arbitrary relations and functions
is only a technical matter. The respective results can be obtained on the base
of the notions of rough relation and rough function introd uced in Pawlak [5, 6].

Let data structure DS be given:

' : DS=(U,R)
where R = P (U). .

By a measurement of structure DS we man a function f:U — Q, where 0
is a non-empty set. For X = U let f(x) denote the image of set X determined
by f: o :

' f(X)= {geQ: there is an xe X such that f(x) = gq}.

Then by the result structure we mean the system
RS = (Q, {f(X):X eR}).

In the process of analysing empirical data on the base of measurement
results we have to take into account the imperfectness of measurement. For
the purpose we define the approximation space determined by a measurement
- Let I, be the equivalence relation on set U defined as follows:

(x, yyel, iff f(x)=7F(y).
Let us consider the approximation space

In this approximation space empirical data can be identified up to the
indiscernibility relation I,. This fact influences our perception of relationships
between these data. It seems natural to use the concepts presented in section
2 to cxpress consequences of inexactness of measurement. We say that

a set X = U is f-measurable iff X is definable in space 5;.

For data sets which are not measurable we can define their approximations
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n space SI Consider the following example. Let data structure DS consist
of set R of all non-negative real numbers and the family {<0:r)},.x+. Let
measurement 1R — o be defined as follows:

f(x) = entier of X.

Then the result structure consists of set @ of natural numbers and the
family of all the finite subsets of w. Equivalence classes of relation I, are
[isted below

: <0; 1),<1; 2), <2 3), ...
We have

1,€0:1) = €0:£ ()
I, €0:r)=<0: f(r)+1)

It follows ‘that the only f-measurable sets in space §, are intervals
of the form <0:n) for new. '

The following conditions reflect the influence of inexactness of measurement
on the results of masurement. For P = Q let ! (P) denote the set of those
clements of U whose images belong to P:

f7(P) = (xeUsf(m)eP)

Fact 3.1.
a) For an)r geQ set f ! {q} is an equivalence class of relation I,.
b) Xc<f '(f(X) for any X s U.
c) If X is f~measurable then X =f~ 1[f(X}]
d) fX)=I X
Fac:‘ 2,
a) fU;X)=f(X).
b) [(X)=fU;X)
¢) If Xeq, Y then f(X)=/f(Y).

These facts show that in general it is-not possible to reconstruct data
from the results of measurement. Data items can be identified up to
indiscernibility I, and properties (subsets) of entities from U can be
recognized with the tolerance detcrmmed by their lower and upper appro-
ximations. )

A measurement f is said to be perfect iff function f is Injection.

Fact 3.3. The following conditions are equivalent:
a)  Measurement [ is perfect.
b) Approximation space S, is selective.
¢) Foranyset XU S (f(X)=

Consider the following example

— " - - ~
U i ixll'xzs x:‘a!)'d.-.-\CS-. '\6"\(?!-15}
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Family R consists of the following subsets of U:

Xy = {x,,x3,x4}
_XZ - {xl » X3y Xg, Xoq, xﬁ}
XJ i thq-! xS}
Q = [red, blue, green}
Measurement f determines colours of objects from U:

Fe1) =f(x;) = f(x4) = red,
J(x3) = f(x) = f(xg) = blue,
S (xg) = f(x5) = green.

It follows that sets X, and X 2 are not f-measurable and set X, is
J-measurable. ' :

We have:

S(Xy) = {red, green}

l_r X, =0 f_,r X, = {xl.x_,,,.t‘,,xs,x?}
S 7" ({red, green}) = I, X,

f1X3)= {red, blue}

1, X, = {3’51913~x1} f‘__r' X;= {xuxg,-‘fjs'xﬁtx?»—‘ia}
[ (ired, blue}) =T, X,

fX;)= {red} - '

Iszszxi'er;;

_f_] [{rEd}] = X3.

-Approximation space S reflects our view of data determined by the results
of measurement F. Since measurement f is not necessarily perfect, that is
some data items cannot be distinguished by I, then, in general, data have
not uniquely determined counterparts in space S,.

In the following we introduce functions m, and m, which assign non-
negative integers to those subsets of universe U which have finitely definable
approximations in space S;. The quotient ng(X) of the values of these
functions for a set X reflects degree of inexactness of the measurement of
X by fin a sense. 4

Let Y/I, denote the set of those equivalence classes of relations I, which
are included in Y

my (X) = card I, X/I,,
iy (X) = card I; X/1,,
m, (X)
ne (X)=—=L2L
! ( _m-r (X)
For example, for the entier measurement function we have

m;C0;7) = £ (r)
me {0;r)=f(r)+1.



Measurement and Indiscernibility 623

4. Families of measurement. In this section we present counterparts of the
notions of regular, admissible and homogeneous family of measurements
investigated in the measurement theory (Bromek, Moszynska and Prazmowski
[1]) and we characterize these notions in terms of approximation spaces
generated by measurements.

Given a family F of measurements from U to Q let Ind (F) be the
family of all the indiscernibility relations determined by the functions from F.

A measurement f is said to be regular with respect to a family F
i for every measurement geF we have I, < I,.

Fact 4.1. For any family F any injection fe F is regular with respect to F.

A family F is said to be regular iff each measurement fe F is regular
with respect to F. :

Fact 4.2, The following conditions are equwalent
1a)  Family F is regular.
tb) For any f,geF I, =1,

Hence a regular family of measurements consists of measurements which
have the same measurability power.

Given a measurement fe F, a function h:f (U)— Q is said to be admissible
for [ with respect to F iff I, elInd (F).

Fact 43. For any measurement f:U — Q and for any functmn h:f [U}—rQ
we have [, = I,

Let Ag(f) denote the family of all the functions admissible for f with
respect to F.

A family F is said to be homogeneous iff for any f and geF we have
Ar (f) = 4§ (g)-

Let F be a family of measurements, we define the order in F as follows:
f<giff I, =1,
Relation < induces an equivalence E on family F:
(f.9)€E iff f<g and g <f.
Equivalence classes of relation E are called types.
Fact 44. The following conditions are equivalent:
(al A family F of measurements is regular.

tb) For any feF, F is the type generated by f
Consider the following example.

U = {xy, x2, X3, X4, Xs},

Q= {qIIQbQS}*

F= {.fli:.fzsfa}u G= :.fzs.fs}-
Si (x1) =11 (xs5) = 44,

Ji (x2) = fi (x4) = q3,

fi1x3) = g5,
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J2 (x0) = 13 (x3) = f3 (x5) = g4,
J2 (X2) = f3 (x4) = ¢,
J3 (%)) =13 (x3) = f (x35) = g3,
J3(xa) =13 (x4} = q,.

We have

fi 1s regular with respect to F,
- G is regular.

Let h:Q0 - Q be defined as follows:

h{q,) = h(gs) = qs,
hig,) = 3.

We have I, = I, eInd (F) and therefore h is admissible for f1 with respect
to F. Relation < in family F consists of the following pairs:

(1. 02) (. f3) (fio f) for i=1,2,3,

Relation E generates the following types in family F:

Uk Us fa}-
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3. Opnoseka, 3. TNasasx, Hamepenne n HEPALIHIHMOCTh

B macrosmed pabore PACCMATPHBAIOTCA HEKOTOPBIE 3NEMCHTHL AHAAHM3A OAHHRIX HA OCHOS:
HX H3MEPCHHA. TIPHROTUTCH MHTEPNPeTAIHA OCHOBHBIX NOHATHA TEOPHH MIMEPEHHA B TeopwHs
NPHOTH3ATENHBIX MHOKECTS,




