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Rough set theory offers new insight into Bayes’ theorem. The look on Bayes’
theorem offered by rough set theory is completely different from that used
in the Bayesian data analysis philosophy. It does not refer either to prior
or posterior probabilities, inherently associated with Bayesian reasoning, but
it reveals some probabilistic structure of the data being analyzed. It states
that any data set (decision table) satisfies total probability theorem and
Bayes’ theorem. This property can be used directly to draw conclusions from
data without referring to prior knowledge and its revision if new evidence
is available. Thus in the presented approach the only source of knowledge is
the data and there is no need to assume that there is any prior knowledge
besides the data. We simply look what the data are telling us. Consequently
we do not refer to any prior knowledge which is updated after receiving some
data.

27.1 Introduction

This paper is an abbreviation of [27.8]
Bayes’ theorem is the essence of statistical inference.
”The result of the Bayesian data analysis process is the posterior distri-

bution that represents a revision of the prior distribution on the light of the
evidence provided by the data” [27.5].

”Opinion as to the values of Bayes’ theorem as a basic for statistical
inference has swung between acceptance and rejection since its publication
on 1763” [27.4].

Rough set theory offers new insight into Bayes’ theorem. The look on
Bayes’ theorem offered by rough set theory is completely different to that
used in the Bayesian data analysis philosophy. It does not refer either to prior
or posterior probabilities, inherently associated with Bayesian reasoning, but
it reveals some probabilistic structure of the data being analyzed. It states
that any data set (decision table) satisfies total probability theorem and
Bayes’ theorem. This property can be used directly to draw conclusions from
data without referring to prior knowledge and its revision if new evidence
is available. Thus in the presented approach the only source of knowledge is
the data and there is no need to assume that there is any prior knowledge
besides the data. We simply look what the data are telling us. Consequently

T. Terano et al. (Eds.): JSAI 2001 Workshops, LNAI 2253, pp. 240−250, 2001.
 Springer-Verlag Berlin Heidelberg 2001



27. Bayes’ Theorem Revised – The Rough Set View 241

we do not refer to any prior knowledge which is updated after receiving some
data.

Moreover, the rough set approach to Bayes’ theorem shows close relations-
hip between logic of implications and probability, which was first observed by
�Lukasiewicz [27.6] and also independly studied by Adams [27.1] and others.
Bayes’ theorem in this context can be used to ”invert” implications, i.e. to
give reasons for decisions. This is a very important feature of utmost impor-
tance to data mining and decision analysis, for it extends the class of problem
which can be considered in these domains.

Besides, we propose a new form of Bayes’ theorem where basic role plays
strength of decision rules (implications) derived from the data. The strength
of decision rules is computed from the data or it can be also an subjective
assessment. This formulation gives new look on Bayesian method of inference
and also essentially simplifies computations.

27.2 Bayes’ Theorem

In this section we recall basic ideas of Bayesian inference philosophy, after
recent books on Bayes’ theory citeber:smi,box:tia,bert:han.

In his paper [27.2] Bayes considered the following problem: ”Given the
number of times in which an unknown event has happened and failed: re-
quired the chance that the probability of its happening in a single trial lies
somewhere between any two degrees of probability that can be named.”

”The technical results at the heart of the essay is what we now know
as Bayes’ theorem. However, from a purely formal perspective there is no
obvious reason why this essentially trivial probability result should continue
to excite interest” [27.3].

”In its simplest form, if H denotes an hypothesis and D denotes data, the
theorem says that

P (H|D) = P (D|H)× P (H) /P (D) .

With P (H) regarded as a probabilistic statement of belief about H before
obtaining data D, the left-hand side P (H|D) becomes an probabilistic sta-
tement of belief about H after obtaining D. Having specified P (D|H) and
P (D), the mechanism of the theorem provides a solution to the problem of
how to learn from data.

In this expression, P (H), which tells us what is known about H without
knowing of the data, is called the prior distribution of H, or the distribution
of H a priori. Correspondingly, P (H|D), which tells us what is known about
H given knowledge of the data, is called the posterior distribution of H given
D, or the distribution of H a posteriori” [27.3].

”A prior distribution, which is supposed to represent what is known about
unknown parameters before the data is available, plays an important role in
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Baysian analysis. Such a distribution can be used to represent prior knowledge
or relative ignorance” [27.4].

Let us illustrate the above by a simple example taken from [27.5].

Example 27.2.1. ”Consider a physician’s diagnostic test for presence or ab-
sence of some rare disease D, that only occurs in 0.1% of the population,
i.e., P (D) = .001. It follows that P (D) = .999, where D indicates that a
person does not have the disease. The probability of an event before the eva-
luation of evidence through Bayes’ rule is often called the prior probability.
The prior probability that someone picked at random from the population
has the disease is therefore P (D) = .001.

Furthermore we denote a positive test result by T+, and a negative test
result by T−. The performance of the test is summarized in Table 1.

Table 27.1. Performance of diagnostic test

T+ T−

D 0.95 0.05

D 0.02 0.98

What is the probability that a patient has the disease, if the test result
is positive? First, notice that D,D is a partition of the outcome space. We
apply Bayes’ rule to obtain

P
(
D|T+) =

P (T+|D)P (D)
P (T+|D)P (D) + P

(
T+|D)P (D) =

=
.95 · .001

.95 · .001 + .02 · .999 = .045.

Only 4.5% of the people with a positive test result actually have the disease.
On the other hand, the posterior probability (i.e. the probability after eva-
luation of evidence) is 45 times as high as the prior probability”. ��

27.3 Information Systems and Approximation of Sets

In this section we define basic concepts of rough set theory: information
system and approximation of sets. Rudiments of rough set theory can be
found in [27.7, 27.10].

An information system is a data table, whose columns are labeled by
attributes, rows are labeled by objects of interest and entries of the table are
attribute values.
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Formally, by an information system we will understand a pair S = (U,A),
where U and A, are finite, nonempty sets called the universe, and the set of
attributes, respectively. With every attribute a ∈ A we associate a set Va, of
its values, called the domain of a. Any subset B of A determines a binary
relation I(B) on U , which will be called an indiscernibility relation, and
defined as follows: (x, y) ∈ I(B) if and only if a(x) = a(y) for every a ∈ A,
where a(x) denotes the value of attribute a for element x. Obviously I(B) is
an equivalence relation. The family of all equivalence classes of I(B), i.e., a
partition determined by B, will be denoted by U/I(B), or simply by U/B;
an equivalence class of I(B), i.e., block of the partition U/B, containing x
will be denoted by B(x).

If (x, y) belongs to I(B) we will say that x and y are B-indiscernible
(indiscernible with respect to B). Equivalence classes of the relation I(B)
(or blocks of the partition U/B) are referred to as B-elementary sets or B-
granules.

If we distinguish in an information system two disjoint classes of attri-
butes, called condition and decision attributes, respectively, then the system
will be called a decision table and will be denoted by S = (U,C,D), where C
and D are disjoint sets of condition and decision attributes, respectively.

Thus the decision table determines decisions which must be taken, when
some conditions are satisfied. In other words each row of the decision table
specifies a decision rule which determines decisions in terms of conditions.

Observe, that elements of the universe are in the case of decision tables
simply labels of decision rules.

Suppose we are given an information system S = (U,A), X ⊆ U , and
B ⊆ A. Our task is to describe the set X in terms of attribute values from
B. To this end we define two operations assigning to every X ⊆ U two sets
B∗(X) and B∗(X) called the B-lower and the B-upper approximation of X,
respectively, and defined as follows:

B∗ (X) =
⋃

x∈U
{B (x) : B (x) ⊆ X},

B∗ (X) =
⋃

x∈U
{B (x) : B (x) ∩X �= ∅}.

Hence, the B-lower approximation of a set is the union of all B-granules that
are included in the set, whereas the B-upper approximation of a set is the
union of all B-granules that have a nonempty intersection with the set. The
set

BNB (X) = B∗ (X)−B∗ (X)

will be referred to as the B-boundary region of X.
If the boundary region of X is the empty set, i.e., BNB(X) = ∅, then X

is crisp (exact) with respect to B; in the opposite case, i.e., if BNB(X) �= ∅,
X is referred to as rough (inexact) with respect to B.
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27.4 Rough Membership

Rough sets can be also defined employing instead of approximations rough
membership function [27.9], which is defined as follows:

µBX : U → [0, 1]

and

µBX (x) =
|B (x) ∩X|
|B (x) | ,

where X ⊆ U and B ⊆ A.
The function measures the degree that x belongs to X in view of infor-

mation about x expressed by the set of attributes B.
The rough membership function, can be used to define approximations

and the boundary region of a set, as shown below:

B∗ (X) = {x ∈ U : µBX (x) = 1},

B∗ (X) = {x ∈ U : µBX (x) > 0},

BNB (X) = {x ∈ U : 0 < µBX (x) < 1}.

27.5 Information Systems and Decision Rules

Every decision table describes decisions (actions, results etc.) determined,
when some conditions are satisfied. In other words each row of the decision
table specifies a decision rule which determines decisions in terms of conditi-
ons.

In what follows we will describe decision rules more exactly.
Let S = (U,C,D) be a decision table. Every x ∈ U determines a

sequence c1(x), . . . , cn(x), d1(x), . . . , dm(x) where {c1, . . . , cn} = C and
{d1, . . . , dm} = D.

The sequence will be called a decision rule (induced by x) in S and denoted
by c1(x), . . . , cn(x)→ d1(x), . . . , dm(x) or in short C →x D.

Decision rules are often presented as logical implications in the form
”if...then...”.

A set of decision rules corresponding to a decision table will be called a
decision algorithm.

The number suppx(C,D) = |C(x) ∩D(x)| will be called a support of the
decision rule C →x D and the number

σx (C,D) =
suppx (C,D)

|U | ,

will be referred to as the strength of the decision rule C →x D, where |X|
denotes the cardinality of X. With every decision rule C →x D we associate
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the certainty factor of the decision rule, denoted cerx(C,D) and defined as
follows:

cerx (C,D) =
|C (x) ∩D (x) |
|C (x) | =

suppx (C,D)
|C (x) | =

=
σx (C,D)
π (C (x))

,

where π (C (x)) = |C(x)|
|U | .

The certainty factor may be interpreted as a conditional probability that
y belongs to D (x) given y belongs to C (x), symbolically πx (D|C) .

If cerx (C,D) = 1, then C →x D will be called a certain decision rule in
S; if 0 < cerx (C,D) < 1 the decision rule will be referred to as an uncertain
decision rule in S.

Besides, we will also use a coverage factor of the decision rule, denoted
covx (C,D) defined as

covx (C,D) =
|C (x) ∩D (x) |
|D (x) | =

suppx (C,D)
|D (x) | =

=
σx (C,D)
π (D (x))

,

where π (D (x)) = |D(x)|
|U | .

Similarly

covx (C,D) = πx (C|D) .

If C →x D is a decision rule then D →x C will be called an inverse
decision rule. The inverse decision rules can be used to give explanations
(reasons) for decisions.

Let us observe that

cerx (C,D) = µCD(x) (x) and covx (C,D) = µDC(x) (x) .

That means that the certainty factor expresses the degree of membership of
x to the decision class D (x), given C, whereas the coverage factor expresses
the degree of membership of x to condition class C (x), given D.

27.6 Probabilistic Properties of Decision Tables

Decision tables have important probabilistic properties which are discussed
next.

Let C →x D be a decision rule in S and let Γ = C (x) and let ∆ = D (x) .
Then the following properties are valid:

∑

y∈Γ
cery (C,D) = 1 (27.1)
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y∈∆
covy (C,D) = 1 (27.2)

π (D (x)) =
∑

y∈Γ
cery (C,D) · π (C (y)) = (27.3)

=
∑

y∈Γ
σy (C,D)

π (C (x)) =
∑

y∈∆
covy (C,D) · π (D (y)) = (27.4)

=
∑

y∈∆
σy (C,D)

cerx (C,D) =
covx (C,D) · π (D (x))∑

y∈∆
covy (C,D) · π (D (y))

= (27.5)

=
σx (C,D)
π (C (x))

covx (C,D) =
cerx (C,D) · π (C (x))∑

y∈Γ
cery (C,D) · π (C (y))

= (27.6)

=
σx (C,D)
π (D (x))

That is, any decision table, satisfies (1),...,(6). Observe that (3) and (4)
refer to the well known total probability theorem, whereas (5) and (6) refer to
Bayes’ theorem.

Thus in order to compute the certainty and coverage factors of decision
rules according to formulas (5) and (6) it is enough to know the strength
(support) of all decision rules only. The strength of decision rules can be
computed from data or can be a subjective assessment.

Let us observe that the above properties are valid also for syntactic deci-
sion rules, i.e., any decision algorythm satisfies (1),...,(6).

Thus, in what follows, we will use the concept of the decision table and
the decision algorithm equivalently.

27.7 Decision Tables and Flow Graphs

With every decision table we associate a flow graph, i.e., a directed acyclic
graph defined as follows: to every decision rule C →x D we assign a directed
branch x connecting the input node C (x) and the output nodeD (x) . Strength
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of the decision rule represents a throughflow of the corresponding branch. The
throughflow of the graph is governed by formulas (1),...,(6).

Formulas (1) and (2) say that an outflow of an input node or an output
node is equal to their inflows. Formula (3) states that the outflow of the
output node amounts to the sum of its inflows, whereas formula (4) says that
the sum of outflows of the input node equals to its inflow. Finally, formulas
(5) and (6) reveal how throughflow in the flow graph is distributed between
its inputs and outputs.

27.8 Comparison of Bayesian and Rough Set Approach

Now we will illustrate the ideas considered in the previous sections by means
of the example considered in section 2. These examples intend to show clearly
the difference between ”classical” Bayesian approach and that proposed by
the rough set philosophy.

Observe that we are not using data to verify prior knowledge, inherently
associated with Bayesian data analysis, but the rough set approach shows
that any decision table safisties Bayes’ theorem and total probability theorem.
These properties form the basis of drawing conclusions from data, without
referring either to prior or posterior knowledge.

Example 27.8.1. This example, which is a modification of example 1 given
in section 2, will clearly show the different role of Bayes’ theorem in classical
statistical inference and that in rough set based data analysis.

Let us consider the data table shown in Table 2.

Table 27.2. Data table

T+ T−

D 95 5

D 1998 97902

In Table 2, instead of probabilities, like those given in Table 1, numbers
of patients belonging to the corresponding classes are given. Thus we start
from the original data (not probabilities) represanting outcome of the test.

Now from Table 2 we create a decision table and compute strength of
decision rules. The results are shown in Table 3.

In Table 3 D is the condition attribute, wheras T is the decision attribute.
The decision table is meant to represent a ”cause–effect” relation between
the disease and result of the test. That is, we expect that the disease causes
positive test result and lack of the disease results in negative test result.
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Table 27.3. Decision table

fact D T support strength

1 + + 95 0.00095

2 − + 1998 0.01998

3 + − 5 0.00005

4 − − 97902 0.97902

The decision algorithm is given below:

1’) if (disease, yes) then (test, positive)
2’) if (disease, no) then (test, positive)
3’) if (disease, yes) then (test, negative)
4’) if (disease, no) then (test, negative)

The certainty and coverage factors of the decision rules for the above decision
algorithm are given is Table 4.

Table 27.4. Certainty and coverage

rule strength certainty coverage

1 0.00095 0.95 0.04500

2 0.01998 0.02 0.95500

3 0.00005 0.05 0.00005

4 0.97902 0.98 0.99995

The decision algorithm and the certainty factors lead to the following
conclusions:

- 95% persons suffering from the disease have positive test results
- 2% healthy persons have positive test results
- 5% persons suffering from the disease have negative test result
- 98% healthy persons have negative test result

That is to say that if a person has the disease most probably the test result
will be positive and if a person is healthy the test result will be most probably
negative. In other words, in view of the data there is a causal relationship
between the disease and the test result.

The inverse decision algorithm is the following:

1) if (test, positive) then (disease, yes)
2) if (test, positive) then (disease, no)
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3) if (test, negative) then (disease, yes)
4) if (test, negative) then (disease, no)

From the coverage factors we can conclude the following:

- 4.5% persons with positive test result are suffering from the disease
- 95.5% persons with positive test result are not suffering from the disease
- 0.005% persons with negative test results are suffering from the disease
- 99.995% persons with negative test results are not suffering from the

disease

That means that if the test result is positive it does not necessarily indicate
the disease but negative test results most probably (almost for certain) does
indicate lack of the disease.

It is easily seen from Table 4 the negative test result almost exactly iden-
tifies healthy patients.

For the remaining rules the accuracy is much smaller and consequently
test results are not indicating the presence or absence of the disease. ��

It is clearly seen from examples 1 and 2 the difference between Bayesian
data analysis and the rough set approach. In the Bayesian inference the data
is used to update prior knowledge (probability) into a posterior probability,
whereas rough sets are used to understand what the data are telling us.

27.9 Conclusion

From examples 1 and 2 it is easily seen the difference between employing
Bayes’ theorem in statistical reasoning and the role of Bayes’ theorem in
rough set based data analysis.

Bayesian inference consists in updating prior probabilities by means of
data to posterior probabilities.

In the rough set approach Bayes’ theorem reveals data patterns, which
are used next to draw conclusions from data, in form of decision rules.

In other words, classical Bayesian inference is based rather on subjective
prior probability, whereas the rough set view on Bayes’ theorem refers to
objective probability inherently associated with decision tables.
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